

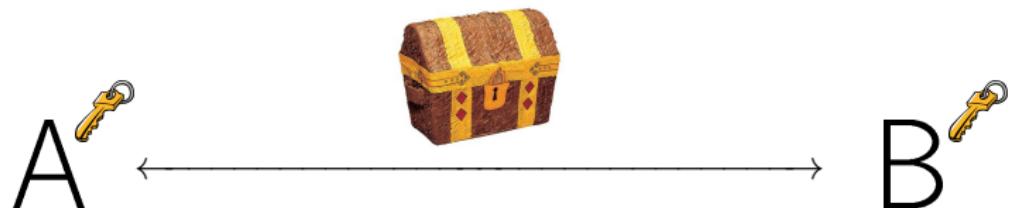
Security of Authenticated Encryption Modes

Bart Mennink
Radboud University (The Netherlands)

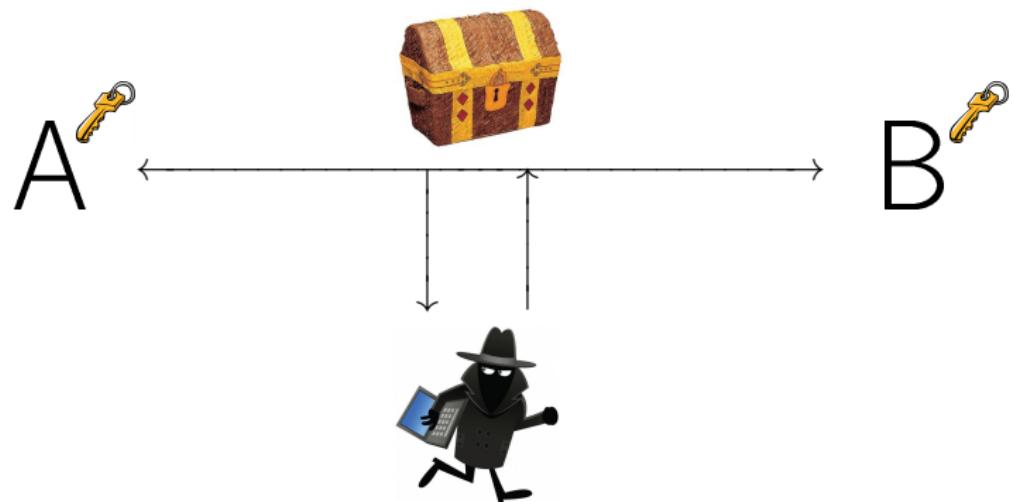
COST Training School on
Symmetric Cryptography and Blockchain

February 22, 2018

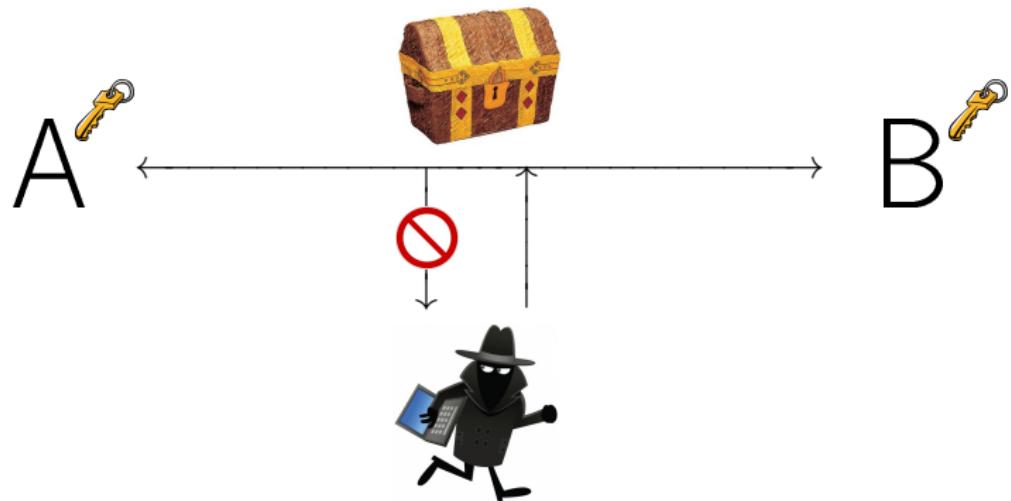
Authenticated Encryption



Authenticated Encryption



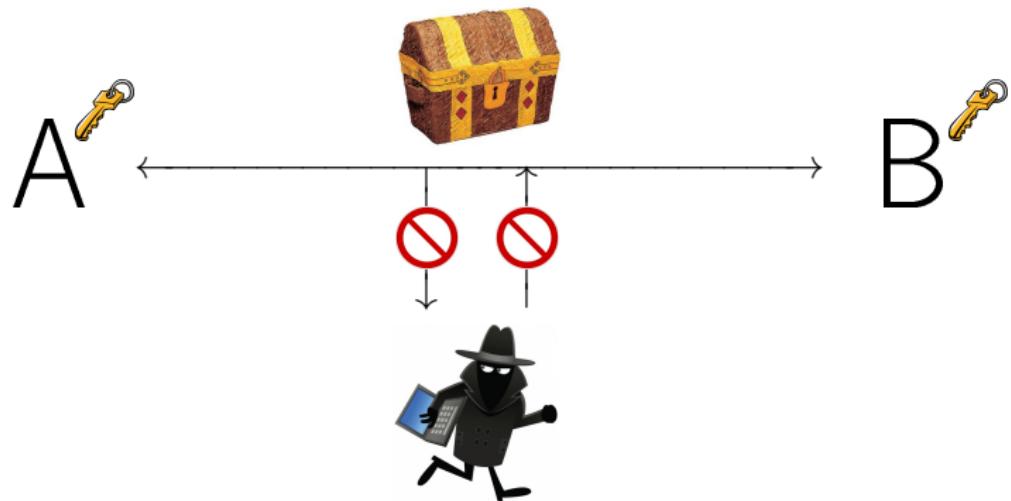
Authenticated Encryption



Encryption

- No outsider can learn anything about data

Authenticated Encryption



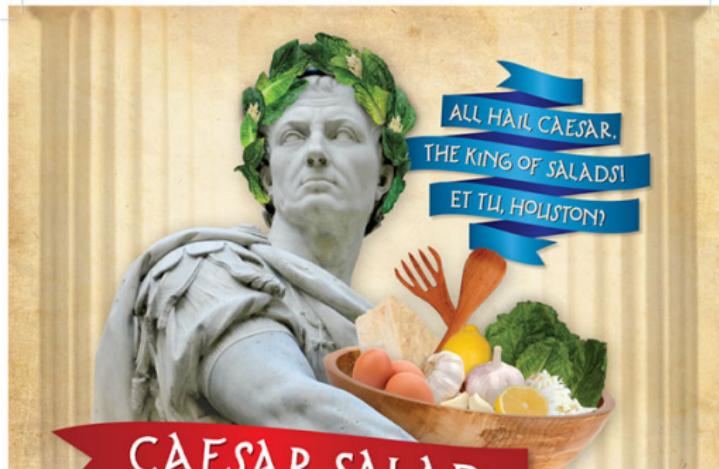
Encryption

- No outsider can learn anything about data

Authentication

- No outsider can manipulate data

CAESAR Competition



ALL HAIL CAESAR,
THE KING OF SALADS!
ET TU, HOUSTON?

CAESAR SALAD COMPETITION

THURSDAY, OCTOBER 6
5:30 – 8 P.M.
HILTON UNIVERSITY OF HOUSTON
4450 UNIVERSITY DRIVE

TAsty! YES.
GARLIC BREATH? INEVITABLE.
FUN? ABSOLUTELY! FREE ADMISSION TO
THE FIRST 10 GUESTS WHO WEAR A TOGA!

PURCHASE YOUR TICKETS

\$40 IN ADVANCE • \$45 AT THE DOOR
COMPLIMENTARY UNDERGROUND GARAGE PARKING

www.caesarsaladcompetitionhouston.com

PROCEEDS FROM THE EVENT BENEFIT THE FOOD & BEVERAGE MANAGERS ASSOCIATION EDUCATIONAL ENDOWMENTS.

"LETTUCE" DAZZLE YOU WITH BOTH THE CLASSIC AND THE CREATIVELY CULINARY ITERATIONS OF CAESAR SALADS AS CHEFS FROM THE HOUSTON AREA'S FINEST RESTAURANTS COMPETE FOR FOUR COVETED AWARDS—AND YOUR VOTE!

• CONSUMERS' CHOICE • MOST CREATIVE • BEST CLASSIC

UNIVERSITY of HOUSTON
CONRAD N. HILTON COLLEGE

HOUSTON'S DINING MAGAZINE
MY TABLE

FOOD & BEVERAGE
MANAGERS
ASSOCIATION
EDUCATIONAL ENDOWMENTS

DESIGNED BY BETH GORDON

CAESAR Competition

Competition for Authenticated Encryption: Security, Applicability, and Robustness

Goal: portfolio of authenticated encryption schemes

Mar 15, 2014: 57 first round candidates

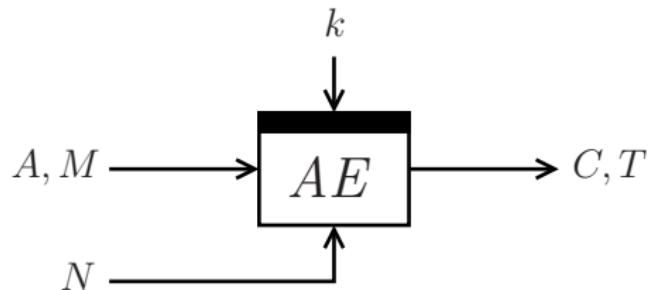
Jul 7, 2015: 29.5 second round candidates

Aug 15, 2016: 16 third round candidates

?: announcement of finalists

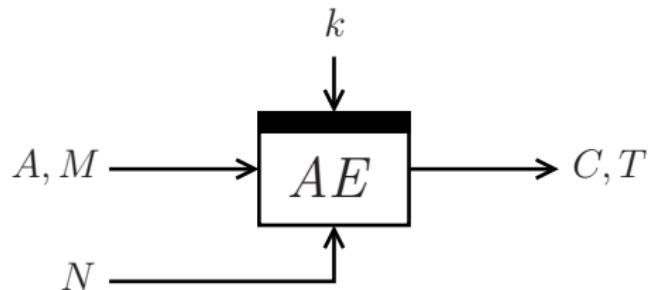
?: announcement of final portfolio

Authenticated Encryption



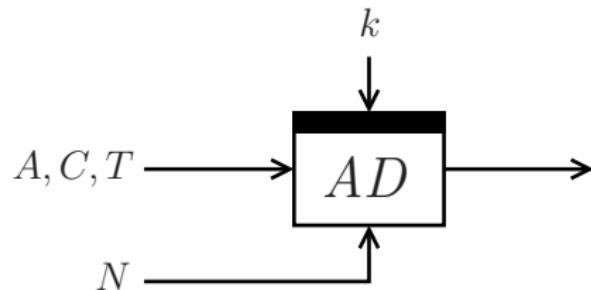
- Ciphertext C encryption of message M
- Tag T authenticates associated data A and message M

Authenticated Encryption



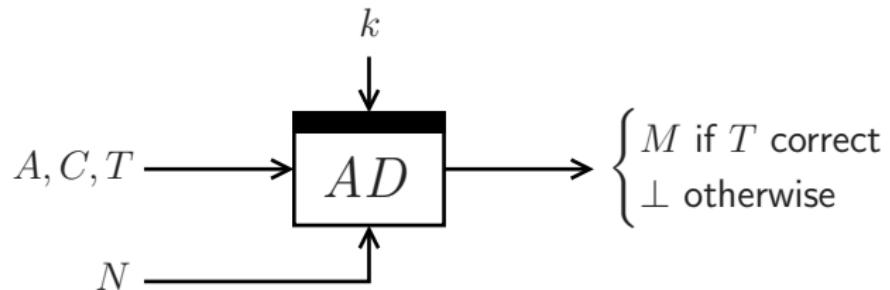
- Ciphertext C encryption of message M
- Tag T authenticates associated data A and message M
- Nonce N randomizes the scheme

Authenticated Decryption



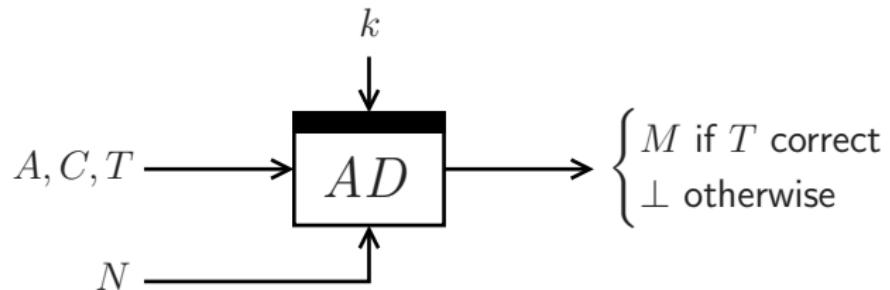
- Authenticated decryption needs to satisfy that
 - Message disclosed if tag is **correct**
 - Message is not leaked if tag is **incorrect**

Authenticated Decryption



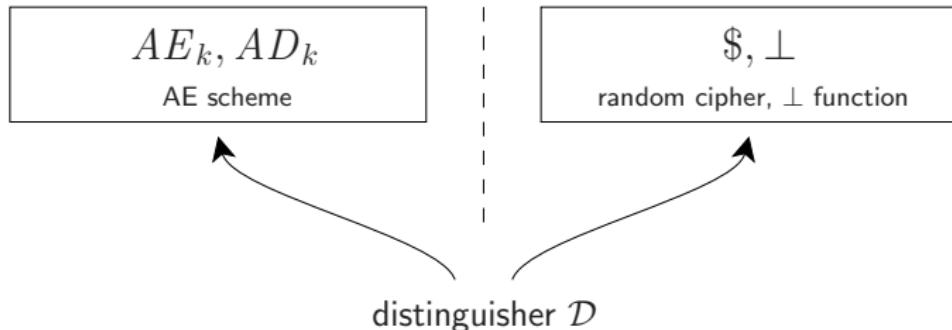
- Authenticated decryption needs to satisfy that
 - Message disclosed if tag is **correct**
 - Message is not leaked if tag is **incorrect**

Authenticated Decryption



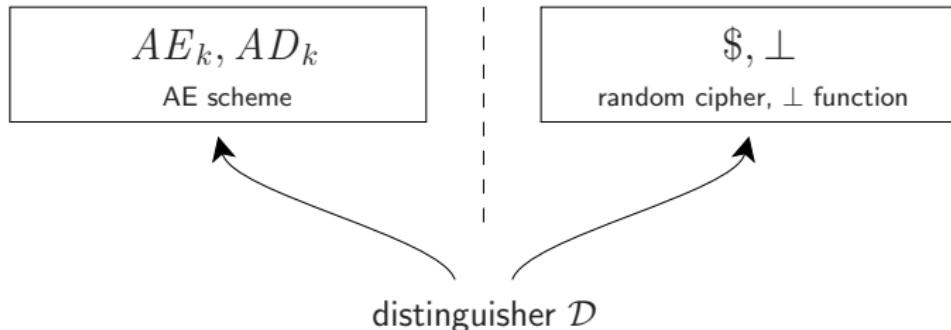
- Authenticated decryption needs to satisfy that
 - Message disclosed if tag is **correct**
 - Message is not leaked if tag is **incorrect**
- Correctness: $AD_k(N, A, AE_k(N, A, M)) = M$

Authenticated Encryption Security



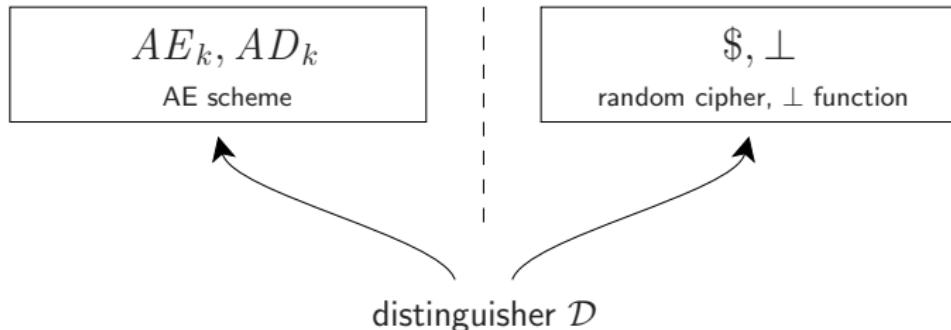
- Two oracles: (AE_k, AD_k) (for secret key k) and $(\$, \perp)$

Authenticated Encryption Security



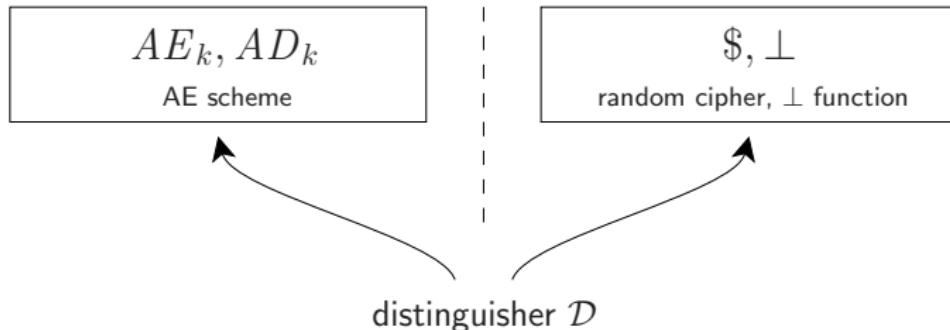
- Two oracles: (AE_k, AD_k) (for secret key k) and $(\$, \perp)$
- Distinguisher \mathcal{D} has query access to one of these
→ unique nonce for each encryption query

Authenticated Encryption Security



- Two oracles: (AE_k, AD_k) (for secret key k) and $(\$, \perp)$
- Distinguisher \mathcal{D} has query access to one of these
→ unique nonce for each encryption query
- \mathcal{D} tries to determine which oracle it communicates with

Authenticated Encryption Security



- Two oracles: (AE_k, AD_k) (for secret key k) and $(\$, \perp)$
- Distinguisher \mathcal{D} has query access to one of these
→ unique nonce for each encryption query
- \mathcal{D} tries to determine which oracle it communicates with

$$\mathbf{Adv}_{AE}^{\text{ae}}(\mathcal{D}) = \left| \Pr[\mathcal{D}^{AE_k, AD_k} = 1] - \Pr[\mathcal{D}^{\$, \perp} = 1] \right|$$

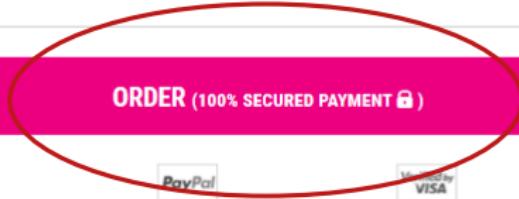
100% Security is Impractical

SARENZA
SERIOUS ABOUT SHOES

ACCOUNT ALERTS WISH LIST BASKET

Delivery Hermes	FREE
<input type="checkbox"/> Enter a promo code	
Total	£112.50

ORDER (100% SECURED PAYMENT)



Outline

Generic Composition

Link With Tweakable Blockciphers

Tweakable Blockciphers Based on Masking

Nonce-Reuse

Conclusion

Outline

Generic Composition

Link With Tweakable Blockciphers

Tweakable Blockciphers Based on Masking

Nonce-Reuse

Conclusion

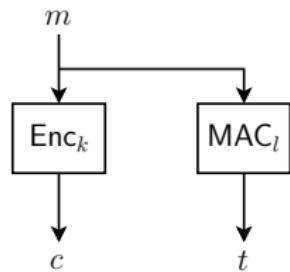
Generic Composition

- Generic constructions for AE:
 - $\text{Enc} + \text{MAC} = \text{AE}$

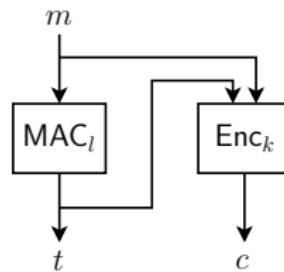
Generic Composition

- Generic constructions for AE:
 - $\text{Enc} + \text{MAC} = \text{AE}$
- Bellare and Namprempre (2000): 3 basic approaches

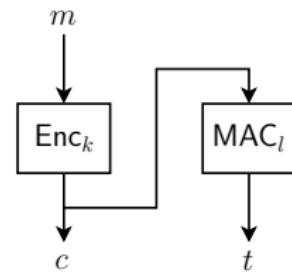
E&M



MtE



EtM



- Used in SSH

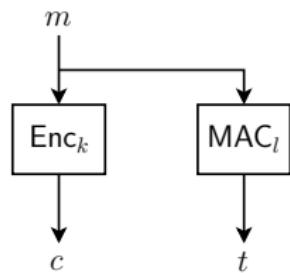
- Used in TLS

- Used in IPsec

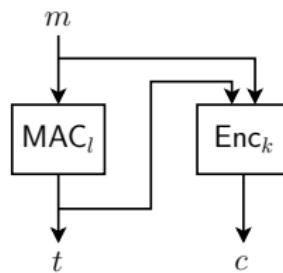
Generic Composition

- Generic constructions for AE:
 - $\text{Enc} + \text{MAC} = \text{AE}$
- Bellare and Namprempre (2000): 3 basic approaches

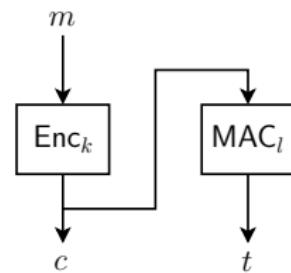
E&M



MtE



EtM



- Used in SSH
- Generically insecure
 - $\text{MAC}_L(m) = m \parallel t$

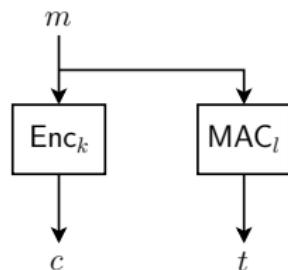
- Used in TLS

- Used in IPsec

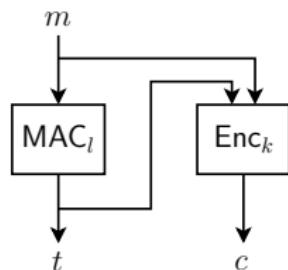
Generic Composition

- Generic constructions for AE:
 - $\text{Enc} + \text{MAC} = \text{AE}$
- Bellare and Namprempre (2000): 3 basic approaches

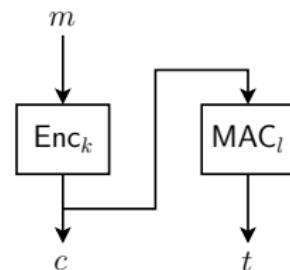
E&M



MtE



EtM



- Used in SSH
- Generically insecure
 - $\text{MAC}_L(m) = m \parallel t$

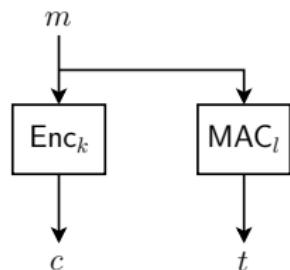
- Used in TLS
- Mildly insecure
- Padding oracle attack

- Used in IPSec

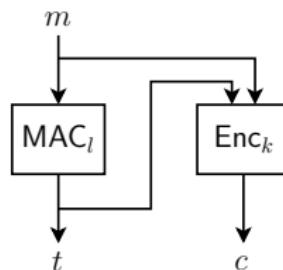
Generic Composition

- Generic constructions for AE:
 - $\text{Enc} + \text{MAC} = \text{AE}$
- Bellare and Namprempre (2000): 3 basic approaches

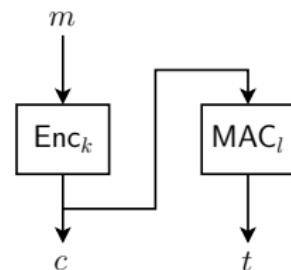
E&M



MtE



EtM

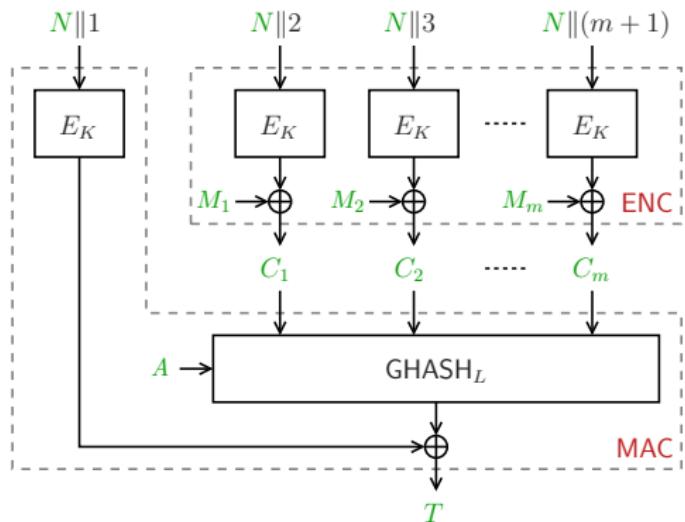


- Used in SSH
- Generically insecure
 - $\text{MAC}_L(m) = m \parallel t$

- Used in TLS
- Mildly insecure
- Padding oracle attack

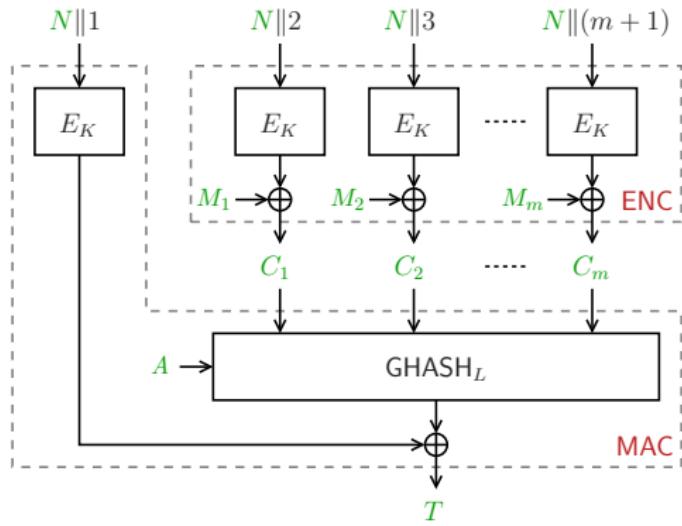
- Used in IPsec
- Most secure variant
- Ciphertext integrity

GCM for 96-bit nonce N



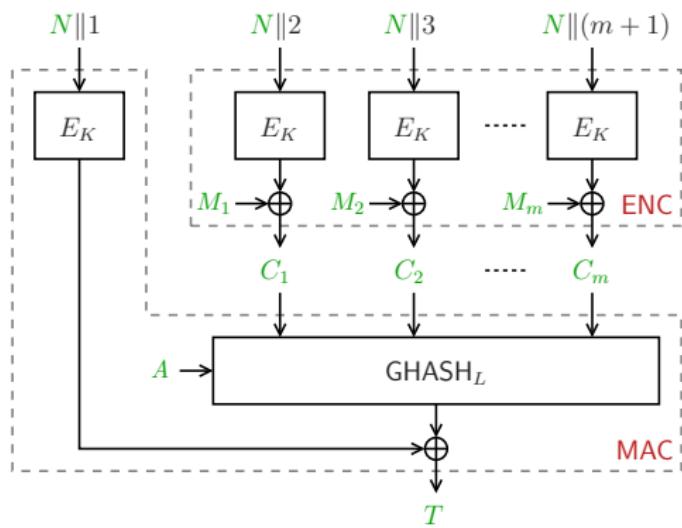
- McGrew and Viega (2004)
- EtM design
- Widely used (TLS!)
- Patent-free

GCM for 96-bit nonce N



- McGrew and Viega (2004)
- EtM design
- Widely used (TLS!)
- Patent-free
- Parallelizable
- Evaluates E only (no E^{-1})
- Provably secure (if E is PRP)
- Very efficient in HW
- Reasonably efficient in SW

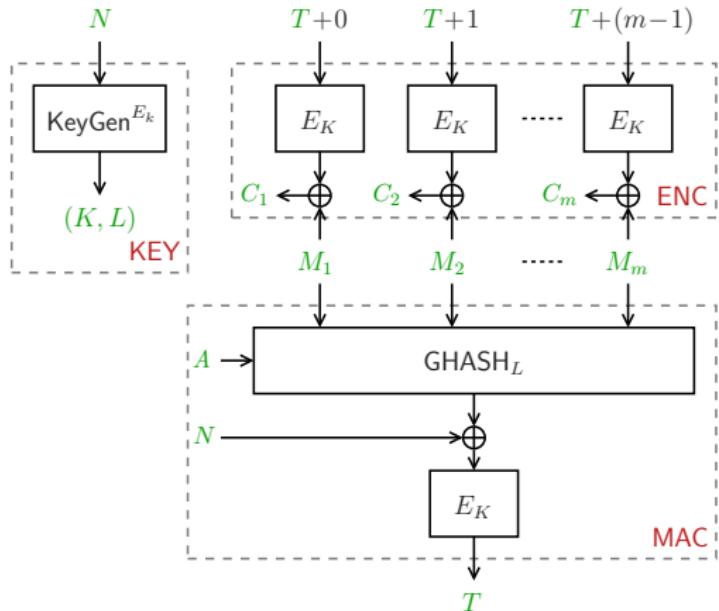
GCM for 96-bit nonce N



- McGrew and Viega (2004)
- EtM design
- Widely used (TLS!)
- Patent-free
- Parallelizable
- Evaluates E only (no E^{-1})
- Provably secure (if E is PRP)
- Very efficient in HW
- Reasonably efficient in SW

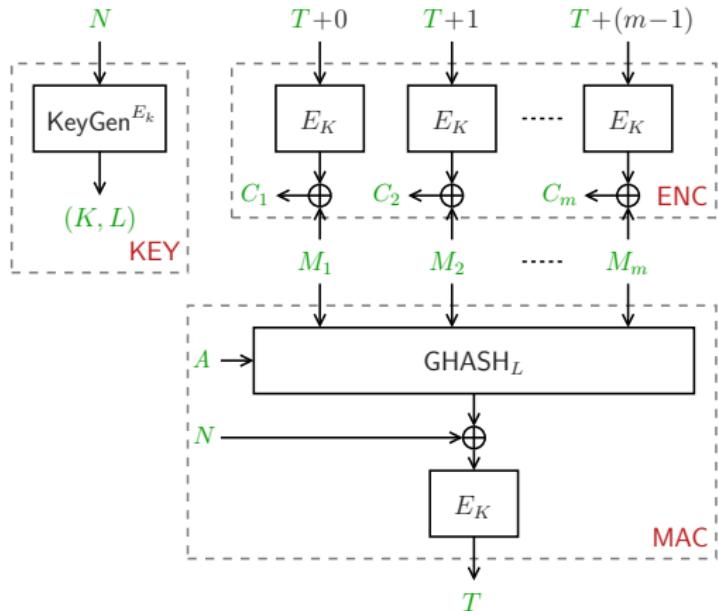
What happens if nonce is re-used?

GCM-SIV



- Gueron and Lindell (2015)
- MtE design
- Ongoing standardization (IETF RFC)
- Patent-free

GCM-SIV



- Gueron and Lindell (2015)
- MtE design
- Ongoing standardization (IETF RFC)
- Patent-free
- Inherits GCM features
- Secure against nonce-reuse
- Proof: Iwata and Seurin (2017)

Outline

Generic Composition

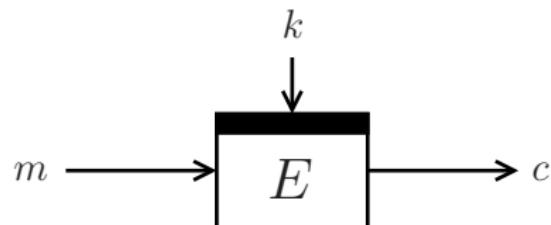
Link With Tweakable Blockciphers

Tweakable Blockciphers Based on Masking

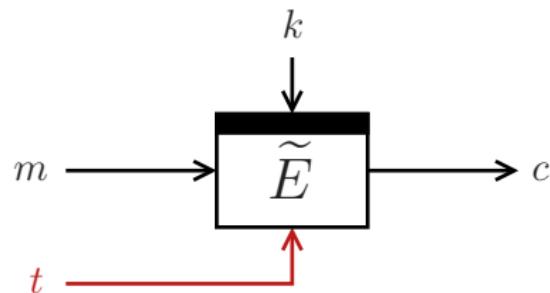
Nonce-Reuse

Conclusion

Tweakable Blockciphers

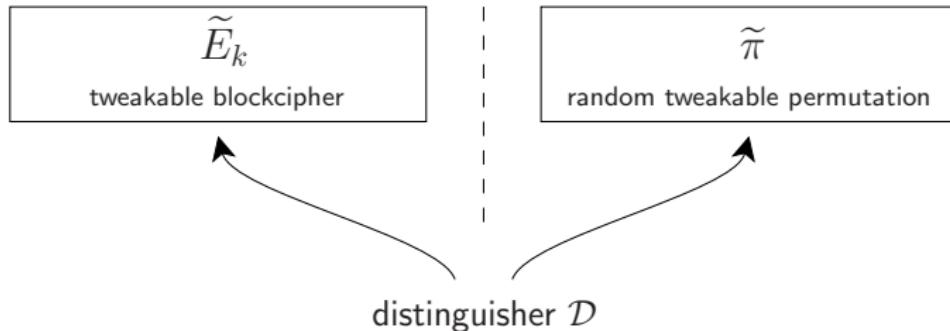


Tweakable Blockciphers



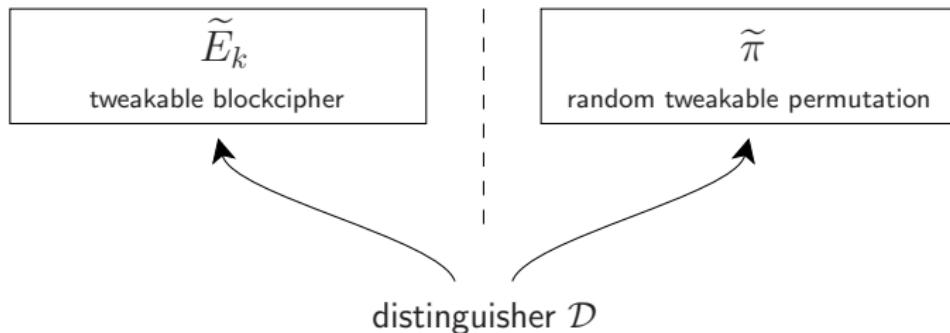
- Tweak: flexibility to the cipher
- Each tweak gives different permutation

Tweakable Blockcipher Security



- \tilde{E}_k should look like random permutation for every t
- Different tweaks \rightarrow pseudo-independent permutations

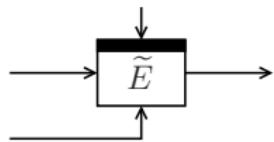
Tweakable Blockcipher Security



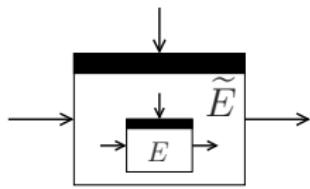
- \tilde{E}_k should look like random permutation for every t
- Different tweaks \rightarrow pseudo-independent permutations
- \mathcal{D} tries to determine which oracle it communicates with

$$\mathbf{Adv}_{\tilde{E}}^{\text{stprp}}(\mathcal{D}) = \left| \mathbf{Pr} \left[\mathcal{D}^{\tilde{E}_k, \tilde{E}_k^{-1}} = 1 \right] - \mathbf{Pr} \left[\mathcal{D}^{\tilde{\pi}, \tilde{\pi}^{-1}} = 1 \right] \right|$$

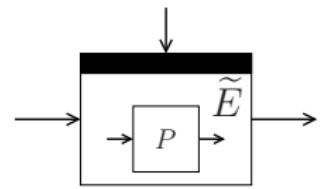
Tweakable Blockcipher Designs



Dedicated

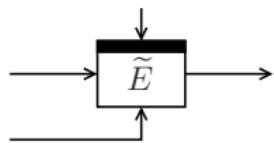


Blockcipher-Based



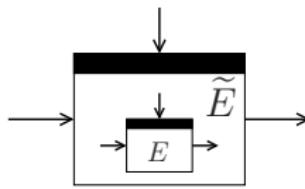
Permutation-Based

Tweakable Blockcipher Designs in CAESAR



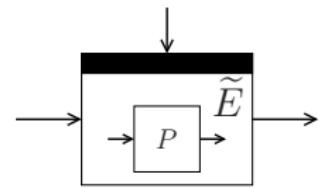
Dedicated

KIASU,
Joltik,
SCREAM,
Deoxys



Blockcipher-Based

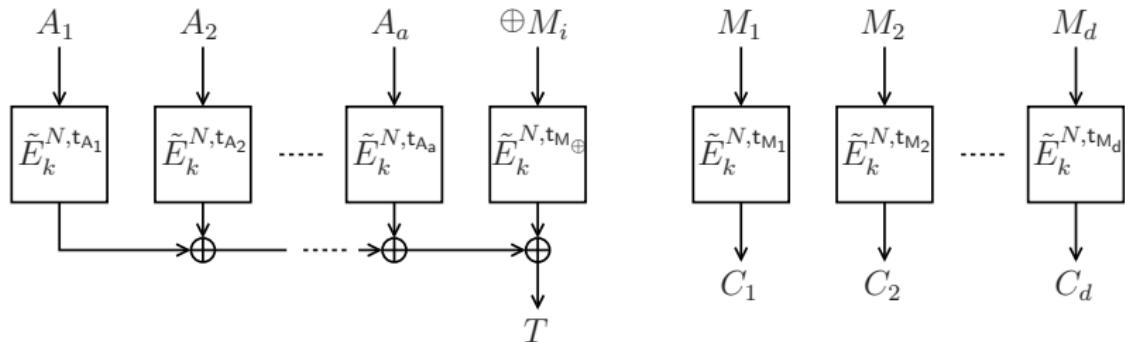
CBA, COBRA, iFeed,
Marble, **OMD**, **POET**,
SHELL, **AEZ**, **COPA**/
ELmD, OCB, OTR



Permutation-Based

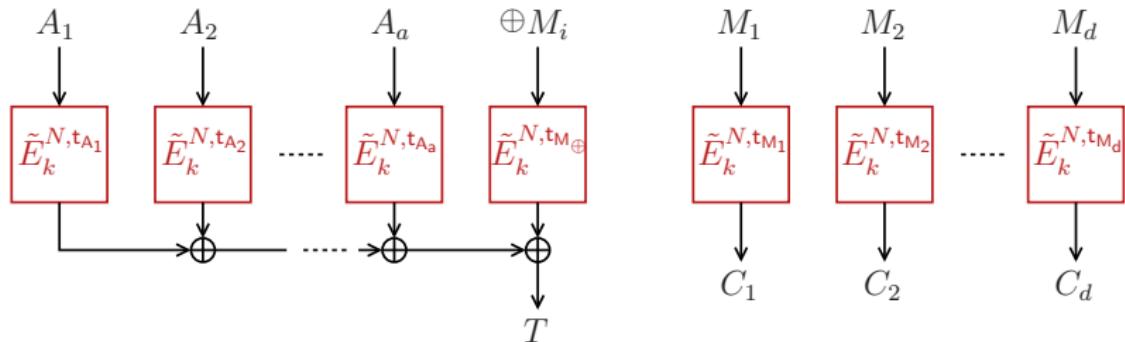
Prøst,
Minalpher

Example Use in OCBx (1/2)



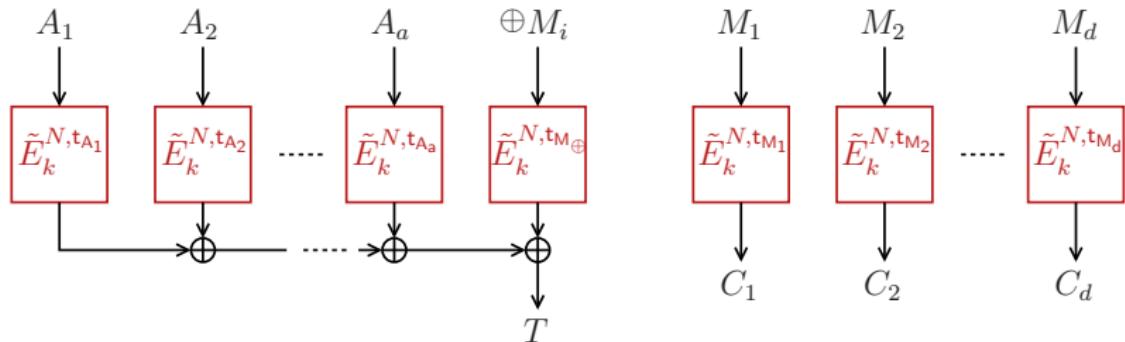
- Generalized OCB by Rogaway et al. [RBBK01, Rog04, KR11]

Example Use in OCBx (1/2)



- Generalized OCB by Rogaway et al. [RBBK01, Rog04, KR11]
- Internally based on tweakable blockcipher \tilde{E}
 - Tweak (N, tweak) is unique for **every** evaluation
 - Different blocks always transformed under different tweak

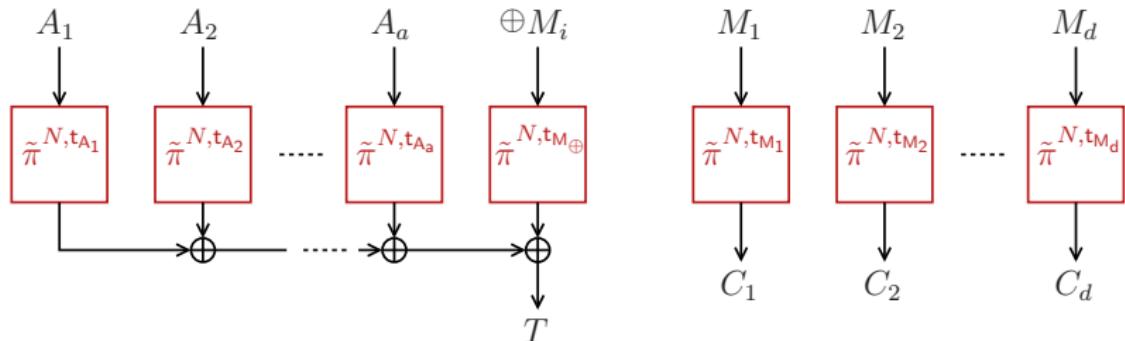
Example Use in OCBx (1/2)



- Generalized OCB by Rogaway et al. [RBBK01, Rog04, KR11]
- Internally based on tweakable blockcipher \tilde{E}
 - Tweak (N, tweak) is unique for **every** evaluation
 - Different blocks always transformed under different tweak

$\mathbf{Adv}_{AE[\tilde{E}_k]}^{\text{ae}}(\sigma)$

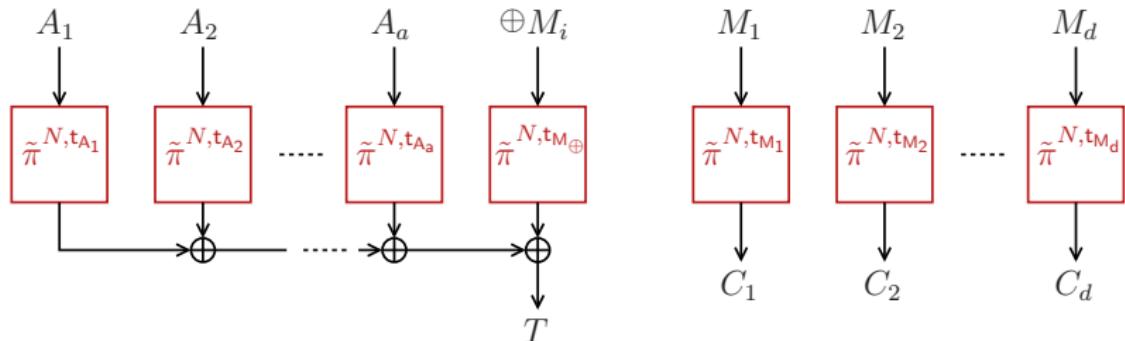
Example Use in OCBx (1/2)



- Generalized OCB by Rogaway et al. [RBBK01, Rog04, KR11]
- Internally based on tweakable blockcipher \tilde{E}
 - Tweak (N, tweak) is unique for **every** evaluation
 - Different blocks always transformed under different tweak
- Triangle inequality:

$$\mathbf{Adv}_{AE[\tilde{E}_k]}^{\text{ae}}(\sigma) \leq \mathbf{Adv}_{AE[\tilde{\pi}]}^{\text{ae}}(\sigma)$$

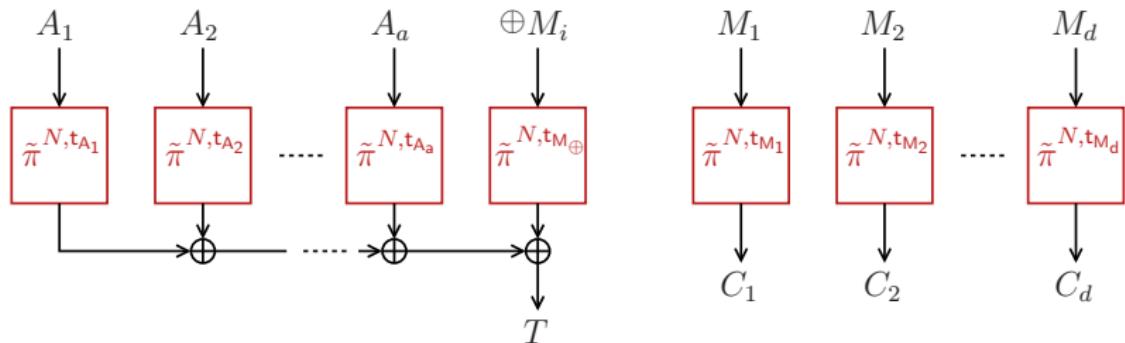
Example Use in OCBx (1/2)



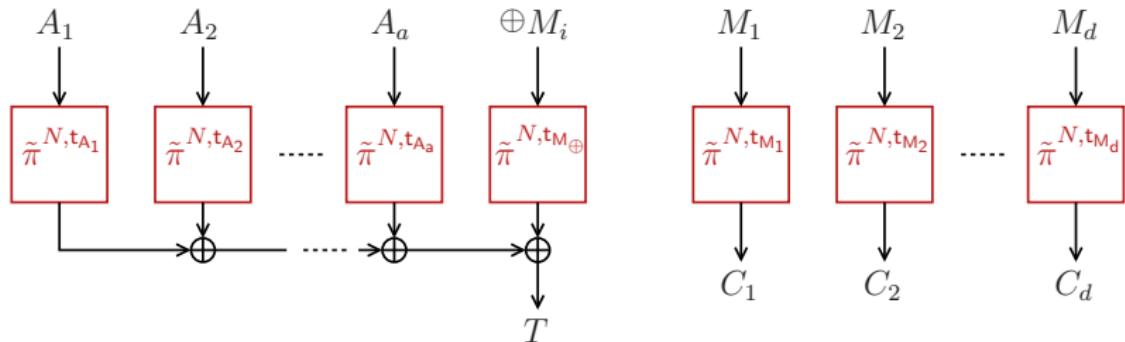
- Generalized OCB by Rogaway et al. [RBBK01, Rog04, KR11]
- Internally based on tweakable blockcipher \tilde{E}
 - Tweak (N, tweak) is unique for **every** evaluation
 - Different blocks always transformed under different tweak
- Triangle inequality:

$$\mathbf{Adv}_{AE[\tilde{E}_k]}^{\text{ae}}(\sigma) \leq \mathbf{Adv}_{AE[\tilde{\pi}]}^{\text{ae}}(\sigma) + \mathbf{Adv}_{\tilde{E}}^{\text{stprp}}(\sigma)$$

Example Use in OCBx (2/2)

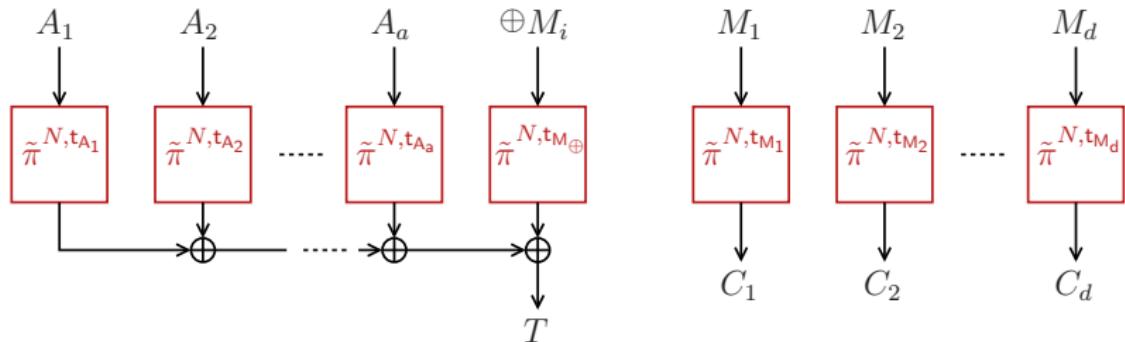


Example Use in OCBx (2/2)



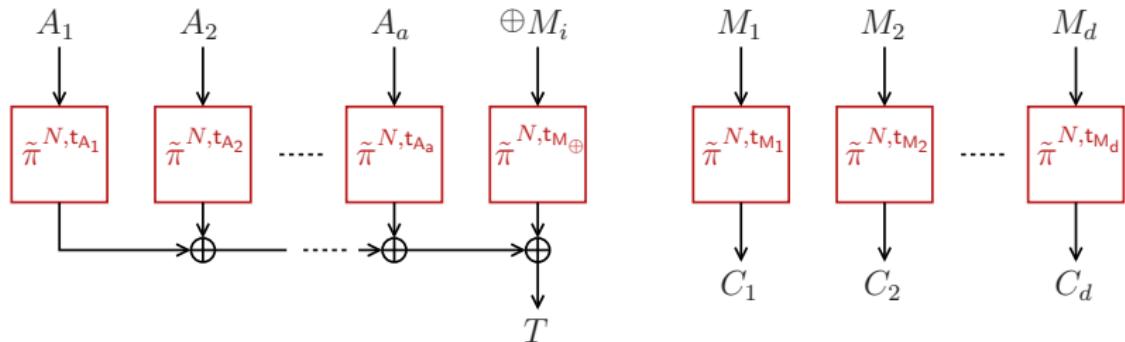
- Nonce uniqueness \Rightarrow tweak uniqueness

Example Use in OCBx (2/2)



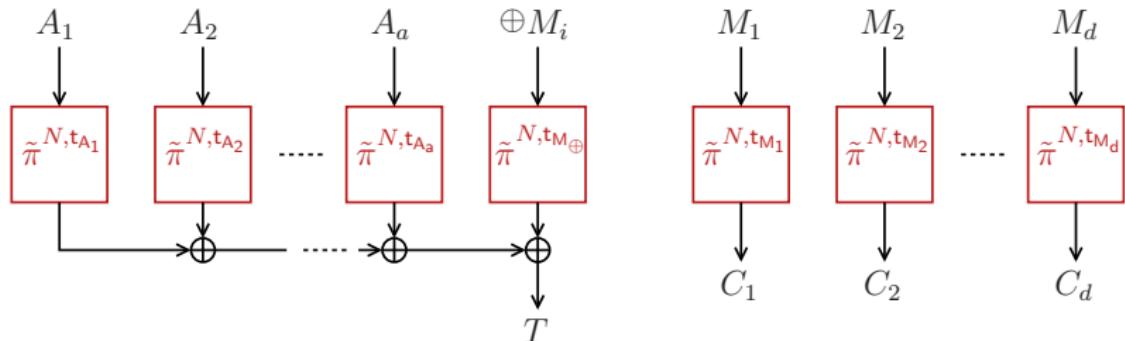
- Nonce uniqueness \Rightarrow tweak uniqueness
- Encryption calls behave like random functions: $AE[\tilde{\pi}] = \$$

Example Use in OCBx (2/2)



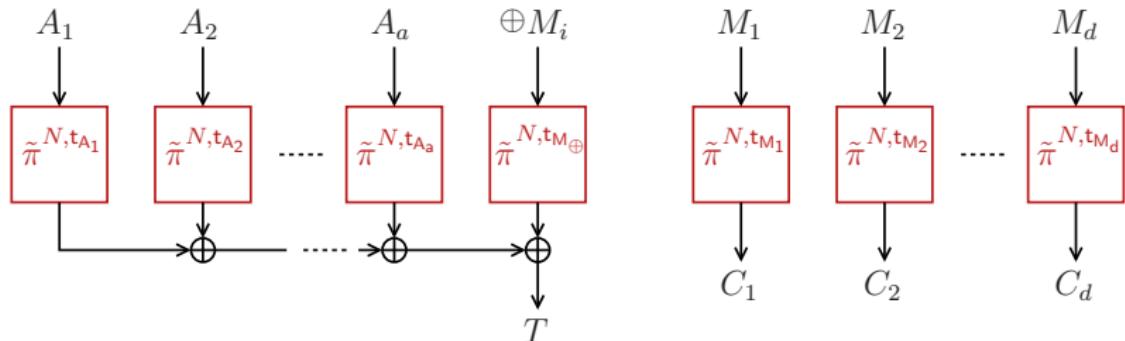
- Nonce uniqueness \Rightarrow tweak uniqueness
- Encryption calls behave like random functions: $AE[\tilde{\pi}] = \$$
- Authentication behaves like random function

Example Use in OCBx (2/2)



- Nonce uniqueness \Rightarrow tweak uniqueness
- Encryption calls behave like random functions: $AE[\tilde{\pi}] = \$$
- Authentication behaves like random function
 - Tag forged with probability at most $1/(2^n - 1)$

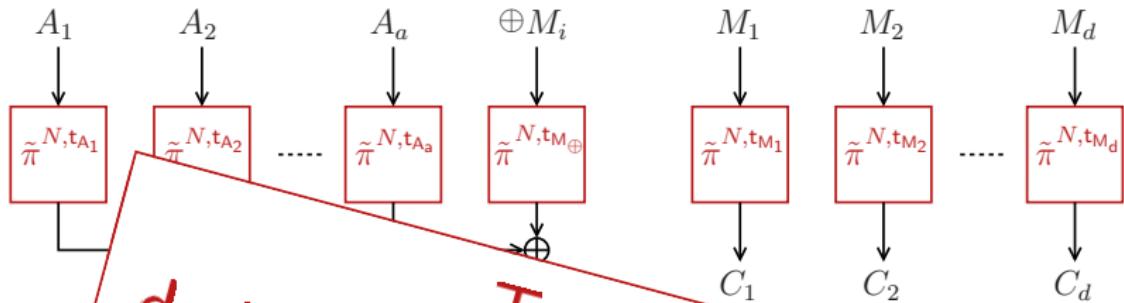
Example Use in OCBx (2/2)



- Nonce uniqueness \Rightarrow tweak uniqueness
- Encryption calls behave like random functions: $AE[\tilde{\pi}] = \$$
- Authentication behaves like random function
 - Tag forged with probability at most $1/(2^n - 1)$

$$\mathbf{Adv}_{AE[\tilde{\pi}]}^{\text{ae}}(\sigma) \leq 1/(2^n - 1)$$

Example Use in OCBx (2/2)



design tweakable blockcipher = \$

- Nonce uniqueness
- Encryption calls behave like random functions
- Authentication behaves like random functions
 - Tag forged with probability at most $1/(2^n - 1)$

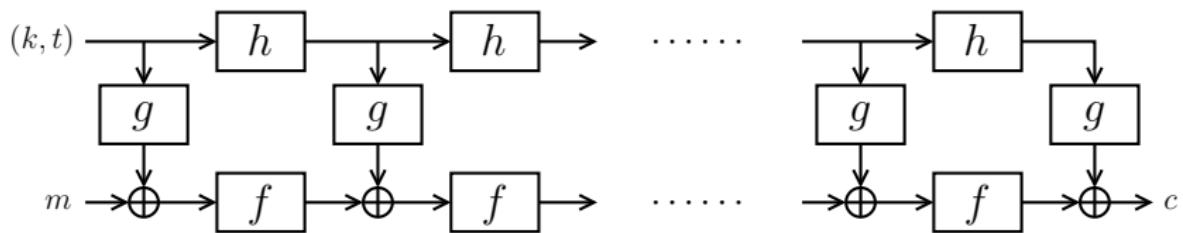
$$\mathbf{Adv}_{AE[\tilde{\pi}]}^{\text{ae}}(\sigma) \leq 1/(2^n - 1)$$

Dedicated Tweakable Blockciphers

- Hasty Pudding Cipher [Sch98]
 - AES submission, “first tweakable cipher”
- Mercy [Cro01]
 - Disk encryption
- Threefish [FLS+07]
 - SHA-3 submission Skein
- TWEAKEY framework [JNP14]
 - Four CAESAR submissions
 - SKINNY & MANTIS

TWEAKY Framework

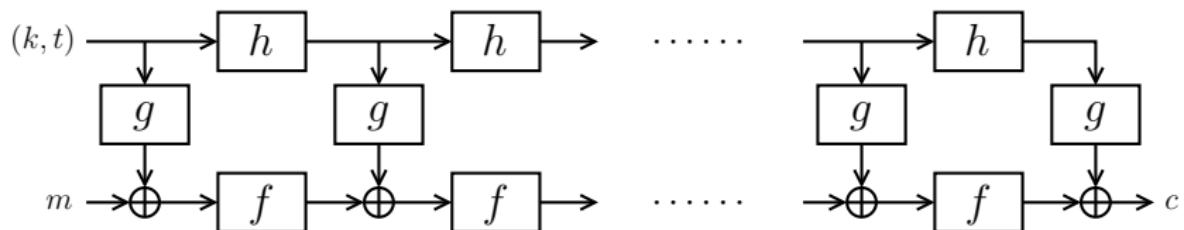
- TWEAKY by Jean et al. [JNP14]:



- f : round function
- g : subkey computation
- h : transformation of (k, t)

TWEAKY Framework

- TWEAKY by Jean et al. [JNP14]:



- f : round function
- g : subkey computation
- h : transformation of (k, t)
- Security measured through cryptanalysis
- Our focus: modular design

Outline

Generic Composition

Link With Tweakable Blockciphers

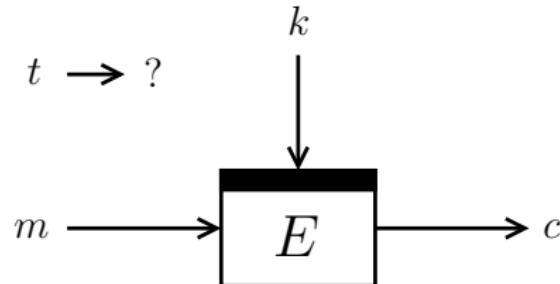
Tweakable Blockciphers Based on Masking

- Intuition
- State of the Art
- Improved Efficiency
- Improved Security

Nonce-Reuse

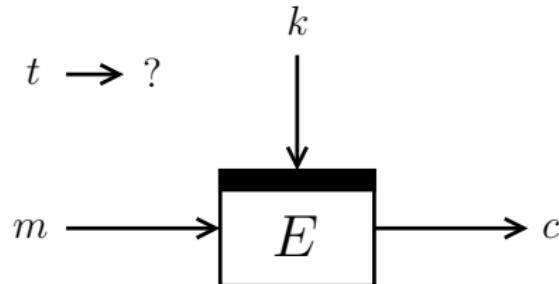
Conclusion

Intuition: Design



- Consider a blockcipher E with κ -bit key and n -bit state
How to mingle the tweak into the evaluation?

Intuition: Design



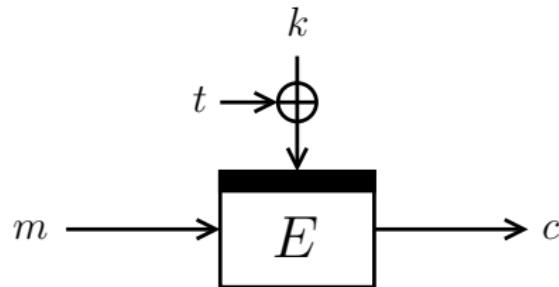
- Consider a blockcipher E with κ -bit key and n -bit state

How to mingle the tweak into the evaluation?

blend it with the key

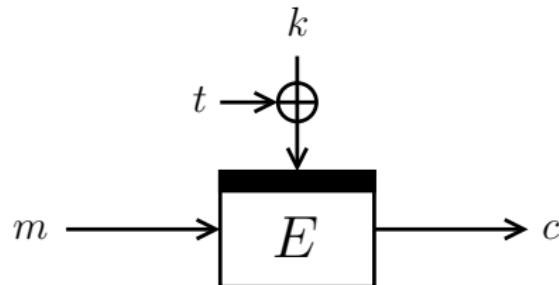
blend it with the state

Intuition: Design



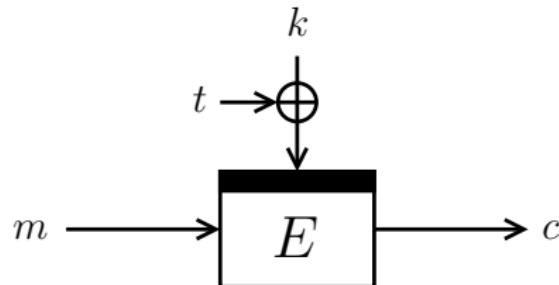
- Blending tweak and key works...
- ... but: careful with related-key attacks!

Intuition: Design



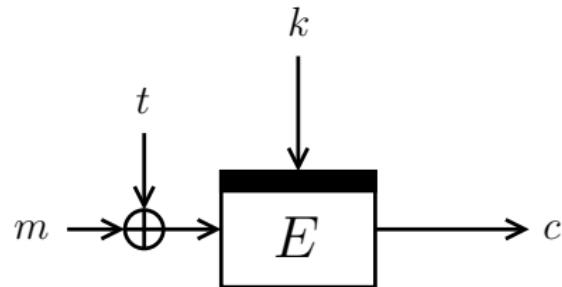
- Blending tweak and key works...
- ... but: careful with related-key attacks!
- For \oplus -mixing, key can be recovered in $2^{\kappa/2}$ evaluations
- Scheme is insecure if E is Even-Mansour

Intuition: Design



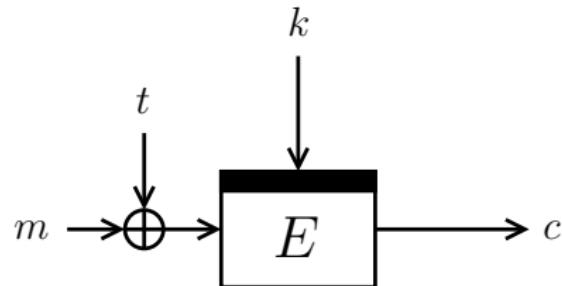
- Blending tweak and key works...
- ... but: careful with related-key attacks!
- For \oplus -mixing, key can be recovered in $2^{\kappa/2}$ evaluations
- Scheme is insecure if E is Even-Mansour
- TWEAKY blending [JNP14] is **more advanced**

Intuition: Design



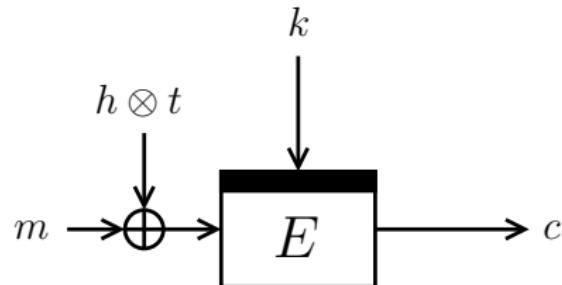
- Simple blending of tweak and state **does not work**

Intuition: Design



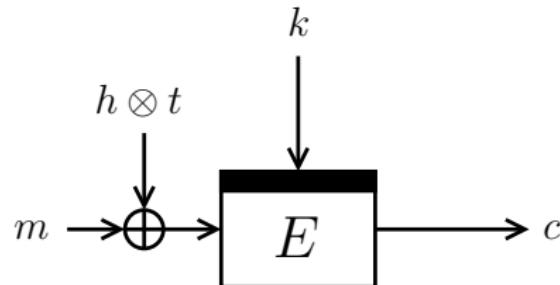
- Simple blending of tweak and state **does not work**
 - $\tilde{E}_k(t, m) = \tilde{E}_k(t \oplus C, m \oplus C)$

Intuition: Design



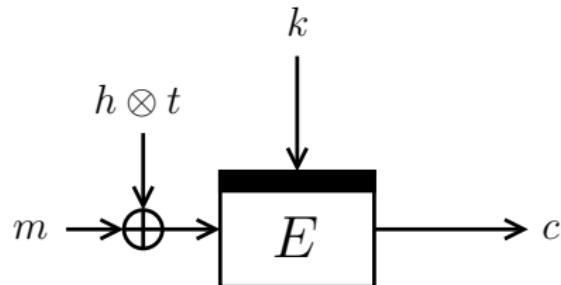
- Simple blending of tweak and state **does not work**
 - $\tilde{E}_k(t, m) = \tilde{E}_k(t \oplus C, m \oplus C)$
- Some secrecy required: h

Intuition: Design



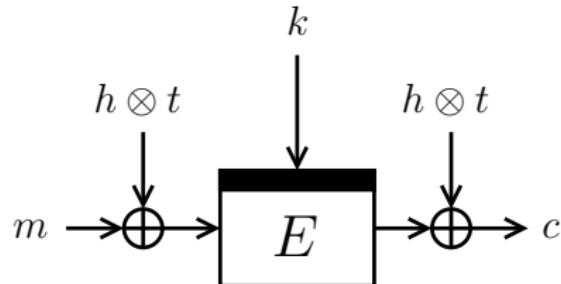
- Simple blending of tweak and state **does not work**
 - $\tilde{E}_k(t, m) = \tilde{E}_k(t \oplus C, m \oplus C)$
- Some secrecy required: h
- Still **does not work** if adversary has access to \tilde{E}_k^{-1}

Intuition: Design



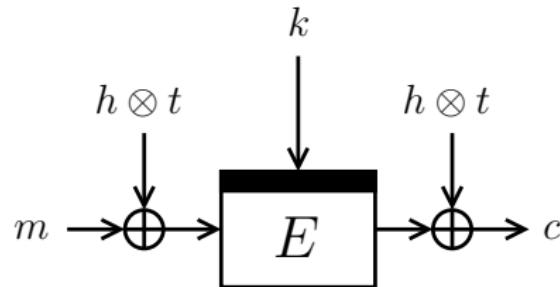
- Simple blending of tweak and state **does not work**
 - $\tilde{E}_k(t, m) = \tilde{E}_k(t \oplus C, m \oplus C)$
- Some secrecy required: h
- Still **does not work** if adversary has access to \tilde{E}_k^{-1}
 - $\tilde{E}_k^{-1}(t, c) \oplus \tilde{E}_k^{-1}(t \oplus C, c) = h \otimes C$

Intuition: Design



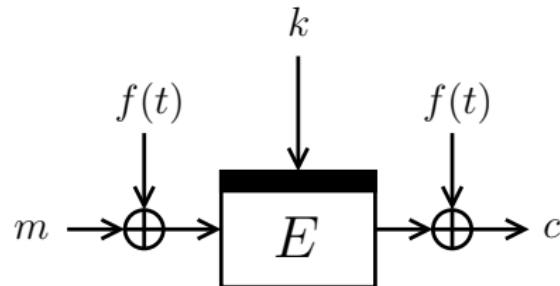
- Simple blending of tweak and state **does not work**
 - $\tilde{E}_k(t, m) = \tilde{E}_k(t \oplus C, m \oplus C)$
- Some secrecy required: h
- Still **does not work** if adversary has access to \tilde{E}_k^{-1}
 - $\tilde{E}_k^{-1}(t, c) \oplus \tilde{E}_k^{-1}(t \oplus C, c) = h \otimes C$
 - Two-sided masking necessary

Intuition: Design



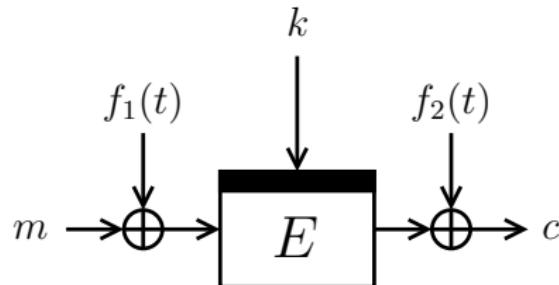
- Two-sided secret masking seems to work
- Can we generalize?

Intuition: Design



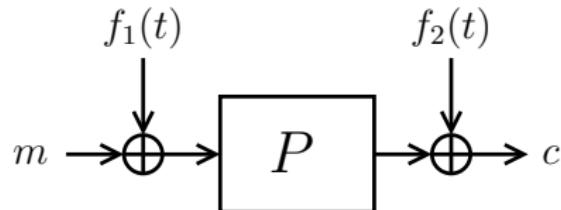
- Two-sided secret masking seems to work
- Can we generalize?
- Generalizing masking? Depends on function f

Intuition: Design



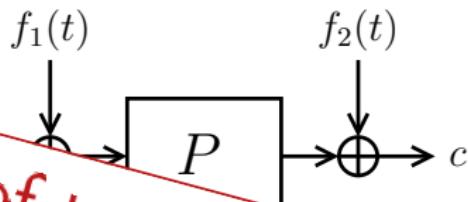
- Two-sided secret masking seems to work
- Can we generalize?
- Generalizing masking? Depends on function f
- Variation in masking? Depends on functions f_1, f_2

Intuition: Design



- Two-sided secret masking seems to work
- Can we generalize?
- Generalizing masking? Depends on function f
- Variation in masking? Depends on functions f_1, f_2
- Releasing secrecy in E ? Usually no problem

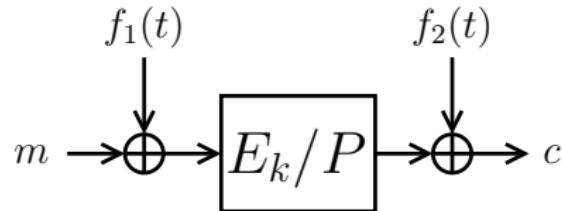
Intuition: Design



Majority of tweakable blockciphers follow mask- E_k/P -mask principle

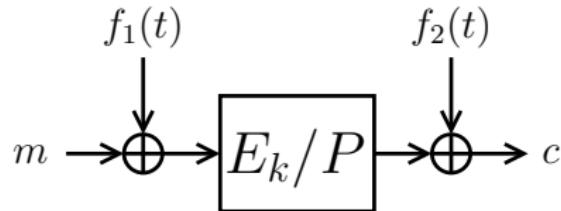
- Two-sided secrecy
- Can we generalize?
- Generalizing masking? Depends on function E
- Variation in masking? Depends on functions f_1, f_2
- Releasing secrecy in E ? Usually no problem

Intuition: Analysis



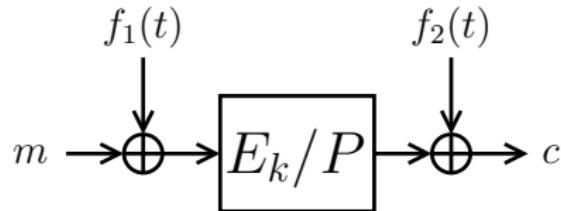
- \tilde{E}_k should “look like” random permutation for every t
- Consider adversary \mathcal{D} that makes q evaluations of \tilde{E}_k

Intuition: Analysis



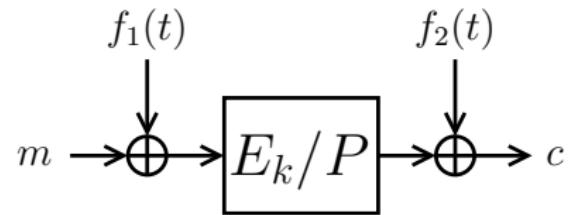
- \tilde{E}_k should “look like” random permutation for every t
- Consider adversary \mathcal{D} that makes q evaluations of \tilde{E}_k
- Step 1:
 - How many evaluations does \mathcal{D} need **at most**?
 - Boils down to finding generic attacks

Intuition: Analysis

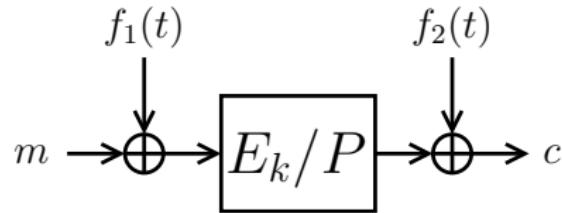


- \tilde{E}_k should “look like” random permutation for every t
- Consider adversary \mathcal{D} that makes q evaluations of \tilde{E}_k
- Step 1:
 - How many evaluations does \mathcal{D} need **at most**?
 - Boils down to finding generic attacks
- Step 2:
 - How many evaluations does \mathcal{D} need **at least**?
 - Boils down to provable security

Intuition: Analysis



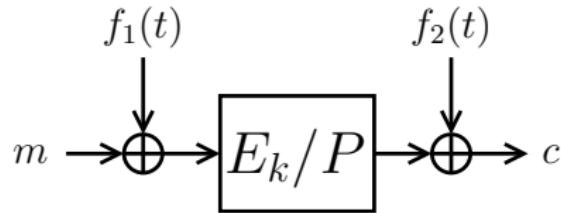
Intuition: Analysis



- For any two queries $(t, m, c), (t', m', c')$:

$$m \oplus f_1(t) = m' \oplus f_1(t') \implies c \oplus f_2(t) = c' \oplus f_2(t')$$

Intuition: Analysis

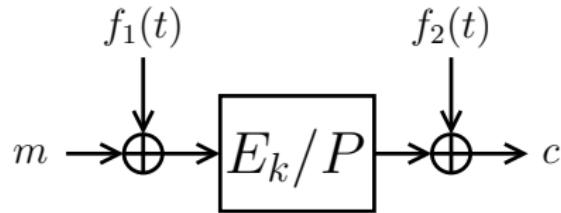


- For any two queries $(t, m, c), (t', m', c')$:

$$m \oplus f_1(t) = m' \oplus f_1(t') \implies c \oplus f_2(t) = c' \oplus f_2(t')$$

- Unlikely to happen for random family of permutations

Intuition: Analysis

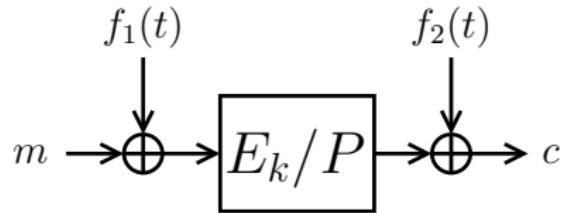


- For any two queries $(t, m, c), (t', m', c')$:

$$m \oplus f_1(t) = m' \oplus f_1(t') \implies c \oplus f_2(t) = c' \oplus f_2(t')$$

- Unlikely to happen for random family of permutations
- Implication still holds with difference C xored to m, m'

Intuition: Analysis



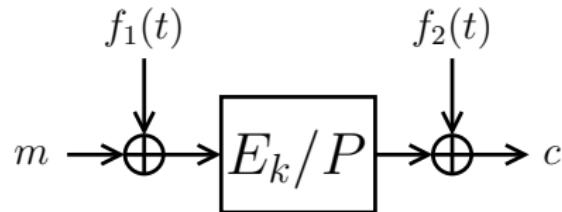
- For any two queries $(t, m, c), (t', m', c')$:

$$m \oplus f_1(t) = m' \oplus f_1(t') \implies c \oplus f_2(t) = c' \oplus f_2(t')$$

- Unlikely to happen for random family of permutations
- Implication still holds with difference C xored to m, m'

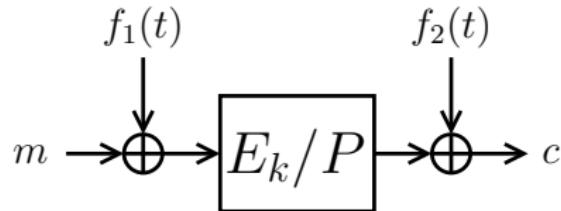
Scheme can be broken in $\approx 2^{n/2}$ evaluations

Intuition: Analysis



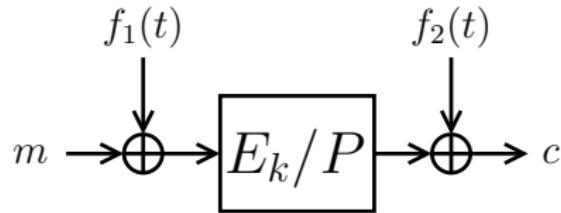
- The fun starts here!
- More technical and often more involved

Intuition: Analysis



- The fun starts here!
- More technical and often more involved
- Typical approach:
 - Consider any transcript τ an adversary may see
 - Most τ 's should be equally likely in both worlds
 - Odd ones should happen with very small probability

Intuition: Analysis



- The fun starts here!
- More technical and often more involved
- Typical approach:
 - Consider any transcript τ an adversary may see
 - Most τ 's should be equally likely in both worlds
 - Odd ones should happen with very small probability

All constructions in this presentation: secure up to $\approx 2^{n/2}$ evaluations

Outline

Generic Composition

Link With Tweakable Blockciphers

Tweakable Blockciphers Based on Masking

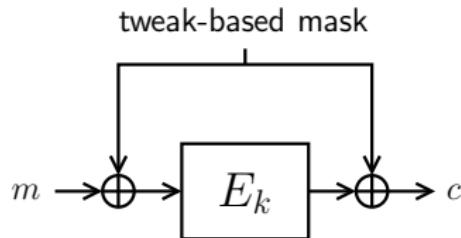
- Intuition
- State of the Art
- Improved Efficiency
- Improved Security

Nonce-Reuse

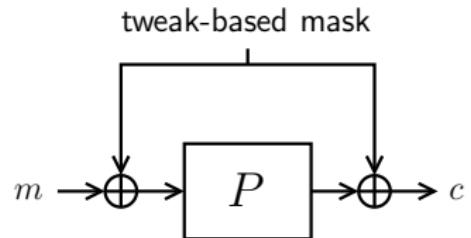
Conclusion

Tweakable Blockciphers Based on Masking

Blockcipher-Based

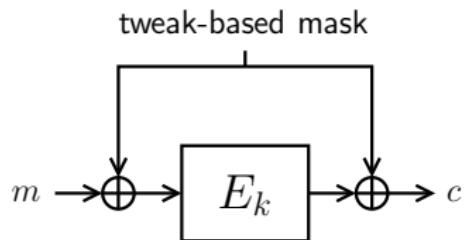


Permutation-Based



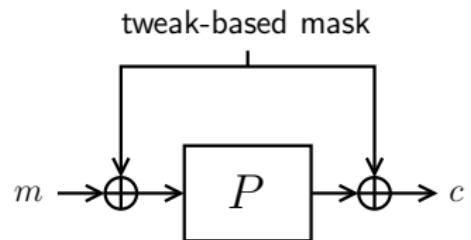
Tweakable Blockciphers Based on Masking

Blockcipher-Based



typically 128 bits

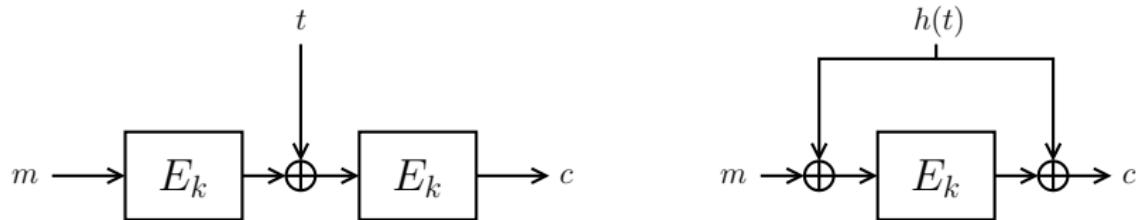
Permutation-Based



much larger: 256-1600 bits

Original Constructions

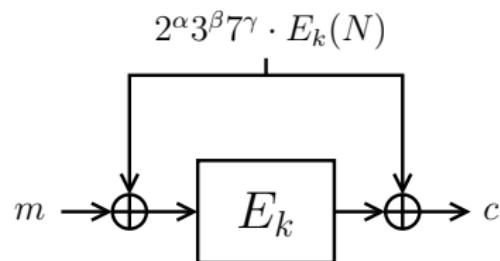
- LRW₁ and LRW₂ by Liskov et al. [LRW02]:



- h is XOR-universal hash
 - E.g., $h(t) = h \otimes t$ for n -bit “key” h

Powering-Up Masking (XEX)

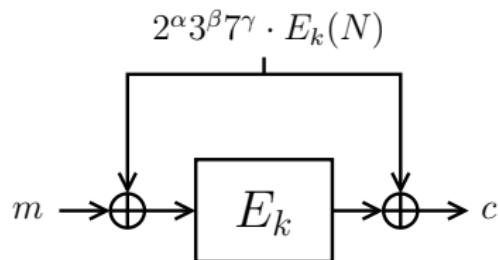
- XEX by Rogaway [Rog04]:



- $(\alpha, \beta, \gamma, N)$ is tweak (simplified)

Powering-Up Masking (XEX)

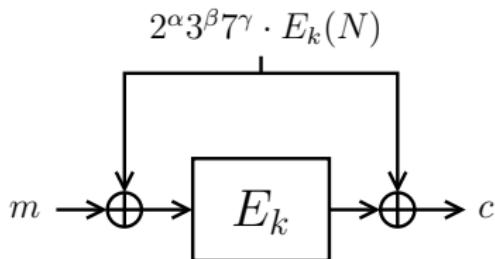
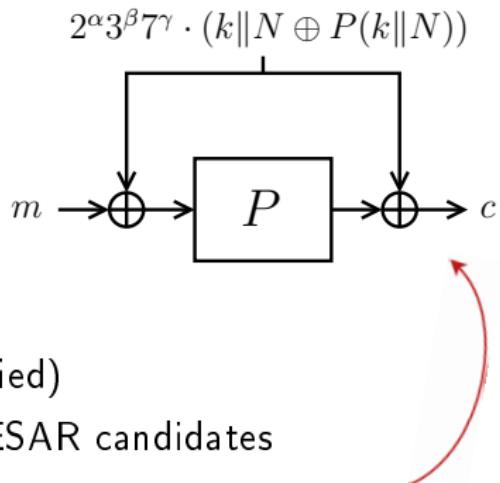
- XEX by Rogaway [Rog04]:



- $(\alpha, \beta, \gamma, N)$ is tweak (simplified)
- Used in OCB2 and ±14 CAESAR candidates

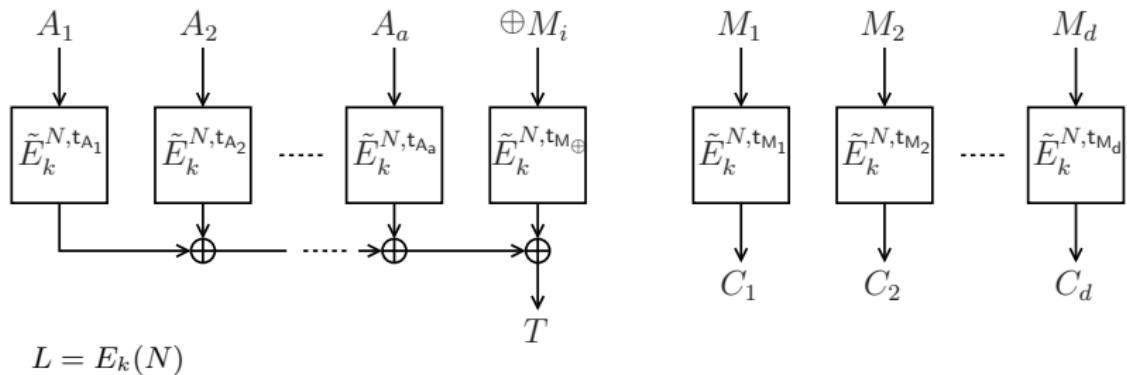
Powering-Up Masking (XEX)

- XEX by Rogaway [Rog04]:

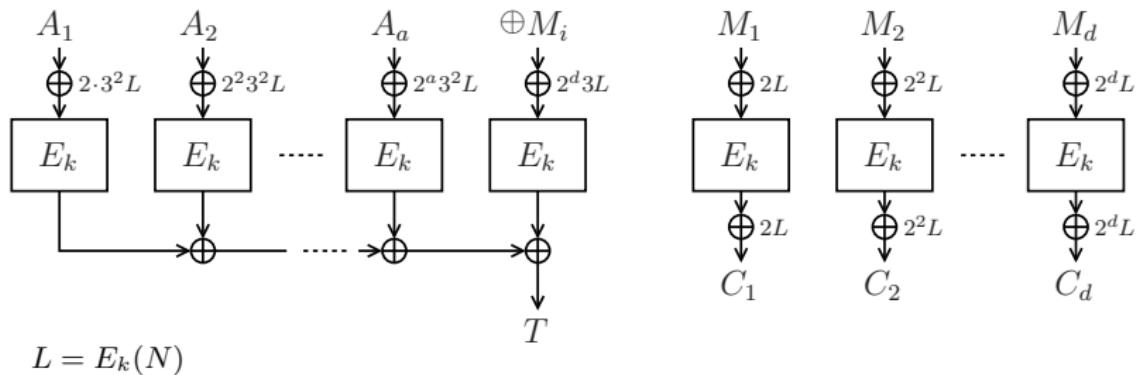


- $(\alpha, \beta, \gamma, N)$ is tweak (simplified)
- Used in OCB2 and ± 14 CAESAR candidates
- Permutation-based variants in Minalpher and Prøst (generalized by Cogliati et al. [CLS15])

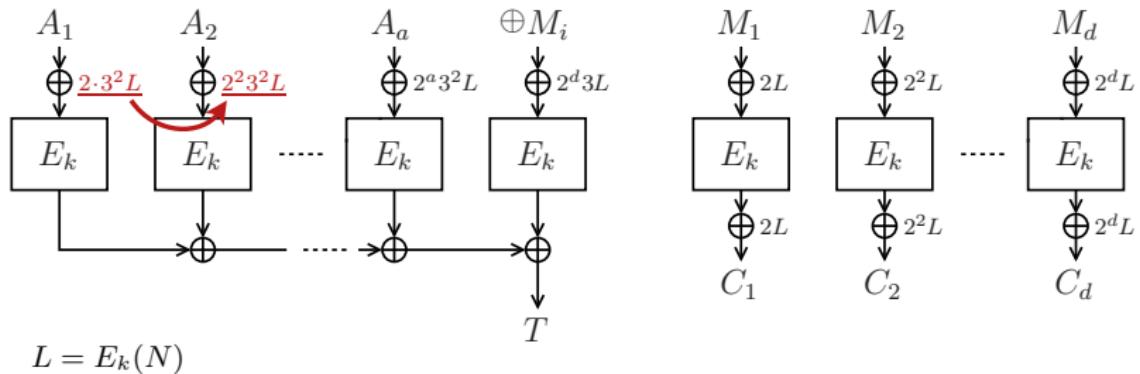
Powering-Up Masking in OCB2



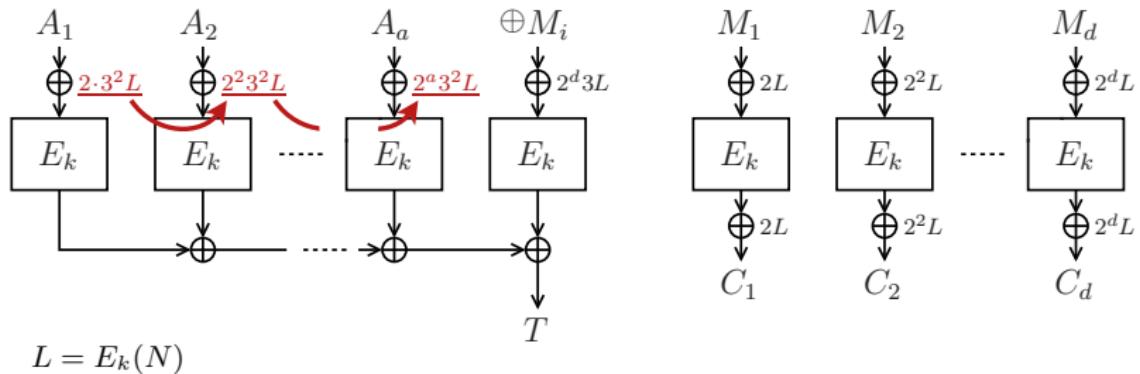
Powering-Up Masking in OCB2



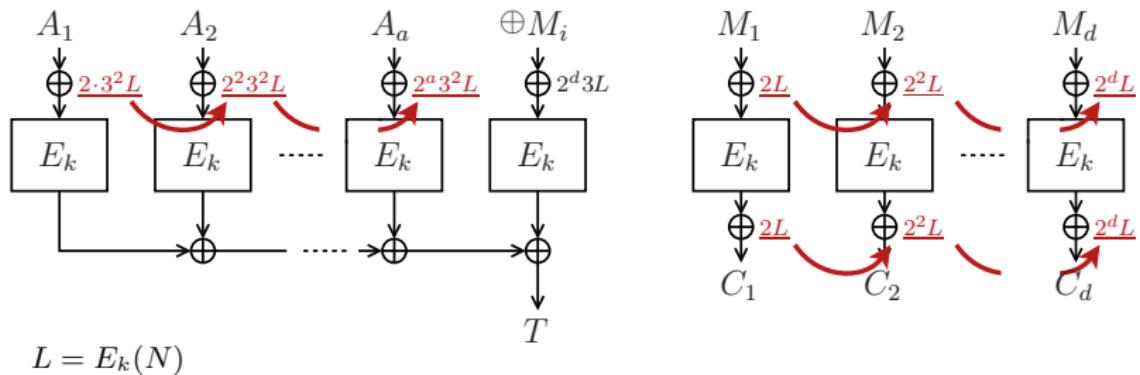
Powering-Up Masking in OCB2



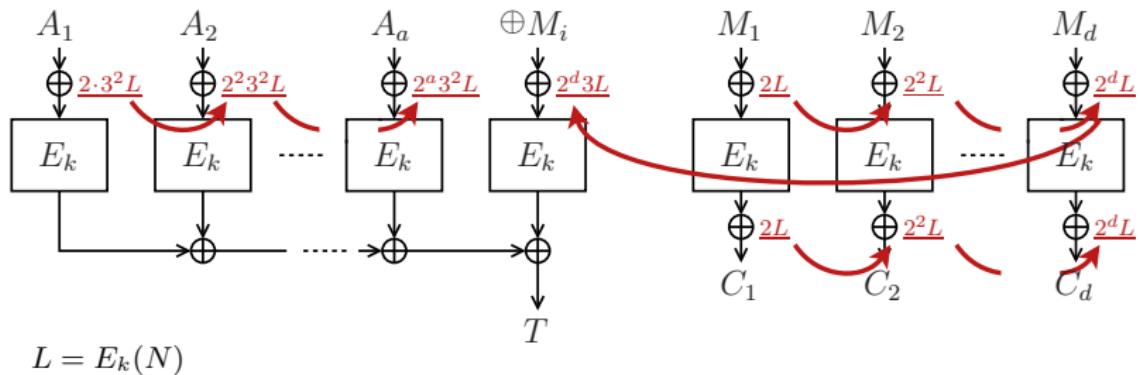
Powering-Up Masking in OCB2



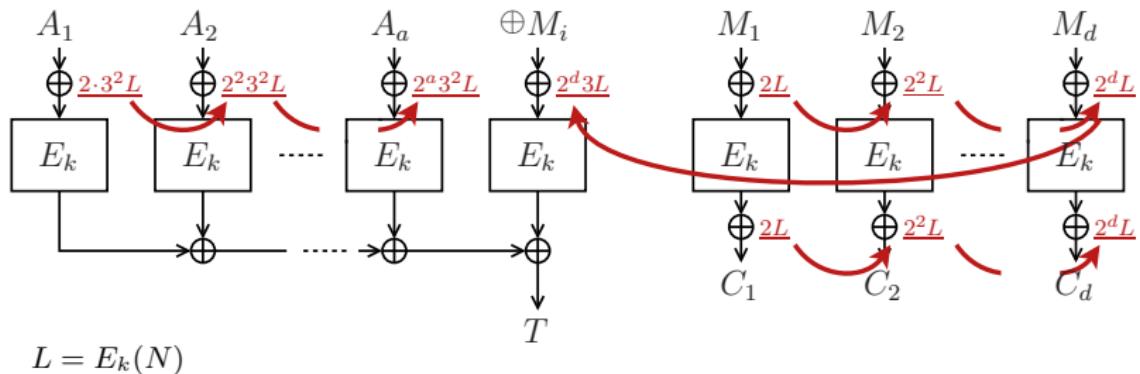
Powering-Up Masking in OCB2



Powering-Up Masking in OCB2

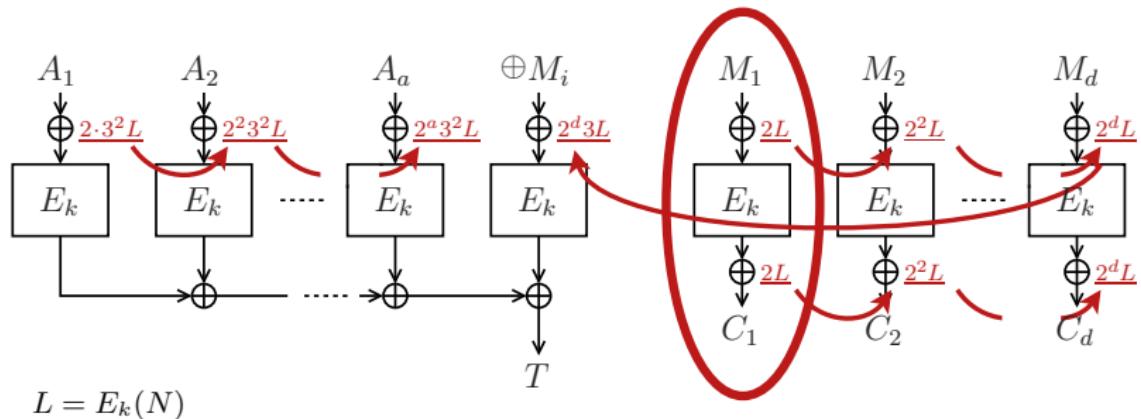


Powering-Up Masking in OCB2



- Update of mask:
 - Shift and conditional XOR
- Variable time computation
- Expensive on certain platforms

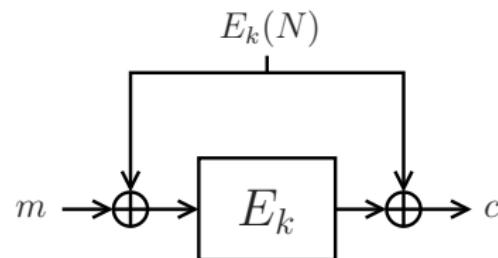
Intermezzo: Why Start at $2 \cdot E_k(N)$?



- Update of mask:
 - Shift and conditional XOR
- Variable time computation
- Expensive on certain platforms

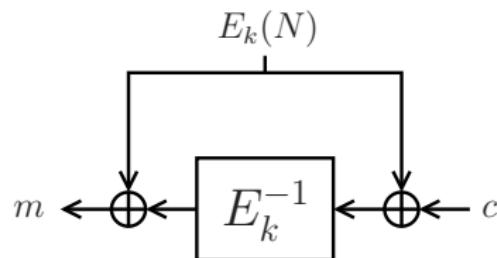
Intermezzo: Why Start at $2 \cdot E_k(N)$?

- Suppose we would mask with $E_k(N)$:



Intermezzo: Why Start at $2 \cdot E_k(N)$?

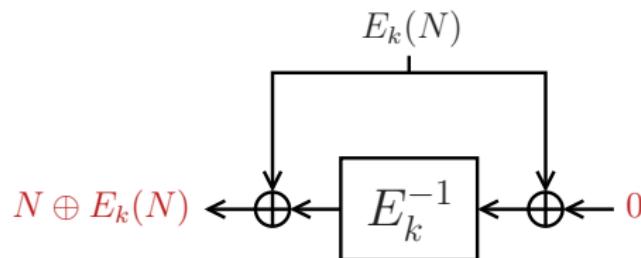
- Suppose we would mask with $E_k(N)$:



- Distinguisher can make inverse queries

Intermezzo: Why Start at $2 \cdot E_k(N)$?

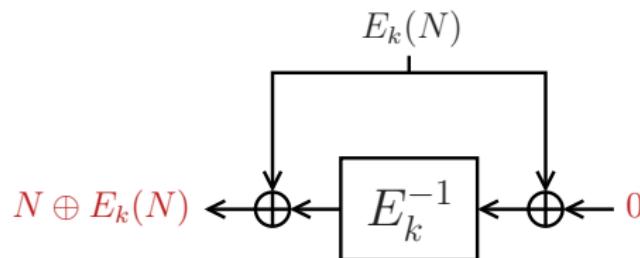
- Suppose we would mask with $E_k(N)$:



- Distinguisher can make inverse queries
- Putting $c = 0$ gives $m = N \oplus E_k(N)$

Intermezzo: Why Start at $2 \cdot E_k(N)$?

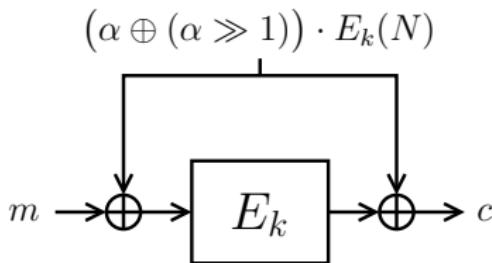
- Suppose we would mask with $E_k(N)$:



- Distinguisher can make inverse queries
- Putting $c = 0$ gives $m = N \oplus E_k(N)$
- Distinguisher knows N so learns “subkey” $E_k(N)$

Gray Code Masking

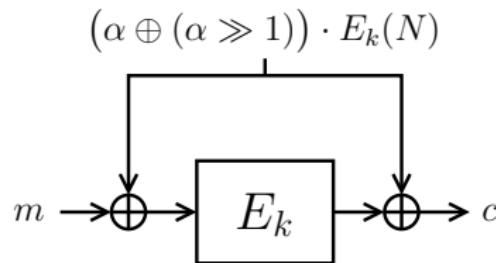
- OCB1 and OCB3 use Gray Codes:



- (α, N) is tweak
- Updating: $G(\alpha) = G(\alpha - 1) \oplus 2^{\text{ntz}(\alpha)}$

Gray Code Masking

- OCB1 and OCB3 use Gray Codes:



- (α, N) is tweak
- Updating: $G(\alpha) = G(\alpha - 1) \oplus 2^{\text{ntz}(\alpha)}$
 - Single XOR
 - Logarithmic amount of field doublings (precomputed)
- More efficient than powering-up [KR11]

Outline

Generic Composition

Link With Tweakable Blockciphers

Tweakable Blockciphers Based on Masking

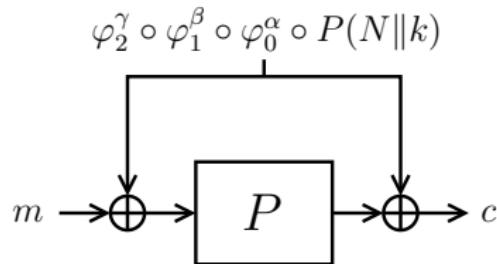
- Intuition
- State of the Art
- Improved Efficiency
- Improved Security

Nonce-Reuse

Conclusion

Masked Even-Mansour (MEM)

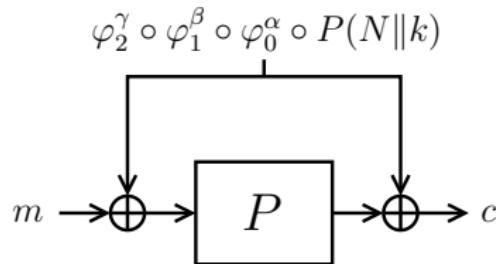
- MEM by Granger et al. [GJMN16]:



- φ_i are fixed LFSRs, $(\alpha, \beta, \gamma, N)$ is tweak (simplified)

Masked Even-Mansour (MEM)

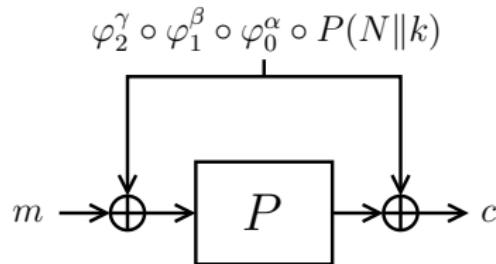
- MEM by Granger et al. [GJMN16]:



- φ_i are fixed LFSRs, $(\alpha, \beta, \gamma, N)$ is tweak (simplified)
- Combines advantages of:
 - Powering-up masking
 - Word-based LFSRs

Masked Even-Mansour (MEM)

- MEM by Granger et al. [GJMN16]:



- φ_i are fixed LFSRs, $(\alpha, \beta, \gamma, N)$ is tweak (simplified)
- Combines advantages of:
 - Powering-up masking
 - Word-based LFSRs
- Simpler, constant-time (by default), more efficient

MEM: Design Considerations

- Particularly suited for large states (permutations)
- Low operation counts by clever choice of LFSR

MEM: Design Considerations

- Particularly suited for large states (permutations)
- Low operation counts by clever choice of LFSR
- Sample LFSRs (state size b as n words of w bits):

b	w	n	φ
128	8	16	$(x_1, \dots, x_{15}, (x_0 \lll 1) \oplus (x_9 \gg 1) \oplus (x_{10} \lll 1))$
128	32	4	$(x_1, \dots, x_3, (x_0 \lll 5) \oplus x_1 \oplus (x_1 \lll 13))$
128	64	2	$(x_1, (x_0 \lll 11) \oplus x_1 \oplus (x_1 \lll 13))$
256	64	4	$(x_1, \dots, x_3, (x_0 \lll 3) \oplus (x_3 \gg 5))$
512	32	16	$(x_1, \dots, x_{15}, (x_0 \lll 5) \oplus (x_3 \gg 7))$
512	64	8	$(x_1, \dots, x_7, (x_0 \lll 29) \oplus (x_1 \lll 9))$
1024	64	16	$(x_1, \dots, x_{15}, (x_0 \lll 53) \oplus (x_5 \lll 13))$
1600	32	50	$(x_1, \dots, x_{49}, (x_0 \lll 3) \oplus (x_{23} \gg 3))$
:	:	:	:

MEM: Design Considerations

- Particularly suited for large states (permutations)
- Low operation counts by clever choice of LFSR
- Sample LFSRs (state size b as n words of w bits):

b	w	n	φ
128	8	16	$(x_1, \dots, x_{15}, (x_0 \lll 1) \oplus (x_9 \gg 1) \oplus (x_{10} \lll 1))$
128	32	4	$(x_1, \dots, x_3, (x_0 \lll 5) \oplus x_1 \oplus (x_1 \lll 13))$
128	64	2	$(x_1, (x_0 \lll 11) \oplus x_1 \oplus (x_1 \lll 13))$
256	64	4	$(x_1, \dots, x_3, (x_0 \lll 3) \oplus (x_3 \gg 5))$
512	32	16	$(x_1, \dots, x_{15}, (x_0 \lll 5) \oplus (x_3 \gg 7))$
512	64	8	$(x_1, \dots, x_7, (x_0 \lll 29) \oplus (x_1 \lll 9))$
1024	64	16	$(x_1, \dots, x_{15}, (x_0 \lll 53) \oplus (x_5 \lll 13))$
1600	32	50	$(x_1, \dots, x_{49}, (x_0 \lll 3) \oplus (x_{23} \gg 3))$
⋮	⋮	⋮	⋮

- Work exceptionally well for ARX primitives

MEM: Uniqueness of Masking

- Intuitively, masking goes well as long as

$$\varphi_2^\gamma \circ \varphi_1^\beta \circ \varphi_0^\alpha \neq \varphi_2^{\gamma'} \circ \varphi_1^{\beta'} \circ \varphi_0^{\alpha'}$$

for any $(\alpha, \beta, \gamma) \neq (\alpha', \beta', \gamma')$

- Challenge: set proper domain for (α, β, γ)
- Requires computation of **discrete logarithms**

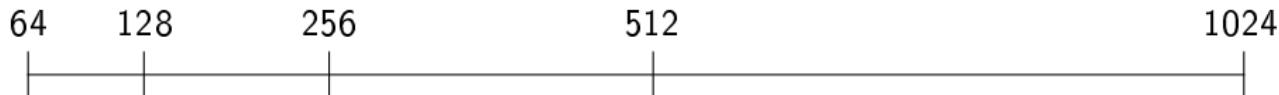
MEM: Uniqueness of Masking

- Intuitively, masking goes well as long as

$$\varphi_2^\gamma \circ \varphi_1^\beta \circ \varphi_0^\alpha \neq \varphi_2^{\gamma'} \circ \varphi_1^{\beta'} \circ \varphi_0^{\alpha'}$$

for any $(\alpha, \beta, \gamma) \neq (\alpha', \beta', \gamma')$

- Challenge: set proper domain for (α, β, γ)
- Requires computation of **discrete logarithms**



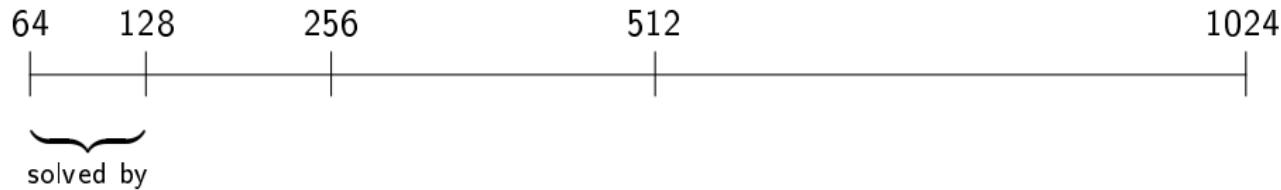
MEM: Uniqueness of Masking

- Intuitively, masking goes well as long as

$$\varphi_2^\gamma \circ \varphi_1^\beta \circ \varphi_0^\alpha \neq \varphi_2^{\gamma'} \circ \varphi_1^{\beta'} \circ \varphi_0^{\alpha'}$$

for any $(\alpha, \beta, \gamma) \neq (\alpha', \beta', \gamma')$

- Challenge: set proper domain for (α, β, γ)
- Requires computation of **discrete logarithms**



Rogaway [Rog04]

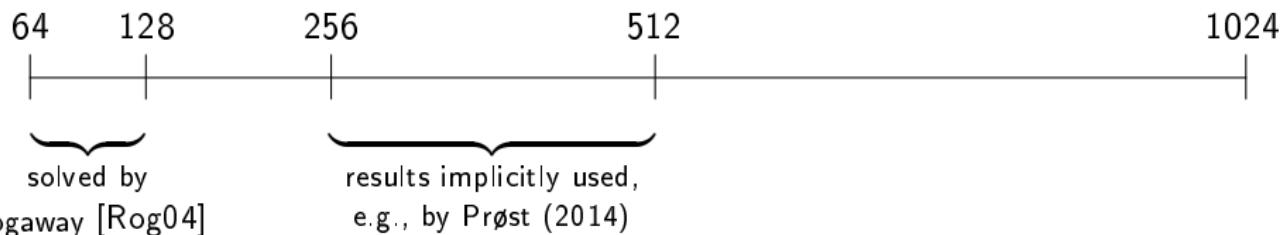
MEM: Uniqueness of Masking

- Intuitively, masking goes well as long as

$$\varphi_2^\gamma \circ \varphi_1^\beta \circ \varphi_0^\alpha \neq \varphi_2^{\gamma'} \circ \varphi_1^{\beta'} \circ \varphi_0^{\alpha'}$$

for any $(\alpha, \beta, \gamma) \neq (\alpha', \beta', \gamma')$

- Challenge: set proper domain for (α, β, γ)
- Requires computation of **discrete logarithms**



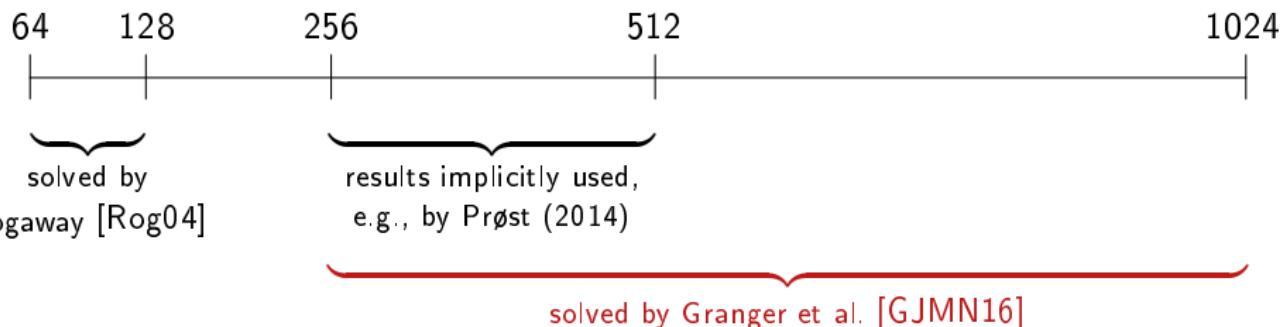
MEM: Uniqueness of Masking

- Intuitively, masking goes well as long as

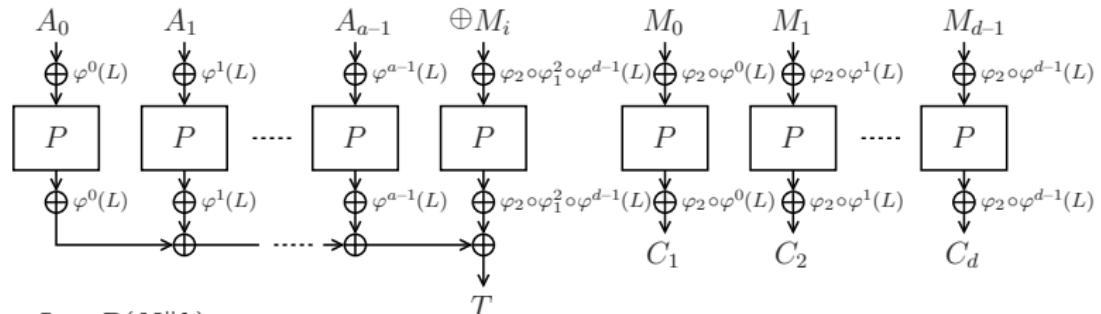
$$\varphi_2^\gamma \circ \varphi_1^\beta \circ \varphi_0^\alpha \neq \varphi_2^{\gamma'} \circ \varphi_1^{\beta'} \circ \varphi_0^{\alpha'}$$

for any $(\alpha, \beta, \gamma) \neq (\alpha', \beta', \gamma')$

- Challenge: set proper domain for (α, β, γ)
- Requires computation of discrete logarithms



Application to AE: OPP

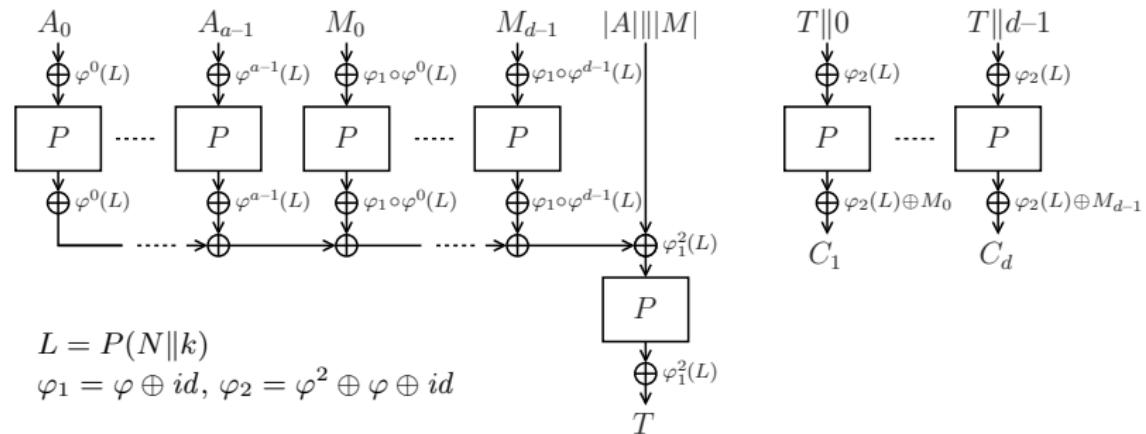


$$L = P(N \| k)$$

$$\varphi_1 = \varphi \oplus id, \varphi_2 = \varphi^2 \oplus \varphi \oplus id$$

- Offset Public Permutation (OPP)
- Generalization of OCB3:
 - Permutation-based
 - More efficient MEM masking
- Security against nonce-respecting adversaries
- 0.55 cpb with reduced-round BLAKE2b

Application to AE: MRO



- Misuse-Resistant OPP (MRO)
- Fully nonce-misuse resistant version of OPP
- 1.06 cpb with reduced-round BLAKE2b

Outline

Generic Composition

Link With Tweakable Blockciphers

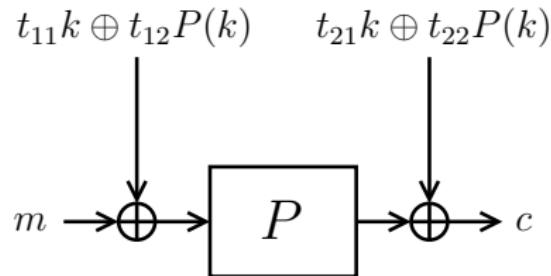
Tweakable Blockciphers Based on Masking

- Intuition
- State of the Art
- Improved Efficiency
- Improved Security

Nonce-Reuse

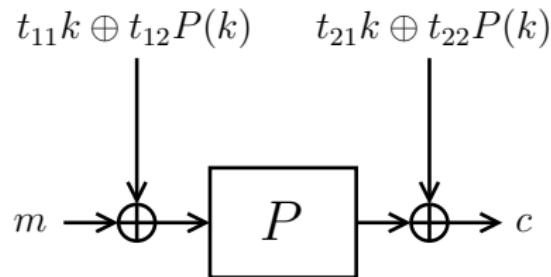
Conclusion

- XPX by Mennink [Men16]:



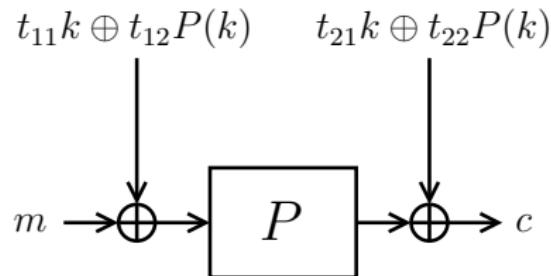
- $(t_{11}, t_{12}, t_{21}, t_{22})$ from some tweak set $\mathcal{T} \subseteq (\{0, 1\}^n)^4$
- \mathcal{T} can (still) be any set

- XPX by Mennink [Men16]:



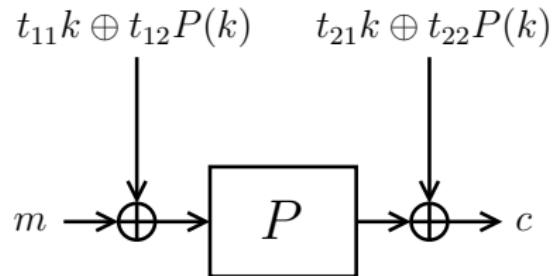
- $(t_{11}, t_{12}, t_{21}, t_{22})$ from some tweak set $\mathcal{T} \subseteq (\{0, 1\}^n)^4$
- \mathcal{T} can (still) be any set
- Security of XPX **strongly depends** on choice of \mathcal{T}

- XPX by Mennink [Men16]:



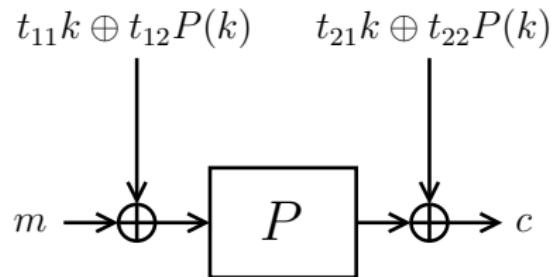
- $(t_{11}, t_{12}, t_{21}, t_{22})$ from some tweak set $\mathcal{T} \subseteq (\{0, 1\}^n)^4$
- \mathcal{T} can (still) be any set
- Security of XPX **strongly depends** on choice of \mathcal{T}
 - ① “Weak” \mathcal{T} \longrightarrow insecure

- XPX by Mennink [Men16]:



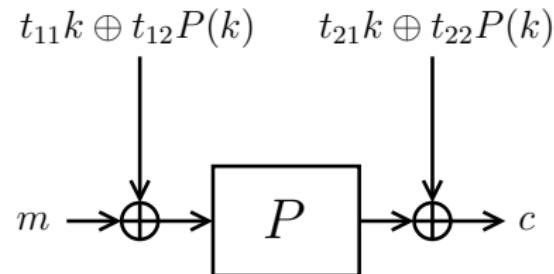
- $(t_{11}, t_{12}, t_{21}, t_{22})$ from some tweak set $\mathcal{T} \subseteq (\{0, 1\}^n)^4$
- \mathcal{T} can (still) be any set
- Security of XPX **strongly depends** on choice of \mathcal{T}
 - ① “Weak” \mathcal{T} \rightarrow insecure
 - ② “Normal” \mathcal{T} \rightarrow single-key secure

- XPX by Mennink [Men16]:

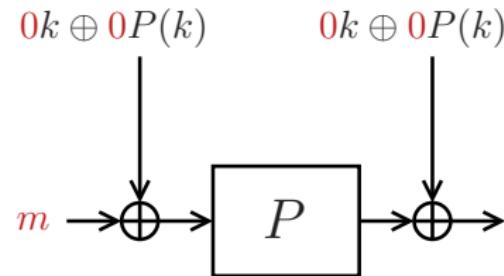


- $(t_{11}, t_{12}, t_{21}, t_{22})$ from some tweak set $\mathcal{T} \subseteq (\{0, 1\}^n)^4$
- \mathcal{T} can (still) be any set
- Security of XPX **strongly depends** on choice of \mathcal{T}
 - ① “Weak” \mathcal{T} \rightarrow insecure
 - ② “Normal” \mathcal{T} \rightarrow single-key secure
 - ③ “Strong” \mathcal{T} \rightarrow related-key secure

XPX: Weak Tweaks

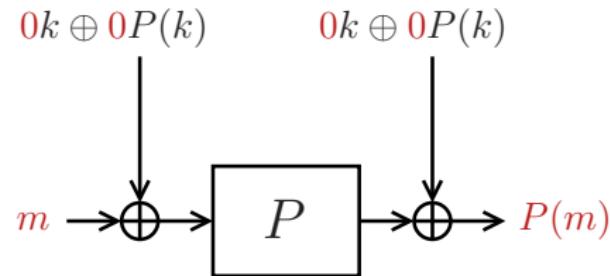


XPX: Weak Tweaks



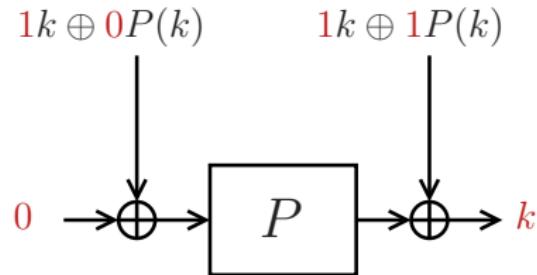
$$(0, 0, 0, 0) \in \mathcal{T}$$

XPX: Weak Tweaks



$$(0, 0, 0, 0) \in \mathcal{T} \implies \text{XPX}_k((0, 0, 0, 0), m) = P(m)$$

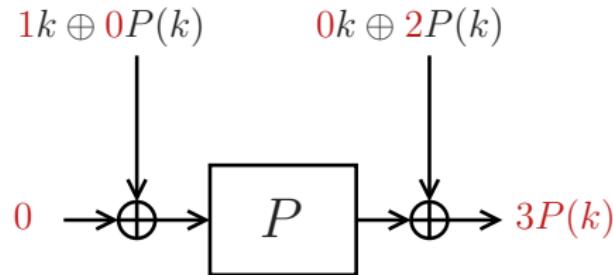
XPX: Weak Tweaks



$$(0, 0, 0, 0) \in \mathcal{T} \implies \text{XPX}_k((0, 0, 0, 0), m) = P(m)$$

$$(1, 0, 1, 1) \in \mathcal{T} \implies \text{XPX}_k((1, 0, 1, 1), 0) = k$$

XPX: Weak Tweaks

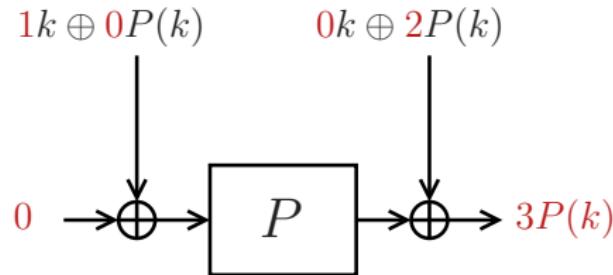


$$(0, 0, 0, 0) \in \mathcal{T} \implies \text{XPX}_k((0, 0, 0, 0), m) = P(m)$$

$$(1, 0, 1, 1) \in \mathcal{T} \implies \text{XPX}_k((1, 0, 1, 1), 0) = k$$

$$(1, 0, 0, 2) \in \mathcal{T} \implies \text{XPX}_k((1, 0, 0, 2), 0) = 3P(k)$$

XPX: Weak Tweaks



$$(0, 0, 0, 0) \in \mathcal{T} \implies \text{XPX}_k((0, 0, 0, 0), m) = P(m)$$

$$(1, 0, 1, 1) \in \mathcal{T} \implies \text{XPX}_k((1, 0, 1, 1), 0) = k$$

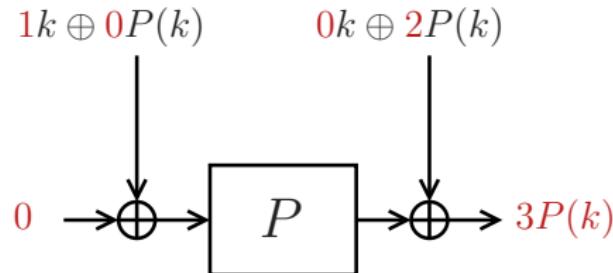
$$(1, 0, 0, 2) \in \mathcal{T} \implies \text{XPX}_k((1, 0, 0, 2), 0) = 3P(k)$$

...

...

...

XPX: Weak Tweaks



$$(0, 0, 0, 0) \in \mathcal{T} \implies \text{XPX}_k((0, 0, 0, 0), m) = P(m)$$

$$(1, 0, 1, 1) \in \mathcal{T} \implies \text{XPX}_k((1, 0, 1, 1), 0) = k$$

$$(1, 0, 0, 2) \in \mathcal{T} \implies \text{XPX}_k((1, 0, 0, 2), 0) = 3P(k)$$

...

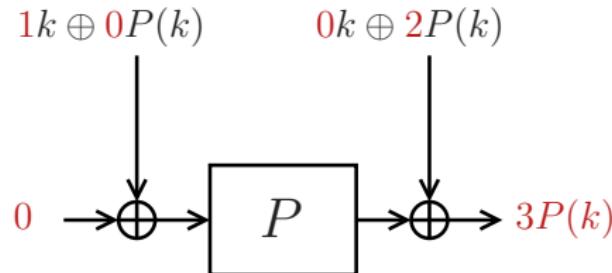
...

...

“Valid” Tweak Sets

- Technical definition to eliminate weak cases

XPX: Weak Tweaks



$$(0, 0, 0, 0) \in \mathcal{T} \implies \text{XPX}_k((0, 0, 0, 0), m) = P(m)$$

$$(1, 0, 1, 1) \in \mathcal{T} \implies \text{XPX}_k((1, 0, 1, 1), 0) = k$$

$$(1, 0, 0, 2) \in \mathcal{T} \implies \text{XPX}_k((1, 0, 0, 2), 0) = 3P(k)$$

...

...

...

“Valid” Tweak Sets

- Technical definition to eliminate weak cases
- \mathcal{T} invalid \iff XPX insecure
- \mathcal{T} valid \iff XPX single- or related-key secure

XPX Covers Even-Mansour

for $\mathcal{T} = \{(1, 0, 1, 0)\}$

XPX Covers Even-Mansour

for $\mathcal{T} = \{(1, 0, 1, 0)\}$

- Single-key STPRP secure (surprise?)

XPX Covers Even-Mansour

for $\mathcal{T} = \{(1, 0, 1, 0)\}$

- Single-key STPRP secure (surprise?)
- Generally, if $|\mathcal{T}| = 1$, XPX is a normal blockcipher

XPX Covers XEX With Even-Mansour

$$\text{for } \mathcal{T} = \left\{ \begin{array}{l} (2^{\alpha}3^{\beta}7^{\gamma} \oplus 1, 2^{\alpha}3^{\beta}7^{\gamma}, \\ 2^{\alpha}3^{\beta}7^{\gamma} \oplus 1, 2^{\alpha}3^{\beta}7^{\gamma}) \end{array} \mid (\alpha, \beta, \gamma) \in \{\text{XEX-tweaks}\} \right\}$$

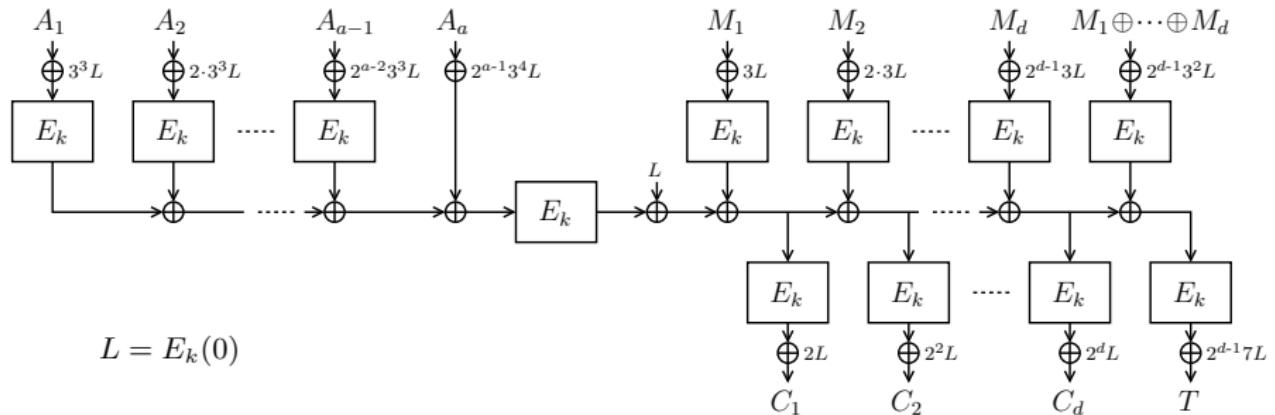
- (α, β, γ) is in fact the “real” tweak

XPX Covers XEX With Even-Mansour

$$\text{for } \mathcal{T} = \left\{ \begin{array}{l} (2^\alpha 3^\beta 7^\gamma \oplus 1, 2^\alpha 3^\beta 7^\gamma, \\ 2^\alpha 3^\beta 7^\gamma \oplus 1, 2^\alpha 3^\beta 7^\gamma) \end{array} \mid (\alpha, \beta, \gamma) \in \{\text{XEX-tweaks}\} \right\}$$

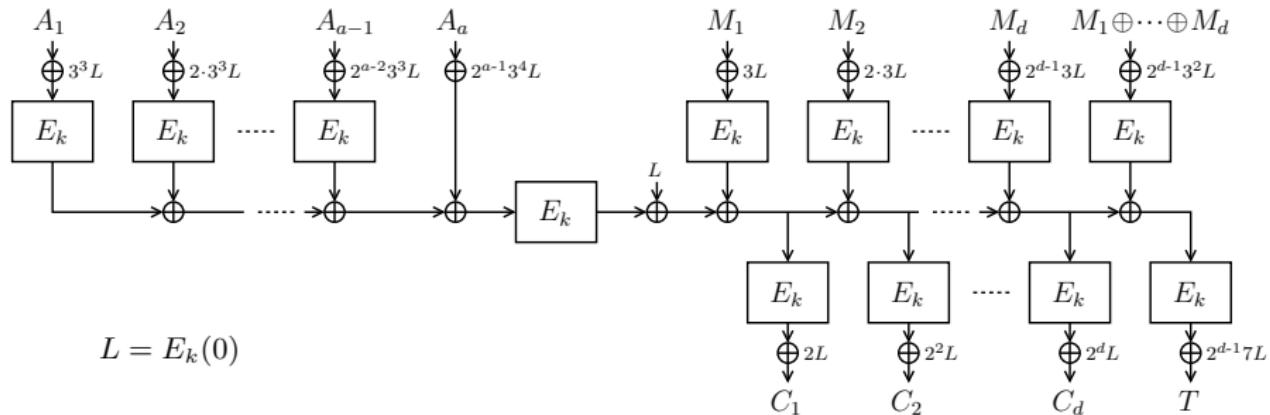
- (α, β, γ) is in fact the “real” tweak
- Related-key STPRP secure (if $2^\alpha 3^\beta 7^\gamma \neq 1$)

Application to AE: COPA and Prøst-COPA



- By Andreeva et al. (2014)
- Implicitly based on XEX based on AES

Application to AE: COPA and Prøst-COPA



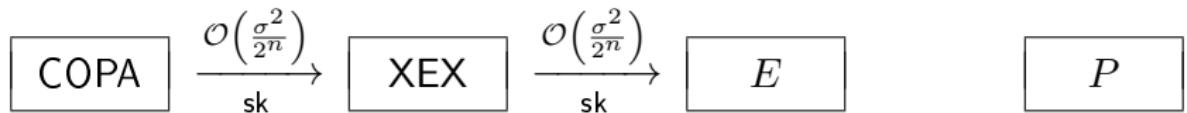
- By Andreeva et al. (2014)
- Implicitly based on XEX based on AES
- Prøst-COPA by Kavun et al. (2014): COPA based on XEX based on Even-Mansour

Application to AE: COPA and Prøst-COPA

Single-Key Security of COPA

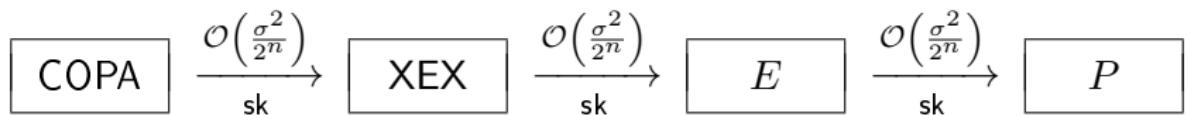
Application to AE: COPA and Prøst-COPA

Single-Key Security of Prøst-COPA



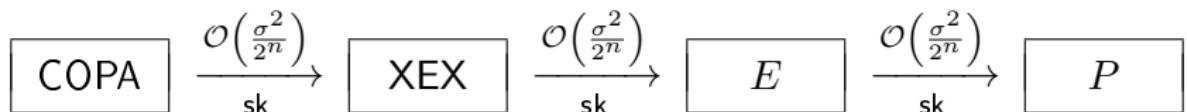
Application to AE: COPA and Prøst-COPA

Single-Key Security of Prøst-COPA



Application to AE: COPA and Prøst-COPA

Single-Key Security of Prøst-COPA

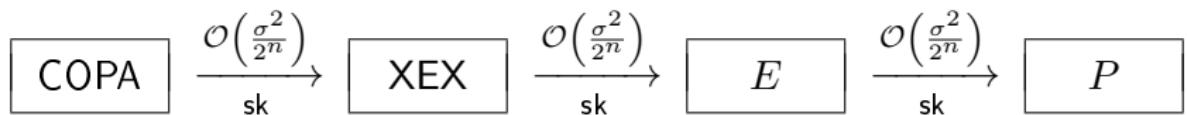


Related-Key Security of COPA

- Existing proof generalizes

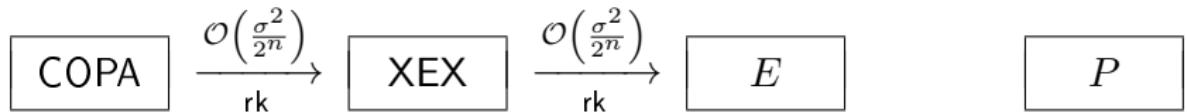
Application to AE: COPA and Prøst-COPA

Single-Key Security of Prøst-COPA



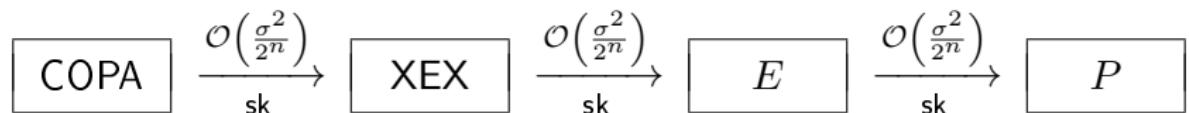
Related-Key Security of Prøst-COPA

- Existing proof generalizes



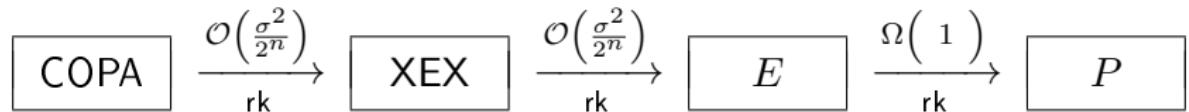
Application to AE: COPA and Prøst-COPA

Single-Key Security of Prøst-COPA



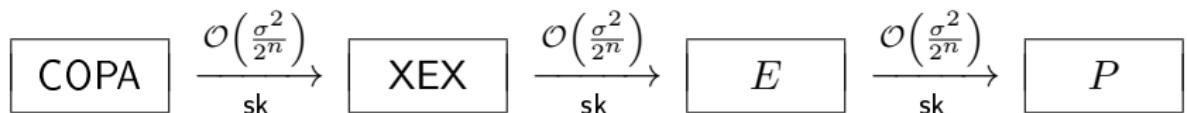
Related-Key Security of Prøst-COPA

- Existing proof generalizes



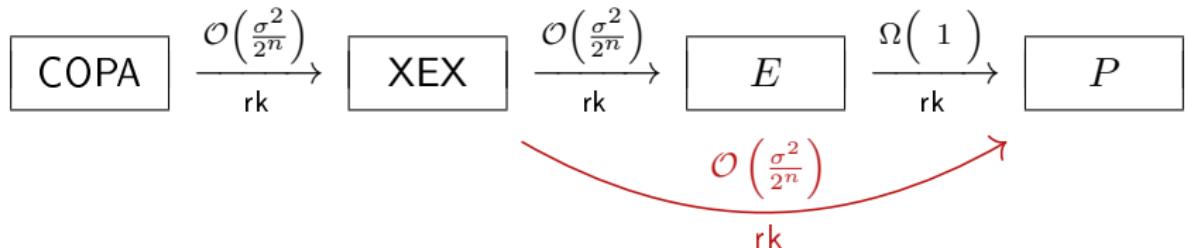
Application to AE: COPA and Prøst-COPA

Single-Key Security of Prøst-COPA



Related-Key Security of Prøst-COPA

- Existing proof generalizes



Outline

Generic Composition

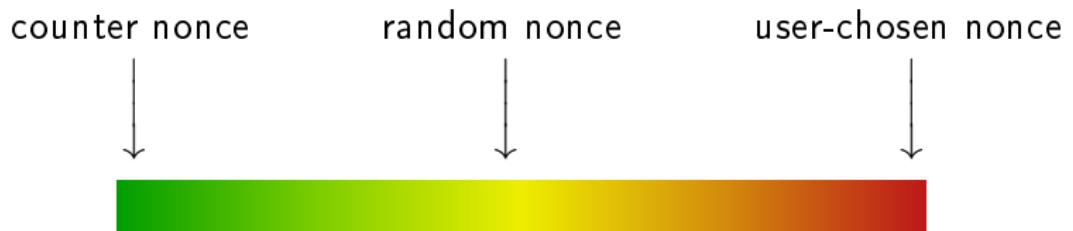
Link With Tweakable Blockciphers

Tweakable Blockciphers Based on Masking

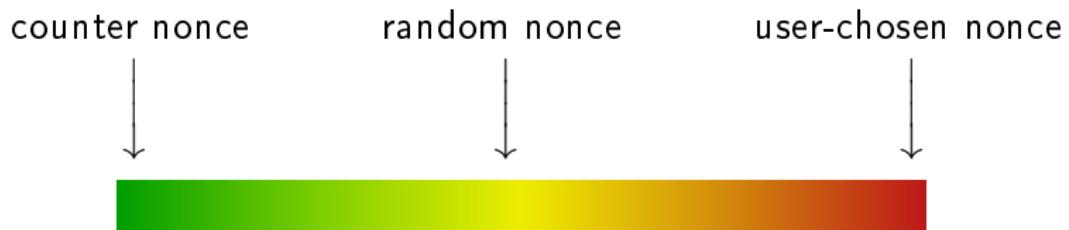
Nonce-Reuse

Conclusion

Guaranteeing Uniqueness of Nonce

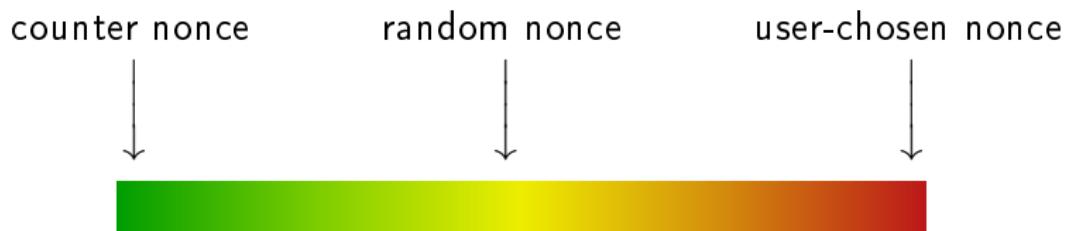


Guaranteeing Uniqueness of Nonce



- Issues with nonce generation:
 - Counter needs storage
 - Need synchronization or transmission
 - Efficiency cost
 - Laziness or mistake of implementor
 - ...

Guaranteeing Uniqueness of Nonce



- Issues with nonce generation:
 - Counter needs storage
 - Need synchronization or transmission
 - Efficiency cost
 - Laziness or mistake of implementor
 - ...
- Sometimes, attacker can use same nonce multiple times

Nonce-Disrespecting Adversaries: Practical Forgery Attacks on GCM in TLS

Böck et al., USENIX WOOT 2016

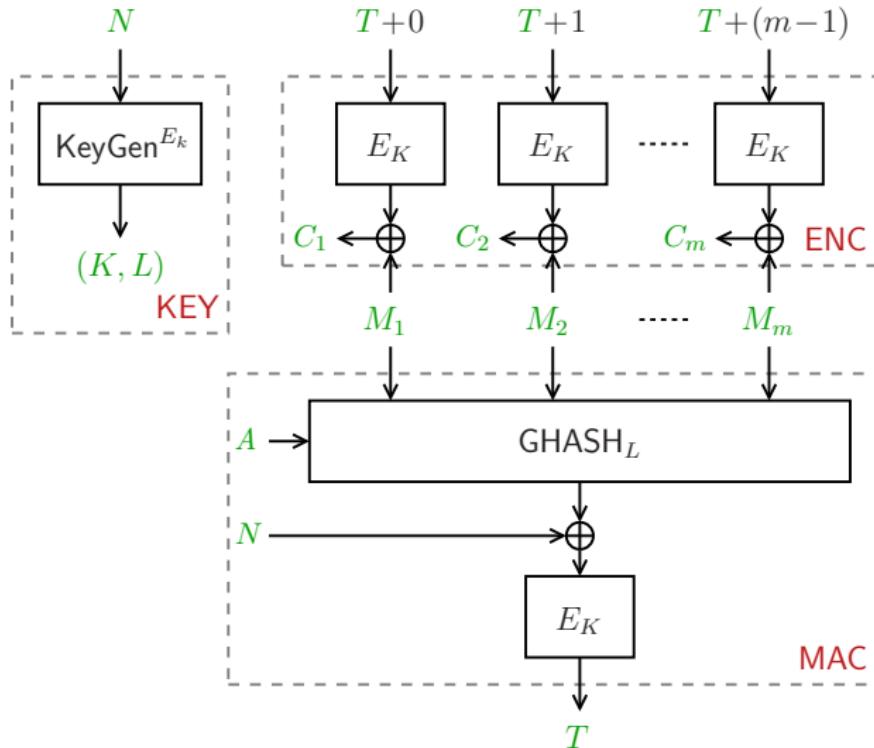
- GCM is widely used authenticated encryption scheme
- Used in TLS (“https”)
- Internet-wide scan for GCM implementations
- 184 devices with duplicated nonces
 - VISA, Polish bank, German stock exchange, ...
- ≈ 70.000 devices with random nonce

Resistance Against Nonce-Reuse

Intuition

- All input should be cryptographically transformed
- Any change in $(N, A, M) \longrightarrow$ unpredictable (C, T)
- Often comes at a price:
 - Efficiency
 - Security
 - Parallelizability
 - ...

Back to GCM-SIV



Outline

Generic Composition

Link With Tweakable Blockciphers

Tweakable Blockciphers Based on Masking

Nonce-Reuse

Conclusion

Conclusion

Authenticated Encryption

- Nonce-based AE: currently the norm
 - CCM, GCM, OCB3, ...
- Nonce-reuse comes at efficiency penalty
 - GCM-SIV, MRO, AEZ, ...
- CAESAR competition

Conclusion

Authenticated Encryption

- Nonce-based AE: currently the norm
 - CCM, GCM, OCB3, ...
- Nonce-reuse comes at efficiency penalty
 - GCM-SIV, MRO, AEZ, ...
- CAESAR competition

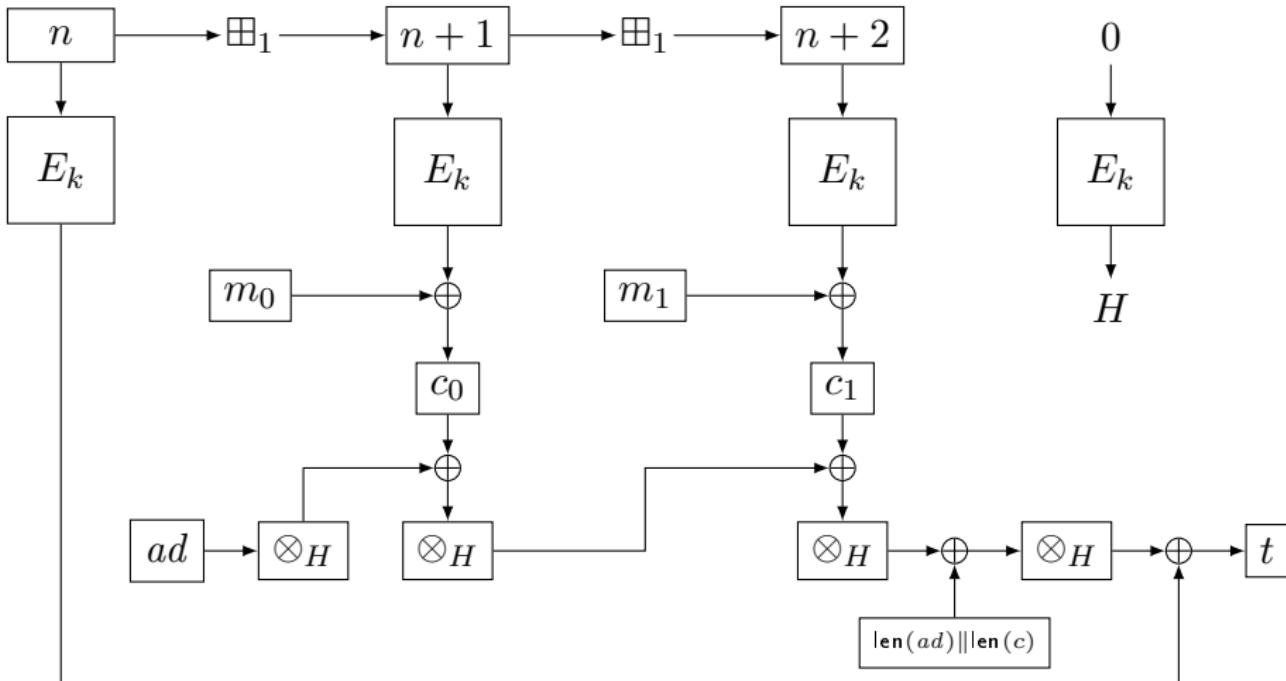
Tweakable Blockciphers

- Allow for modular and compact proofs
- Birthday-bound secure TBCs: simple and efficient
- Security beyond the birthday bound?

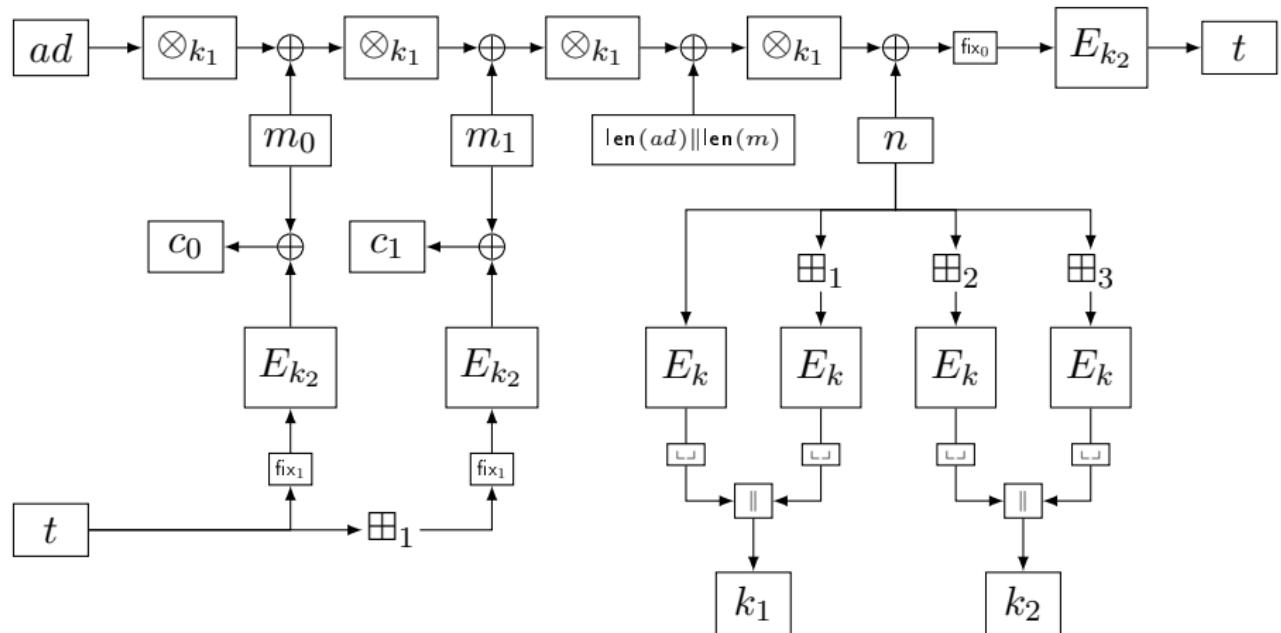
Thank you for your attention!

SUPPORTING SLIDES

Detailed Picture of GCM



Detailed Picture of GCM-SIV



MEM: Implementation

- State size $b = 1024$
- LFSR on 16 words of 64 bits:

$$\varphi(x_0, \dots, x_{15}) = (x_1, \dots, x_{15}, (x_0 \lll 53) \oplus (x_5 \lll 13))$$

- P : BLAKE2b permutation with 4 or 6 rounds

MEM: Implementation

- State size $b = 1024$
- LFSR on 16 words of 64 bits:

$$\varphi(x_0, \dots, x_{15}) = (x_1, \dots, x_{15}, (x_0 \lll 53) \oplus (x_5 \lll 13))$$

- P : BLAKE2b permutation with 4 or 6 rounds
- Main implementation results:

Platform	nonce-respecting					misuse-resistant
	AES-GCM	OCB3	Deoxys \neq	OPP ₄	OPP ₆	
Cortex-A8	38.6	28.9	-	4.26	5.91	
Sandy Bridge	2.55	0.98	1.29	1.24	1.91	
Haswell	1.03	0.69	0.96	0.55	0.75	

MEM: Implementation

- State size $b = 1024$
- LFSR on 16 words of 64 bits:

$$\varphi(x_0, \dots, x_{15}) = (x_1, \dots, x_{15}, (x_0 \lll 53) \oplus (x_5 \lll 13))$$

- P : BLAKE2b permutation with 4 or 6 rounds
- Main implementation results:

Platform	nonce-respecting					misuse-resistant			
	AES-GCM	OCB3	Deoxys \neq	OPP ₄	OPP ₆	GCM-SIV	Deoxys $=$	MRO ₄	MRO ₆
Cortex-A8	38.6	28.9	-	4.26	5.91	-	-	8.07	11.32
Sandy Bridge	2.55	0.98	1.29	1.24	1.91	-	≈ 2.58	2.41	3.58
Haswell	1.03	0.69	0.96	0.55	0.75	1.17	≈ 1.92	1.06	1.39

MEM: Parallelizability

- LFSR on 16 words of 64 bits:

$$\varphi(x_0, \dots, x_{15}) = (x_1, \dots, x_{15}, (x_0 \lll 53) \oplus (x_5 \lll 13))$$

MEM: Parallelizability

- LFSR on 16 words of 64 bits:

$$\varphi(x_0, \dots, x_{15}) = (x_1, \dots, x_{15}, (x_0 \lll 53) \oplus (x_5 \lll 13))$$

- Begin with state $L_i = [x_0, \dots, x_{15}]$ of 64-bit words

$$\begin{array}{cccc} x_0 & x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 & x_7 \\ x_8 & x_9 & x_{10} & x_{11} \\ x_{12} & x_{13} & x_{14} & x_{15} \end{array}$$

MEM: Parallelizability

- LFSR on 16 words of 64 bits:

$$\varphi(x_0, \dots, x_{15}) = (x_1, \dots, x_{15}, (x_0 \lll 53) \oplus (x_5 \lll 13))$$

- Begin with state $L_i = [x_0, \dots, x_{15}]$ of 64-bit words

$$\begin{array}{cccc} x_0 & x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 & x_7 \\ x_8 & x_9 & x_{10} & x_{11} \\ x_{12} & x_{13} & x_{14} & x_{15} \\ \textcolor{red}{x_{16}} \end{array}$$

- $x_{16} = (x_0 \lll 53) \oplus (x_5 \lll 13)$

MEM: Parallelizability

- LFSR on 16 words of 64 bits:

$$\varphi(x_0, \dots, x_{15}) = (x_1, \dots, x_{15}, (x_0 \lll 53) \oplus (x_5 \lll 13))$$

- Begin with state $L_i = [x_0, \dots, x_{15}]$ of 64-bit words

$$\begin{array}{cccc} x_0 & x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 & x_7 \\ x_8 & x_9 & x_{10} & x_{11} \\ x_{12} & x_{13} & x_{14} & x_{15} \\ \textcolor{red}{x_{16}} & \textcolor{red}{x_{17}} \end{array}$$

- $x_{16} = (x_0 \lll 53) \oplus (x_5 \lll 13)$
- $x_{17} = (x_1 \lll 53) \oplus (x_6 \lll 13)$

MEM: Parallelizability

- LFSR on 16 words of 64 bits:

$$\varphi(x_0, \dots, x_{15}) = (x_1, \dots, x_{15}, (x_0 \lll 53) \oplus (x_5 \lll 13))$$

- Begin with state $L_i = [x_0, \dots, x_{15}]$ of 64-bit words

$$\begin{array}{cccc} x_0 & x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 & x_7 \\ x_8 & x_9 & x_{10} & x_{11} \\ x_{12} & x_{13} & x_{14} & x_{15} \\ \textcolor{red}{x_{16}} & \textcolor{red}{x_{17}} & \textcolor{red}{x_{18}} & \end{array}$$

- $x_{16} = (x_0 \lll 53) \oplus (x_5 \lll 13)$
- $x_{17} = (x_1 \lll 53) \oplus (x_6 \lll 13)$
- $x_{18} = (x_2 \lll 53) \oplus (x_7 \lll 13)$

MEM: Parallelizability

- LFSR on 16 words of 64 bits:

$$\varphi(x_0, \dots, x_{15}) = (x_1, \dots, x_{15}, (x_0 \lll 53) \oplus (x_5 \lll 13))$$

- Begin with state $L_i = [x_0, \dots, x_{15}]$ of 64-bit words

x_0	x_1	x_2	x_3
x_4	x_5	x_6	x_7
x_8	x_9	x_{10}	x_{11}
x_{12}	x_{13}	x_{14}	x_{15}
x_{16}	x_{17}	x_{18}	x_{19}

- $x_{16} = (x_0 \lll 53) \oplus (x_5 \lll 13)$
- $x_{17} = (x_1 \lll 53) \oplus (x_6 \lll 13)$
- $x_{18} = (x_2 \lll 53) \oplus (x_7 \lll 13)$
- $x_{19} = (x_3 \lll 53) \oplus (x_8 \lll 13)$

MEM: Parallelizability

- LFSR on 16 words of 64 bits:

$$\varphi(x_0, \dots, x_{15}) = (x_1, \dots, x_{15}, (x_0 \lll 53) \oplus (x_5 \lll 13))$$

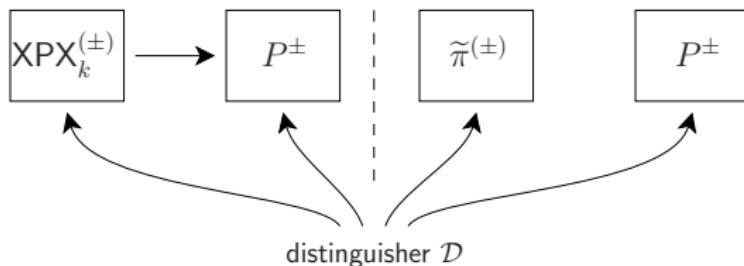
- Begin with state $L_i = [x_0, \dots, x_{15}]$ of 64-bit words

x_0	x_1	x_2	x_3
x_4	x_5	x_6	x_7
x_8	x_9	x_{10}	x_{11}
x_{12}	x_{13}	x_{14}	x_{15}
x_{16}	x_{17}	x_{18}	x_{19}

- $x_{16} = (x_0 \lll 53) \oplus (x_5 \lll 13)$
- $x_{17} = (x_1 \lll 53) \oplus (x_6 \lll 13)$
- $x_{18} = (x_2 \lll 53) \oplus (x_7 \lll 13)$
- $x_{19} = (x_3 \lll 53) \oplus (x_8 \lll 13)$
- Parallelizable (AVX2) and word-sliceable

XPX: Single-Key Security

(Strong) Tweakable PRP

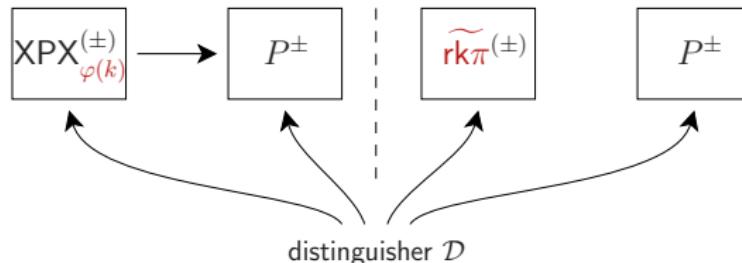


- Information-theoretic indistinguishability
 - $\tilde{\pi}$ ideal tweakable permutation
 - P ideal permutation
 - k secret key

\mathcal{T} is valid \implies XPX is (S)TPRP up to $\mathcal{O}\left(\frac{q^2 + qr}{2^n}\right)$

XPX: Related-Key Security

Related-Key (Strong) Tweakable PRP



- Information-theoretic indistinguishability
 - $\widetilde{\text{rk}\pi}$ ideal tweakable related-key permutation
 - P ideal permutation
 - k secret key
- \mathcal{D} restricted to some set of key-deriving functions Φ

XPX: Related-Key Security

Key-Deriving Functions

- Φ_{\oplus} : all functions $k \mapsto k \oplus \delta$

XPX: Related-Key Security

Key-Deriving Functions

- Φ_{\oplus} : all functions $k \mapsto k \oplus \delta$
- $\Phi_{P\oplus}$: all functions $k \mapsto k \oplus \delta$ or $P(k) \mapsto P(k) \oplus \epsilon$

XPX: Related-Key Security

Key-Deriving Functions

- Φ_{\oplus} : all functions $k \mapsto k \oplus \delta$
- $\Phi_{P\oplus}$: all functions $k \mapsto k \oplus \delta$ or $P(k) \mapsto P(k) \oplus \epsilon$
- Note: maskings in XPX are $t_{i1}k \oplus t_{i2}P(k)$

XPX: Related-Key Security

Key-Deriving Functions

- Φ_{\oplus} : all functions $k \mapsto k \oplus \delta$
- $\Phi_{P\oplus}$: all functions $k \mapsto k \oplus \delta$ or $P(k) \mapsto P(k) \oplus \epsilon$
- Note: maskings in XPX are $t_{i1}k \oplus t_{i2}P(k)$

Results

if \mathcal{T} is valid, and for all tweaks:	security	Φ
$t_{12} \neq 0$	TPRP	Φ_{\oplus}
$t_{12}, t_{22} \neq 0$ and $(t_{21}, t_{22}) \neq (0, 1)$	STPRP	Φ_{\oplus}

XPX: Related-Key Security

Key-Deriving Functions

- Φ_{\oplus} : all functions $k \mapsto k \oplus \delta$
- $\Phi_{P\oplus}$: all functions $k \mapsto k \oplus \delta$ or $P(k) \mapsto P(k) \oplus \epsilon$
- Note: maskings in XPX are $t_{i1}k \oplus t_{i2}P(k)$

Results

if \mathcal{T} is valid, and for all tweaks:	security	Φ
$t_{12} \neq 0$	TPRP	Φ_{\oplus}
$t_{12}, t_{22} \neq 0$ and $(t_{21}, t_{22}) \neq (0, 1)$	STPRP	Φ_{\oplus}
$t_{11}, t_{12} \neq 0$	TPRP	$\Phi_{P\oplus}$
$t_{11}, t_{12}, t_{21}, t_{22} \neq 0$	STPRP	$\Phi_{P\oplus}$

XPX: Security Proof Techniques

Patarin's H-coefficient Technique

- Each conversation defines a transcript
- Define **good** and **bad** transcripts

XPX: Security Proof Techniques

Patarin's H-coefficient Technique

- Each conversation defines a transcript
- Define **good** and **bad** transcripts

$$\mathbf{Adv}_{\mathbf{XPX}}^{\mathbf{rk-}(s)\mathbf{prp}}(\mathcal{D}) \leq \varepsilon + \Pr \left[\text{bad transcript for } (\widetilde{\mathbf{rk}\pi}, P) \right]$$

↑— prob. ratio for **good** transcripts

XPX: Security Proof Techniques

Patarin's H-coefficient Technique

- Each conversation defines a transcript
- Define **good** and **bad** transcripts

$$\mathbf{Adv}_{\mathbf{XPX}}^{\mathbf{rk-}(s)\mathbf{prp}}(\mathcal{D}) \leq \varepsilon + \Pr \left[\text{bad transcript for } (\widetilde{\mathbf{rk}\pi}, P) \right]$$

↑— prob. ratio for **good** transcripts

- Trade-off: define **bad** transcripts smartly!

XPX: Security Proof Techniques

Before the Interaction

- Reveal “dedicated” oracle queries

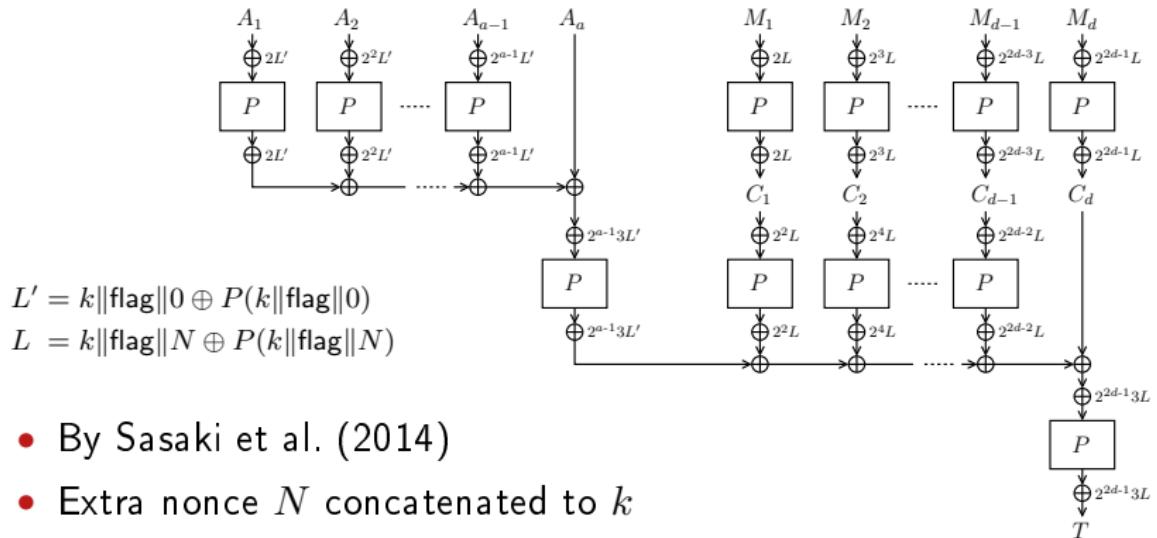
After the Interaction

- Reveal key information
 - Single-key: k and $P(k)$
 - Φ_{\oplus} -related-key: k and $P(k \oplus \delta)$
 - $\Phi_{P\oplus}$ -related-key: k and $P(k \oplus \delta)$ and $P^{-1}(P(k) \oplus \varepsilon)$

Bounding the Advantage

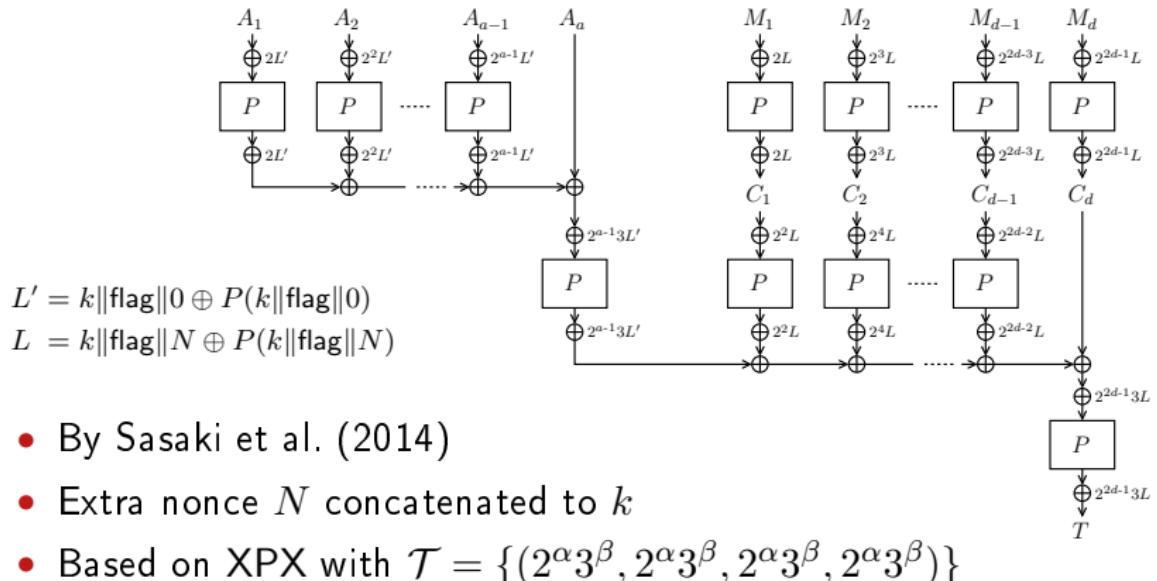
- Smart definition of **bad** transcripts

XPX: Application to AE: Minalpher



- By Sasaki et al. (2014)
- Extra nonce N concatenated to k

XPX: Application to AE: Minalpher



XPX: Application to AE: Minalpher

