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Authenticated Encryption

A ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ B

−−−−−→

←−−−−−

Encryption

• No outsider can learn anything about data

Authentication

• No outsider can manipulate data
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CAESAR Competition
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CAESAR Competition

Competition for Authenticated Encryption:
Security, Applicability, and Robustness

Goal: portfolio of authenticated encryption schemes

Mar 15, 2014: 57 �rst round candidates

Jul 7, 2015: 29.5 second round candidates

Aug 15, 2016: 16 third round candidates

??: announcement of �nalists

??: announcement of �nal portfolio
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Authenticated Encryption4 AE

A,M

N

C, TAE

k

• Ciphertext C encryption of message M

• Tag T authenticates associated data A and message M

• Nonce N randomizes the scheme

5 / 57



Authenticated Encryption4 AE

A,M

N

C, TAE

k

• Ciphertext C encryption of message M

• Tag T authenticates associated data A and message M

• Nonce N randomizes the scheme

5 / 57



Authenticated Decryption5 AD

PSfrag replacements

m
t
c
E
k

Ẽ
t

A,M

N
C, T

AE
k

A,C, T

N

{
M if T correct

⊥ otherwiseAD

k

• Authenticated decryption needs to satisfy that
• Message disclosed if tag is correct
• Message is not leaked if tag is incorrect

• Correctness: ADk(N,A,AEk(N,A,M)) = M
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Authenticated Encryption Security
6 indistsimpleAE

ICAE k,ADk $,⊥

distinguisher D

AE scheme random cipher, ⊥ function

• Two oracles: (AEk,ADk) (for secret key k) and ($,⊥)

• Distinguisher D has query access to one of these
→ unique nonce for each encryption query

• D tries to determine which oracle it communicates with

Advae
AE (D) =

∣∣∣Pr
[
DAEk,ADk = 1

]
−Pr

[
D$,⊥ = 1

]∣∣∣
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100% Security is Impractical
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Outline

Generic Composition

Link With Tweakable Blockciphers

Tweakable Blockciphers Based on Masking

Nonce-Reuse

Conclusion
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Generic Composition

• Generic constructions for AE:
• Enc + MAC = AE

• Bellare and Namprempre (2000): 3 basic approaches

E&M MtE EtM
1

PSfrag replacements
Enck Enck EnckMACl MACl MACl

m m m

c c ct t t

• Used in SSH

• Generically insecure
• MACL(m) = m‖t

• Used in TLS

• Mildly insecure

• Padding oracle
attack

• Used in IPSec

• Most secure variant

• Ciphertext integrity
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GCM for 96-bit nonce N

1 GCM

N‖1 N‖2 N‖3 N‖(m+ 1)

M1 M2 Mm

C1 C2 Cm

A

T

EK EKEKEK

GHASHL

ENC

MAC

• McGrew and Viega (2004)

• EtM design

• Widely used (TLS!)

• Patent-free

• Parallelizable

• Evaluates E only (no E−1)

• Provably secure
(if E is PRP)

• Very e�cient in HW

• Reasonably e�cient in SW

What happens if nonce is re-used?
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GCM-SIV

1 GCMSIV

PSfrag replacements N

N

(K,L)

T+0 T+1 T+(m−1)

M1 M2 Mm

C1 C2 Cm

A

T

EK

EKEKEK

GHASHL

KeyGenEk

KEY

ENC

MAC

• Gueron and Lindell (2015)

• MtE design

• Ongoing standardization
(IETF RFC)

• Patent-free

• Inherits GCM features

• Secure against nonce-reuse

• Proof: Iwata and Seurin
(2017)
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Tweakable Blockciphers1 cipher

m cE

k

• Tweak: �exibility to the cipher

• Each tweak gives di�erent permutation
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Tweakable Blockciphers2 ciphertweakable

m

t

c

k

Ẽ

• Tweak: �exibility to the cipher

• Each tweak gives di�erent permutation
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Tweakable Blockcipher Security
1 indistsimpletE

IC

PSfrag replacements

Ẽk π̃

distinguisher D

tweakable blockcipher random tweakable permutation

• Ẽk should look like random permutation for every t

• Di�erent tweaks −→ pseudo-independent permutations

• D tries to determine which oracle it communicates with

Advstprp

Ẽ
(D) =

∣∣∣Pr
[
DẼk,Ẽ

−1
k = 1

]
−Pr

[
Dπ̃,π̃−1

= 1
]∣∣∣
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Ẽ
(D) =

∣∣∣Pr
[
DẼk,Ẽ
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Tweakable Blockcipher Designs

in CAESAR

3 ciphertweakable-black

m c

k

Ẽ

t

1 tEE

E

Ẽ

2 tEP

P
Ẽ

Dedicated Blockcipher-Based Permutation-Based

KIASU, CBA, COBRA, iFeed, Prøst,
Joltik, Marble, OMD, POET, Minalpher

SCREAM, SHELL, AEZ, COPA/
Deoxys ELmD, OCB, OTR
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Example Use in OCBx (1/2)2 OCBgen

A1 A2 Aa M1 M2 Md⊕Mi

C1 C2 Cd

T

Ẽ
N,tA1
k Ẽ

N,tA2
k Ẽ

N,tAa
k Ẽ

N,tM⊕
k Ẽ

N,tM1
k Ẽ

N,tM2
k Ẽ

N,tMd
k

• Generalized OCB by Rogaway et al. [RBBK01,Rog04,KR11]

• Internally based on tweakable blockcipher Ẽ
• Tweak (N, tweak) is unique for every evaluation
• Di�erent blocks always transformed under di�erent tweak

• Triangle inequality:

Advae
AE [Ẽk]

(σ) ≤ Advae
AE [π̃](σ) + Advstprp

Ẽ
(σ)
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Example Use in OCBx (2/2)4 OCBgenalertpi

A1 A2 Aa M1 M2 Md⊕Mi

C1 C2 Cd

T

π̃
N,tA1 π̃

N,tA2 π̃
N,tAa π̃

N,tM⊕ π̃
N,tM1 π̃

N,tM2 π̃
N,tMd

• Nonce uniqueness ⇒ tweak uniqueness

• Encryption calls behave like random functions: AE [π̃] = $

• Authentication behaves like random function

• Tag forged with probability at most 1/(2n − 1)

Advae
AE [π̃](σ) ≤ 1/(2n − 1)

19 / 57
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design tweakable blockcipher
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Dedicated Tweakable Blockciphers

• Hasty Pudding Cipher [Sch98]

• AES submission, ��rst tweakable cipher�

• Mercy [Cro01]

• Disk encryption

• Three�sh [FLS+07]

• SHA-3 submission Skein

• TWEAKEY framework [JNP14]

• Four CAESAR submissions
• SKINNY & MANTIS

20 / 57



TWEAKEY Framework

• TWEAKEY by Jean et al. [JNP14]:1 tweakey

(k, t)

m c

· · · · · ·

· · · · · ·f f f

gggg

h hh

• f : round function

• g: subkey computation

• h: transformation of (k, t)

• Security measured through cryptanalysis

• Our focus: modular design
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Outline

Generic Composition

Link With Tweakable Blockciphers

Tweakable Blockciphers Based on Masking
• Intuition

• State of the Art

• Improved E�ciency

• Improved Security

Nonce-Reuse

Conclusion
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Intuition: Design1 recipe-emptyts

m cE

k
t ?

• Consider a blockcipher E with κ-bit key and n-bit state

How to mingle the tweak into the evaluation?

←−−
−

←−−
−

blend it with the key blend it with the state
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Intuition: Design2 recipe-key

m cE

k

t

• Blending tweak and key works. . .

• . . . but: careful with related-key attacks!

• For ⊕-mixing, key can be recovered in 2κ/2 evaluations

• Scheme is insecure if E is Even-Mansour

• TWEAKEY blending [JNP14] is more advanced
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Intuition: Design3 recipe-msg1

m cE

k

t

• Simple blending of tweak and state does not work

• Ẽk(t,m) = Ẽk(t⊕ C,m⊕ C)

• Some secrecy required: h

• Still does not work if adversary has access to Ẽ−1
k

• Ẽ−1
k (t, c)⊕ Ẽ−1

k (t⊕ C, c) = h⊗ C
• Two-sided masking necessary
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k (t⊕ C, c) = h⊗ C
• Two-sided masking necessary

25 / 57



Intuition: Design5 recipe-msg3

m cE

k

h⊗ t h⊗ t

• Two-sided secret masking seems to work

• Can we generalize?

• Generalizing masking? Depends on function f

• Variation in masking? Depends on functions f1, f2

• Releasing secrecy in E? Usually no problem

26 / 57
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Intuition: Design8 recipe-msg6
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• Variation in masking? Depends on functions f1, f2

• Releasing secrecy in E? Usually no problem
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Intuition: Analysis

9 recipe-msg7

m c

)

Ek/P

f1(t) f2(t)

• Ẽk should �look like� random permutation for every t

• Consider adversary D that makes q evaluations of Ẽk

• Step 1: • How many evaluations does D need at most?

Step 1: • Boils down to �nding generic attacks

• Step 2: • How many evaluations does D need at least?

Step 2: • Boils down to provable security
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Intuition: Analysis

9 recipe-msg7

m c

)

Ek/P

f1(t) f2(t)

• For any two queries (t,m, c), (t′,m′, c′):

m⊕ f1(t) = m′ ⊕ f1(t′) =⇒ c⊕ f2(t) = c′ ⊕ f2(t′)

• Unlikely to happen for random family of permutations

• Implication still holds with di�erence C xored to m,m′

Scheme can be broken in ≈ 2n/2 evaluations
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Intuition: Analysis

9 recipe-msg7

m c

)

Ek/P

f1(t) f2(t)

• The fun starts here!

• More technical and often more involved

• Typical approach:
• Consider any transcript τ an adversary may see
• Most τ 's should be equally likely in both worlds
• Odd ones should happen with very small probability

All constructions in this presentation: secure up to ≈ 2n/2 evaluations
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Outline

Generic Composition

Link With Tweakable Blockciphers

Tweakable Blockciphers Based on Masking
• Intuition

• State of the Art

• Improved E�ciency

• Improved Security

Nonce-Reuse

Conclusion
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Tweakable Blockciphers Based on Masking

Blockcipher-Based.6 picEgen

m c

)

tweak-based mask

Ek

typically 128 bits

pPermutation-Based.p7 picPgen

m c

)

tweak-based mask

P

much larger: 256-1600 bits
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Original Constructions

• LRW1 and LRW2 by Liskov et al. [LRW02]:
14 LRWotherEk

m c

t

Ek Ek

13 LRWonetweak

m c

h(t)

Ek

• h is XOR-universal hash
• E.g., h(t) = h⊗ t for n-bit �key� h
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Powering-Up Masking (XEX)

• XEX by Rogaway [Rog04]:1 picXEX

m c

2α3β7γ · Ek(N)

Ek

4 picTEM

m c

2α3β7γ · (k‖N ⊕ P (k‖N))

P

• (α, β, γ,N) is tweak (simpli�ed)

• Used in OCB2 and ±14 CAESAR candidates

• Permutation-based variants in Minalpher and Prøst
(generalized by Cogliati et al. [CLS15])
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Powering-Up Masking in OCB2
2 OCBgen

A1 A2 Aa M1 M2 Md⊕Mi

C1 C2 Cd

T

Ẽ
N,tA1
k Ẽ

N,tA2
k Ẽ

N,tAa
k Ẽ

N,tM⊕
k Ẽ

N,tM1
k Ẽ

N,tM2
k Ẽ

N,tMd
k

• Update of mask:
• Shift and conditional XOR

• Variable time computation

• Expensive on certain platforms

34 / 57
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Powering-Up Masking in OCB2
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Intermezzo: Why Start at 2 · Ek(N)?
10 OCB2-with-arrows-4g
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Intermezzo: Why Start at 2 · Ek(N)?

• Suppose we would mask with Ek(N):1 picXEX-atk1

PSfrag replacements

m c

Ek(N)

Ek

• Distinguisher can make inverse queries

• Putting c = 0 gives m = N ⊕ Ek(N)

• Distinguisher knows N so learns �subkey� Ek(N)

36 / 57



Intermezzo: Why Start at 2 · Ek(N)?

• Suppose we would mask with Ek(N):2 picXEX-atk2

PSfrag replacements

m c

Ek(N)

Ek E−1
k

• Distinguisher can make inverse queries

• Putting c = 0 gives m = N ⊕ Ek(N)

• Distinguisher knows N so learns �subkey� Ek(N)

36 / 57



Intermezzo: Why Start at 2 · Ek(N)?

• Suppose we would mask with Ek(N):3 picXEX-atk3PSfrag replacements
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Gray Code Masking

• OCB1 and OCB3 use Gray Codes:2 picGray

m c

(
α⊕ (α ≫ 1)

)
· Ek(N)

Ek

• (α,N) is tweak

• Updating: G(α) = G(α− 1)⊕ 2ntz(α)

• Single XOR
• Logarithmic amount of �eld doublings (precomputed)

• More e�cient than powering-up [KR11]
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Masked Even-Mansour (MEM)

• MEM by Granger et al. [GJMN16]:5 picMEM

m c

)

ϕγ
2 ◦ ϕβ

1 ◦ ϕα
0 ◦ P (N‖k)

P

• ϕi are �xed LFSRs, (α, β, γ,N) is tweak (simpli�ed)

• Combines advantages of:
• Powering-up masking
• Word-based LFSRs

• Simpler, constant-time (by default), more e�cient
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MEM: Design Considerations

• Particularly suited for large states (permutations)

• Low operation counts by clever choice of LFSR

• Sample LFSRs (state size b as n words of w bits):

b w n ϕ

128 8 16 (x1, . . . , x15, (x0 ≪ 1)⊕ (x9 � 1)⊕ (x10 � 1))
128 32 4 (x1, . . . , x3, (x0 ≪ 5)⊕ x1 ⊕ (x1 � 13))
128 64 2 (x1, (x0 ≪ 11)⊕ x1 ⊕ (x1 � 13))
256 64 4 (x1, . . . , x3, (x0 ≪ 3)⊕ (x3 � 5))
512 32 16 (x1, . . . , x15, (x0 ≪ 5)⊕ (x3 � 7))
512 64 8 (x1, . . . , x7, (x0 ≪ 29)⊕ (x1 � 9))

1024 64 16 (x1, . . . , x15, (x0 ≪ 53)⊕ (x5 � 13))
1600 32 50 (x1, . . . , x49, (x0 ≪ 3)⊕ (x23 � 3))
...

...
...

...

• Work exceptionally well for ARX primitives
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MEM: Uniqueness of Masking

• Intuitively, masking goes well as long as

ϕγ2 ◦ ϕ
β
1 ◦ ϕ

α
0 6= ϕγ

′

2 ◦ ϕ
β′

1 ◦ ϕ
α′
0

for any (α, β, γ) 6= (α′, β′, γ′)

• Challenge: set proper domain for (α, β, γ)

• Requires computation of discrete logarithms

64 128 256 512 1024

︸ ︷︷ ︸
solved by

Rogaway [Rog04]

︸ ︷︷ ︸
results implicitly used,

e.g., by Prøst (2014)︸ ︷︷ ︸
solved by Granger et al. [GJMN16]
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64 128 256 512 1024

︸ ︷︷ ︸
solved by

Rogaway [Rog04]

︸ ︷︷ ︸
results implicitly used,

e.g., by Prøst (2014)

︸ ︷︷ ︸
solved by Granger et al. [GJMN16]
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Application to AE: OPP1 OPPg

PSfrag replacements

A0 A1 Aa–1 M0 M1 Md–1⊕Mi

C1 C2 Cd

T

ϕ0(L)

ϕ0(L)

ϕ1(L)

ϕ1(L)

ϕa–1(L)

ϕa–1(L)

ϕ2◦ϕ2
1◦ϕd–1(L)

ϕ2◦ϕ2
1◦ϕd–1(L) ϕ2◦ϕ0(L) ϕ2◦ϕ1(L) ϕ2◦ϕd–1(L)

ϕ2◦ϕ0(L) ϕ2◦ϕ1(L) ϕ2◦ϕd–1(L)

PP P P PPP

• O�set Public Permutation (OPP)

• Generalization of OCB3:
• Permutation-based
• More e�cient MEM masking

• Security against nonce-respecting adversaries

• 0.55 cpb with reduced-round BLAKE2b
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L = P (N‖k)
ϕ1 = ϕ⊕ id , ϕ2 = ϕ2 ⊕ ϕ⊕ id



Application to AE: MRO2 MROg

A0 Aa–1 T‖0 T‖d–1M0 Md–1 |A|‖|M |

C1 Cd

T

ϕ0(L)

ϕ0(L)

ϕa–1(L)

ϕa–1(L)

ϕ1◦ϕ0(L)

ϕ1◦ϕ0(L)

ϕ1◦ϕd–1(L)

ϕ1◦ϕd–1(L)

ϕ2
1(L)

ϕ2
1(L)

ϕ2(L) ϕ2(L)

ϕ2(L)⊕M0 ϕ2(L)⊕Md–1

P

PPP P PP

• Misuse-Resistant OPP (MRO)

• Fully nonce-misuse resistant version of OPP

• 1.06 cpb with reduced-round BLAKE2b
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Outline

Generic Composition

Link With Tweakable Blockciphers

Tweakable Blockciphers Based on Masking
• Intuition

• State of the Art

• Improved E�ciency

• Improved Security

Nonce-Reuse

Conclusion
44 / 57



XPX

• XPX by Mennink [Men16]:
4 XPX

m c

t11k ⊕ t12P (k) t21k ⊕ t22P (k)

P

• (t11, t12, t21, t22) from some tweak set T ⊆ ({0, 1}n)4

• T can (still) be any set

• Security of XPX strongly depends on choice of T

1 �Weak� T −→ insecure
2 �Normal� T −→ single-key secure
3 �Strong� T −→ related-key secure
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XPX: Weak Tweaks
4 XPX

m c

t11k ⊕ t12P (k) t21k ⊕ t22P (k)

P

(0, 0, 0, 0) ∈ T =⇒ XPXk((0, 0, 0, 0),m) = P (m)

(1, 0, 1, 1) ∈ T =⇒ XPXk((1, 0, 1, 1), 0) = k

(1, 0, 0, 2) ∈ T =⇒ XPXk((1, 0, 0, 2), 0) = 3P (k)

· · · · · · · · ·

�Valid� Tweak Sets

• Technical de�nition to eliminate weak cases

• T invalid ⇐⇒ XPX insecure

• T valid ⇐⇒ XPX single- or related-key secure
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XPX Covers Even-Mansour
4 XPX

m c

t11k ⊕ t12P (k) t21k ⊕ t22P (k)

P −−→

1 EM

m c

k k

P

for T = {(1, 0, 1, 0)}

• Single-key STPRP secure (surprise?)

• Generally, if |T | = 1, XPX is a normal blockcipher
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XPX Covers XEX With Even-Mansour
4 XPX

m c

t11k ⊕ t12P (k) t21k ⊕ t22P (k)

P −−→

4 XEMXsimple0

m c

(2α3β7γ ⊕ 1)k ⊕ 2α3β7γP (k)

P

for T =

{
( 2α3β7γ ⊕ 1 , 2α3β7γ ,
( 2α3β7γ ⊕ 1 , 2α3β7γ )

∣∣∣∣ (α, β, γ) ∈ {XEX-tweaks}
}

• (α, β, γ) is in fact the �real� tweak

• Related-key STPRP secure (if 2α3β7γ 6= 1)
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Application to AE: COPA and Prøst-COPA
1 COPA

A1 A2 Aa−1 Aa M1 M2 Md M1⊕···⊕Md

C1 C2 Cd T

33L 2·33L 2a-233L 2a-134L

L

3L 2·3L 2d-13L 2d-132L

2L 22L 2dL 2d-17L

Ek Ek

Ek

Ek

EkEk EkEk

EkEkEkEk

• By Andreeva et al. (2014)

• Implicitly based on XEX based on AES

• Prøst-COPA by Kavun et al. (2014):

COPA based on XEX based on Even-Mansour
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Application to AE: COPA and Prøst-COPA

Single-Key Security of COPA

. .COPA
O
(
σ2

2n

)
−−−−→

sk

. .XEX
O
(
σ2

2n

)
−−−−→

sk

. .E

O
(
σ2

2n

)
−−−−→

sk

. .P

Related-Key Security of

• Existing proof generalizes

. .COPA
O
(
σ2

2n

)
−−−−→

rk

. .XEX
O
(
σ2

2n

)
−−−−→

rk

. .E

Ω
(

1
)

−−−−→
rk

. .P
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Guaranteeing Uniqueness of Nonce

counter nonce random nonce user-chosen nonce
←
−−
−

←
−−
−

←
−−
−

• Issues with nonce generation:
• Counter needs storage
• Need synchronization or transmission
• E�ciency cost
• Laziness or mistake of implementor
• . . .

• Sometimes, attacker can use same nonce multiple times
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Nonce-Reuse in Practice

Nonce-Disrespecting Adversaries: Practical

Forgery Attacks on GCM in TLS

Böck et al., USENIX WOOT 2016

• GCM is widely used authenticated encryption scheme

• Used in TLS (�https�)

• Internet-wide scan for GCM implementations

• 184 devices with duplicated nonces
• VISA, Polish bank, German stock exchange, . . .

• ≈ 70.000 devices with random nonce
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Resistance Against Nonce-Reuse

Intuition

• All input should be cryptographically transformed

• Any change in (N,A,M) −→ unpredictable (C, T )

• Often comes at a price:
• E�ciency
• Security
• Parallelizability
• . . .
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Back to GCM-SIV
1 GCMSIV

PSfrag replacements N

N

(K,L)

T+0 T+1 T+(m−1)

M1 M2 Mm

C1 C2 Cm

A

T

EK

EKEKEK

GHASHL

KeyGenEk

KEY

ENC

MAC
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Conclusion

Authenticated Encryption

• Nonce-based AE: currently the norm
• CCM, GCM, OCB3, . . .

• Nonce-reuse comes at e�ciency penalty
• GCM-SIV, MRO, AEZ, . . .

• CAESAR competition

Tweakable Blockciphers

• Allow for modular and compact proofs

• Birthday-bound secure TBCs: simple and e�cient

• Security beyond the birthday bound?

Thank you for your attention!

57 / 57



Conclusion

Authenticated Encryption

• Nonce-based AE: currently the norm
• CCM, GCM, OCB3, . . .

• Nonce-reuse comes at e�ciency penalty
• GCM-SIV, MRO, AEZ, . . .

• CAESAR competition

Tweakable Blockciphers

• Allow for modular and compact proofs

• Birthday-bound secure TBCs: simple and e�cient

• Security beyond the birthday bound?

Thank you for your attention!

57 / 57



SUPPORTING SLIDES

58 / 57



Detailed Picture of GCM

n �1 n+ 1 �1 n+ 2

Ek Ek Ek

m0

c0

m1

c1

⊗H⊗Had ⊗H ⊗H t

len(ad)‖len(c)

Ek

0

H
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Detailed Picture of GCM-SIV

ad ⊗k1 ⊗k1

m0

⊗k1

m1

⊗k1

len(ad)‖len(m)

Ek2

n

�x0 t

t

Ek2

�x1

c0

�1

Ek2

�x1

c1

Ek Ek Ek Ek

xy xy xy xy

‖ ‖

�1 �2 �3

k1 k2
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MEM: Implementation

• State size b = 1024

• LFSR on 16 words of 64 bits:

ϕ(x0, . . . , x15) = (x1, . . . , x15, (x0 ≪ 53)⊕ (x5 � 13))

• P : BLAKE2b permutation with 4 or 6 rounds

• Main implementation results:

nonce-respecting misuse-resistant

Platform AES-GCM OCB3 Deoxys6= OPP4 OPP6

GCM-SIV Deoxys= MRO4 MRO6

Cortex-A8 38.6 28.9 - 4.26 5.91
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1.17 ≈ 1.92 1.06 1.39

61 / 57



MEM: Implementation

• State size b = 1024

• LFSR on 16 words of 64 bits:

ϕ(x0, . . . , x15) = (x1, . . . , x15, (x0 ≪ 53)⊕ (x5 � 13))

• P : BLAKE2b permutation with 4 or 6 rounds

• Main implementation results:

nonce-respecting misuse-resistant

Platform AES-GCM OCB3 Deoxys6= OPP4 OPP6

GCM-SIV Deoxys= MRO4 MRO6

Cortex-A8 38.6 28.9 - 4.26 5.91

- - 8.07 11.32

Sandy Bridge 2.55 0.98 1.29 1.24 1.91

- ≈ 2.58 2.41 3.58

Haswell 1.03 0.69 0.96 0.55 0.75

1.17 ≈ 1.92 1.06 1.39

61 / 57



MEM: Implementation

• State size b = 1024

• LFSR on 16 words of 64 bits:

ϕ(x0, . . . , x15) = (x1, . . . , x15, (x0 ≪ 53)⊕ (x5 � 13))

• P : BLAKE2b permutation with 4 or 6 rounds

• Main implementation results:

nonce-respecting misuse-resistant

Platform AES-GCM OCB3 Deoxys6= OPP4 OPP6 GCM-SIV Deoxys= MRO4 MRO6

Cortex-A8 38.6 28.9 - 4.26 5.91 - - 8.07 11.32

Sandy Bridge 2.55 0.98 1.29 1.24 1.91 - ≈ 2.58 2.41 3.58

Haswell 1.03 0.69 0.96 0.55 0.75 1.17 ≈ 1.92 1.06 1.39

61 / 57



MEM: Parallelizability

• LFSR on 16 words of 64 bits:

ϕ(x0, . . . , x15) = (x1, . . . , x15, (x0 ≪ 53)⊕ (x5 � 13))

• Begin with state Li = [x0, . . . , x15] of 64-bit words

x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

x16 x17 x18 x19

• x16 = (x0 ≪ 53)⊕ (x5 � 13)

• x17 = (x1 ≪ 53)⊕ (x6 � 13)

• x18 = (x2 ≪ 53)⊕ (x7 � 13)

• x19 = (x3 ≪ 53)⊕ (x8 � 13)

• Parallelizable (AVX2) and word-sliceable
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XPX: Single-Key Security

(Strong) Tweakable PRP

ICXPX
(±)
k P± π̃(±) P±

real world ideal world

distinguisher D

1

• Information-theoretic indistinguishability

• π̃ ideal tweakable permutation
• P ideal permutation
• k secret key

T is valid =⇒ XPX is (S)TPRP up to O
(
q2 + qr

2n

)
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XPX: Related-Key Security

Related-Key (Strong) Tweakable PRP

ICXPX
(±)
ϕ(k)

P± r̃kπ(±) P±

real world ideal world

distinguisher D

1

• Information-theoretic indistinguishability

• r̃kπ ideal tweakable related-key permutation
• P ideal permutation
• k secret key

• D restricted to some set of key-deriving functions Φ
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XPX: Related-Key Security

Key-Deriving Functions

• Φ⊕: all functions k 7→ k ⊕ δ

• ΦP⊕: all functions k 7→ k ⊕ δ or P (k) 7→ P (k)⊕ ε
• Note: maskings in XPX are ti1k ⊕ ti2P (k)

Results

if T is valid, and for all tweaks: security Φ

t12 6= 0 TPRP Φ⊕
t12, t22 6= 0 and (t21, t22) 6= (0, 1) STPRP Φ⊕

t11, t12 6= 0 TPRP ΦP⊕
t11, t12, t21, t22 6= 0 STPRP ΦP⊕
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XPX: Security Proof Techniques

Patarin's H-coe�cient Technique

• Each conversation de�nes a transcript

• De�ne good and bad transcripts

Adv
rk-(s)prp
XPX (D) ≤ ε+ Pr

[
bad transcript for (r̃kπ, P )

]

� prob. ratio for good transcripts

• Trade-o�: de�ne bad transcripts smartly!
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XPX: Security Proof Techniques

Before the Interaction

• Reveal �dedicated� oracle queries

After the Interaction

• Reveal key information
• Single-key: k and P (k)
• Φ⊕-related-key: k and P (k ⊕ δ)
• ΦP⊕-related-key: k and P (k ⊕ δ) and P−1(P (k)⊕ ε)

Bounding the Advantage

• Smart de�nition of bad transcripts
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XPX: Application to AE: Minalpher
1 Minalpher

A1 A2 Aa−1 Aa M1 M2 Md−1 Md

C1 C2 Cd−1 Cd

T

2L′

2L′

22L′

22L′

2a-1L′

2a-1L′

2a-13L′

2a-13L′

2L

2L

23L

23L

22d-3L

22d-3L

22d-1L

22d-1L

22L

22L

24L

24L

22d-2L

22d-2L

22d-13L

22d-13L

P

P P P

P

P PP

PPPP

• By Sasaki et al. (2014)

• Extra nonce N concatenated to k

• Based on XPX with T = {(2α3β, 2α3β, 2α3β, 2α3β)}

. .Minalph.
O
(
σ2

2n

)
−−−−→

rk

. .XPX

O
(
σ2

2n

)
−−−−→

rk

. .P

68 / 57

L′ = k‖flag‖0⊕ P (k‖flag‖0)
L = k‖flag‖N ⊕ P (k‖flag‖N)
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