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Abstract. This paper aims at developing a verification method for pro-
cedural programs via a transformation into logically constrained term
rewriting systems (LCTRSs). To this end, we adapt existing rewriting
induction methods to LCTRSs and propose a simple yet effective method
to generalize equations. We show that we can handle realistic functions,
involving, e.g., integers and arrays. An implementation is provided.

1 Introduction

A problem familiar to many computer science lecturers, is the marking of student
programming assignments. This can be large time drain, as it typically involves
checking dozens (or hundreds!) of unnecessarily complicated programs at once.
An obvious solution is automatic testing. For example, one might run assign-
ments on a fixed set of input files; this quickly weeds out incorrect solutions, but
has a high risk of false positives. Alternatively (or in addition), we can try to
automatically prove correctness. Several methods for this have been investigated
(see e.g. [9]). However, most of them require expert knowledge to use, like asser-
tions in the code to trace relevant properties; this is not useful in our setting.
An interesting alternative is inductive theorem proving, which is well investi-
gated in the field of functional programming (see, e.g., [2]). For a functional pro-
gram f to be checked against a specification fgpe, it suffices if f (7) ~ fspec(?)
is an inductive theorem of the combined system of f and fspe.. For this initial
setting, no expert knowledge is needed, only the definitions of f and fspec.
Recently, analyses of procedural programs (in C, Java Bytecode, etc.) via
transformations into term rewriting systems have been investigated [4,6,8,17]. In
particular, constrained rewriting systems are popular for these transformations,
since logical constraints used for modeling the control flow can be separated
from terms expressing intermediate states [4,6,8,16,20]. To capture the existing
approaches for constrained rewriting in one setting, the framework of logically
constrained term rewriting systems (LCTRS) has been proposed [13].
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In this paper, we develop a verification method for LCTRSs, designed in
particular for LCTRSs obtained from procedural programs. We use rewriting
induction [18], one of the well-investigated methods for inductive theorem prov-
ing, together with a generalization technique that works particularly well for
transformed iterative functions. Although our examples focus on integers and
static integer arrays, the results can be used with various theories.

Of course, verification also has applications outside the academic world. Al-
though we initially focus on typical homework assignments (small programs,
which require only limited language features), we hope to additionally lay a basis
for more extensive program analysis using constrained term rewriting systems.

In this paper, we first recall the LCTRS formalism from [13] (Section 2), and
sketch a way to translate procedural programs to LCTRSs (Section 3). Then
we adapt existing rewriting induction methods for earlier notions of constrained
rewriting [5,20] to LCTRSs (Section 4), which is strengthened with a dedicated
generalization technique (Section 5). Finally, we briefly discuss implementation
ideas (Section 6), give a comparison with related work (Section 7) and conclude.

An extended version of this paper, including all proofs, is available in [14].

2 Preliminaries

In this section, we briefly recall Logically Constrained Term Rewriting Systems
(LCTRSs), following the definitions in [13].

Many-sorted Terms. We assume given a set S of sorts and an infinite set V of
variables, each variable equipped with a sort. A signature X' is a set of function
symbols f, disjoint from V), each symbol equipped with a sort declaration [1; X
-+ Xtp] = K, with all ¢; and & sorts. The set Terms(X, V) of terms over X and V,
contains any expression s such that - s : ¢ can be derived for some sort ¢, using:

Fsiitp ... Fspitg
Ff(st,.. y8n) 1 R

Fixing X and V, every term has a unique sort ¢ such that - s : ¢; we say that ¢ is
the sort of s. Let Var(s) be the set of variables occurring in s. A term s is ground
if Var(s) = 0. A substitution is a sort-preserving mapping [z1 := $1,..., %) := Sk
from variables to terms; sy denotes s with occurrences of any x; replaced by s;.
Given a term s, a position in s is a sequence p of integers such that s, is de-
fined, where s|c = s and f(s1,...,58n)ji.p = (8i)p- We say that s, is a subterm of
s. If = s, : ¢ and = ¢ : 4, then s[t], denotes s with the subterm at position p
replaced by t. A context C is a term containing one or more typed holes O; : ¢;.
If 1 : ¢4y, Sn t Ln, we define C[sy, ..., s,] as C with each O; replaced by s;.

ﬁ(x:LEV)

— (filax--xp]=>reX)

Logical Terms. We fix a signature X' = Zycpns U Ziheory (With possible overlap,
as discussed below). The sorts occurring in Xeory are called theory sorts, and
the symbols theory symbols. We assume given a mapping Z which assigns to each
theory sort ¢ a set Z,, and a mapping J which maps each f : [11 X+ X 1,] = K €
Yitheory to a function Jy inZ,, x---xZ,, == ZI,. For all theory sorts ¢ we also fix a

tn



Automatic Constrained Rewriting Induction 3

set Val, C Xipeory of values: function symbols a : [| = ¢, where J gives a bijective
mapping from Val, to Z,. We require that Xierms N Lheory C Val =, Val,.

A term in Terms(Xipeory, V) is called a logical term. For ground logical terms,
let [f(s1,...,80)] == Ts([s1],- ., [sn]). Every ground logical term s corresponds
to a unique value ¢ such that [[s] = [¢c]; we say that c is the value of 5. A constraint
is a logical term ¢ of some sort bool with Zyoo) = B = {T, L}, the set of booleans.
We say ¢ is valid if [¢oy] = T for all substitutions v which map Var(y) to values,
and satisfiable if [oy] = T for some substitution v which maps Var(y) to values.
A substitution v respects ¢ if y(x) is a value for all z € Var(p) and [py] = T.

Formally, terms in Terms(Xierms, V) have no special function, but we see
them as the primary objects of the term rewriting system: a reduction would
typically begin and end with such terms, with elements of Xypeory \ Val (also
called calculation symbols) only used in intermediate terms.

We typically choose a theory signature with Xypeory 2 L300, . where LEP00
contains the core theory symbols: true, false : bool, A, V, =: [bool x bool] = bool,
—: [bool] = bool, and, for all sorts ¢, symbols =,,#,: [¢ X ¢|] = bool, and an
evaluation function J that interprets these symbols as expected. We omit the
sort subscripts from = and # when they can be derived from context.

The standard integer signature Eti}:éory is Ef}%ﬁry U {4+, —, *, exp, div,mod :
[int X int] = int; <, <: [int x int] = bool} U {n : int | n € Z}. Here, values are
true, false and n for all n € Z. We let J be defined in the natural way, but (since
all Jy must be total) Juiv(n,0) = Tmod(n,0) = Jexp(n, k) = 0 for all n and all

k < 0. However, when constructing LCTRSs, we normally avoid such calls.

Rules and Rewriting. A rule is a triple £ — r [p] where £ and r are terms of the
same sort and ¢ is a constraint. Here, £ is not a logical term (so also not a variable,
as V C Terms(Zineory, V)). If ¢ = true with J(true) = T, the rule is usually just
denoted ¢ — r. We define LVar({ — r [¢]) as Var(p) U (Var(r) \ Var(f)). A
substitution v respects £ — r [p] if v(x) is a value for all z € LVar({ — r [¢]),
and ¢ is valid. Note that it is allowed that Var(r) ¢ Var(¢), but fresh variables
in the right-hand side may only be instantiated with wvalues. This is done to
model user input or random choice, both of which would typically produce a
value. Variables on the left do not need to be instantiated with values (unless
they also occur in the constraint); this is needed for instance for lazy evaluation.

We assume given a set of rules R, and let Rca1c be the set {f(z1,...,2z,) —
yly=f@) | f:lx - Xin] = K& € Dineory \ Val} (writing T for z1,...,,).
The rewrite relation —x is a binary relation on terms, defined by:

Clly]) =g Clry] if £ — 7 [p] € RURcarc and vy respects £ — r [¢]

We say the reduction occurs at position p if C'= C[0],. Let s <3g tif s »x ¢ or
t - s. A reduction step with Rea1c is called a calculation. A term is in normal
form if it cannot be reduced with —g. If f(¢1,...,4,) = 7 [¢p] € R we call f a
defined symbol; non-defined elements of Yy.,.,s and all values are constructors.
Let Cons be the set of all constructors. A logically constrained term rewriting
system (LCTRS) is the abstract rewriting system (Terms(X,V),—x), usually
given by supplying X, R, and maybe Z and J if these are not clear from context.
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Ezample 1. To implement an LCTRS calculating the factorial function, we let
Tint = Z, Toool = B, Ztheory = Zfjitpr,, J defined as discussed above, and:
Yierms = { fact: [int] = int}U{n:int|neZ}
Ripget = { fact(z) = 1 [z < 0] , fact(z) — x *fact(x — 1) [=(z < 0)] }

Using infix notation, examples of logical terms are 54+ 9 and 0 = 0+ —1 and
x4+ 3 > y + —42; the latter two are constraints. We can reduce 5+ 9 to 14 with
a calculation (using z+y — z [z = x +y]), and fact(3) reduces in ten steps to 6.

Ezxample 2. To implement an LCTRS calculating the sum of elements in an
array, let Zpool = B, Zint = Z and Zyypay(int) = Z*, s0 array(int) is mapped to finite-
length integer sequences. Let Xipeory = EZﬁéoryU{size : [array(int)] = int, select :
[array(int) x int] = int} U{a | a € Z*}. (So we do not encode arrays as lists:

every array a corresponds to a unique symbol a.) The interpretation function J

behaves on Ef}}éory as usual and has Jge(a) = k when a = (ng,...,ng_1), and
Tselect (a,7) =n; if a = (ng, ..., ng_1) with 0 <14 < k, otherwise 0. In addition:

Yterms = { sum : [array(int)] = int, suml : [array(int) X int] = int } U
{n:int|neZ}luf{alacZ}
sum(z) — suml(z,size(z) — 1)
Rsum = ¢ suml(z, k) — select(z, k) + suml(z,k — 1) [k > 0]
suml(z, k) =0 [k < 0]

Note the special role of values, which are new in LCTRSs compared to older
styles of constrained rewriting. They are the representatives of the underlying
theory. All values are constants (constructor symbols v() which do not take
arguments), even if they represent complex structures, as seen in Example 2.
However, not all constants are values. Because, unlike traditional TRSs and
e.g. [6,8], values are not term-generated. we can easily have uncountably many
of them (for example an LCTRS over the real number field R), and do not have
to match modulo theories (for example equating 0+ (x + y) with y + z).

Quantification. The definition of LCTRSs does not permit quantifiers. In for
instance an LCTRS over integers and arrays, we cannot specify a rule extend(arr,
x) — addtoend(z, arr) [Vy € {0,...,size(arr) — 1} : & # select(arr,y)] (where
addtoend : [intxarray(int)] = array(int) € Xypeory and extend is a defined symbol).

However, one of the key features of LCTRSs is that theory symbols, including
predicates, are not confined to a fixed list. Therefore, what we can do when
defining an LCTRS, is to add a new symbol to Xpeory (and J). For the extend
rule, we could for instance introduce a symbol notin : [int X array(int)] = bool
with Jnotin(t, (ao, .. .,an—1)) = T if for all i: u # a;, and replace the constraint
by notin(z, arr). This generates the same reduction relation as the original rule.

Thus, we can permit quantifiers in the constraints of rules, as intuitive nota-
tion for fresh predicates. However, as the reduction relation —5 is only decidable
if all Jy are, an unbounded quantification would likely not be useful in practice.
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Differences to [13]. In [13], where LCTRSs are first defined, we assume that V
contains unsorted variables, and use a separate variable environment for typing
terms. Also, —x is there defined as the union of —,y (using rules in R) and
—rcale (using calculations). These changes give equivalent results, but the current
definitions cause a bit less bookkeeping.

A non-equivalent change is the requirement on rules: in [13] left-hand sides
must have a root symbol in Xiepms \ Zineory. We follow [12] in weakening this.

2.1 Rewriting Constrained Terms

In LCTRSs, the objects of study are terms, with —% defining the relation be-
tween them. However, for analysis it is often useful to consider constrained terms:
pairs s [p] of a term s and a constraint ¢. A constrained term s [¢] represents all
terms sy where 7y respects ¢, and can be used to reason about such terms.

Different constrained terms might represent the same terms; for example
£(0) [true] and f(z) [z = 0], or g(z,y) [r > y] and g(z,u) [u < z—1]. We consider
these terms equivalent. Formally, s[p] ~ t[i] if for all substitutions v which
respect ¢ there is a substitution § which respects i such that sy = td, and vice
versa. Note that s[¢] ~ s[¢] if and only if VZ'[3y [¢] <+ 32 )] holds, where
Var(s) = {2}, Var(p) \ Var(s) = {y'} and Var(y)\ Var(s) = {Z'}.

For arule p:={¢ — r [¢)] € RUTRca1c and position g, we let s [p] —, 4 t[¢] if
s)q = £y and t = s[rv], for some substitution y with y(z) a variable in Var(y) or
value for all x € LVar(p) and ¢ = () valid. Let s [¢] —pase t[¢] if s[@] =54
t [¢] for some p, q. The relation —x on constrained terms is: ~ - —pase - ~. We
say s [p] —r t[¥] at position ¢ by rule p if s[p] ~- =, 4 -~ t[¢].

Ezample 3. In the factorial LCTRS from Example 1, we have that fact(x) [z >
3] = x*fact(x—1) [x > 3]. This constrained term can be further reduced using
the calculation rule x —y — z [z = = — y|, but here we must use the ~ relation,
as follows: x * fact(x — 1) [x > 3] ~ rxfact(x — 1) [z > 3A 2 = & — 1] —pase
xxfact(z)[x >3ANz=ao—1],as Va[z >3 [t >3 ANz=2—1].

Ezample 4. The relation ~ allows us to reformulate the constraint both before
and after a reduction, which is particularly useful for irregular rules, where the
constraint contains variables not occurring in the left-hand side. The calculation
rules are a particular example of such rules, as we saw in Example 3. For a
different example, with the rule f(z) — g(y) [y > z], we have: f(z)[z > 3] ~
J@)e > 3Ay > o] —ume 90) e > 3Ay > al ~ gy)[y > 4]. Similarly,
f(z — 1) [z > 0] reduces with a calculation to f(y) [y > 0]. We do not have that
f(z) [true] = g(xr + 1) [true], as = + 1 cannot be instantiated to a value.

Ezxample 5. A constrained term does not always need to be reduced in the most
general way. With the rule f(x) — g(y) [y > z], we have f(0) [true] ~ f(0) [y >
0] —vase 9(¥) [y > 0], but we also have f(0) [true] ~ f(0) [1 > 0] —pase g(1).

As intended, constrained reductions give information about usual reductions:

Theorem 6 ([13]). If s[y] == t[¢], then for all substitutions v which respect
@ there is a substitution & which respects 1 such that sy —>7‘; té.
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3 Transforming Imperative Programs into LCTRSs

Transformations of imperative programs into integer rewriting systems are investi-
gated in e.g. [4,6,8]. These papers use different variations of constrained rewrit-
ing, but the proposed transformations are easily adapted to produce LCTRSs
that operate on integers, i.e., use ZZﬁémy. What is more, we can extend the ideas
to also handle advanced programming structures, like function calls and arrays.

Following the ideas of [4,6,8], we transform each function f separately. Let
7" be the vector of all parameters and local variables in f (we disallow global
variables for now). For all basic blocks in the function (i.e., straight-line code
segments), we introduce a new function symbol u;. A transition from block i
to block j is encoded as a rule u; (V") — u;(7) [¢], with assignments reflected
by argument updates in the right-hand side, and conditions by the constraint.
Return statements return e are encoded by reducing to return¢(e), where returns
is a new constructor.

Finally, the generated LCTRS is optimized to make it more amenable to
analysis: we combine rules whose root symbols occur only once in left-hand
sides [6], remove unused parameters (in particular, variables not in scope at a
given location), and, if appropriate, simplify the constraint (e.g. by removing
duplicate clauses or replacing a term like —(x > y) by y > =.

Ezample 7. Consider the following small C-function fact, calculating the facto-
rial function from Example 1. Here, 7 is  int fact(int x) {

(x,1,z). There are three basic blocks: u; int z = 1;

(the initialization of the local variables, for(int i = 1; i <= x; i++)
which includes both int z = 1 and int Z *x= i,

i = 1), ug (the loop body), and us (the return z;

block containing the return-statement). }

We obtain the following initial LCTRS (left) and simplification (right):
fact(z) — uy(z,1, 2)
ui(z,i,2) = ug(z,1,1) fact(x) — ug(z,1,1)
us(x,i,2) > ug(x, i+ 1,z%4) [i <x] | us(x,i,2) = us(x,i+1,2%4) [i < a]
us(x,i,2) = uz(x,i,2) [ <2)] | uazx,i,z) = returnge(2) [i >z
us(x,i,2) — returnge(2)

Note that there is nothing special about the integers; the definition of LCTRSs
allows values from all kinds of underlying domains. So, with a suitable theory
signature, we could also handle e.g. doubles, encoding them as real numbers.
Pointers are more difficult to handle, but static arrays are not so problematic.
Consider for instance the following two implementations of the same assignment:
given an integer array and its length, return the sum of the array’s elements.

int suml(int arr[],int n){ int sum2(int *arr, int k) {
int ret=0; if (k <= 0) return O;
for(int i=0;i<n;i++) return arr[k-1] +
ret+=arr[i]; sum2(arr, k-1);
return ret; }

}
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To encode these functions, we use Xpeory as in Example 2. To handle illegal
program behavior, we reduce to an additional error constructor in cases when we
index an array out of bounds. To handle function calls (as in sum2), we execute
the call in a separate parameter, and then examine the result. These ideas result
in the following simplified translations (using the same return and error symbols
in both cases, because we want to be able to compare the resulting functions):

(1) suml(arr,n) — u(arr,n,0,0)
(2) u(arr,n,ret,i) — error [i <nA@<0Vi>size(arr))]
(3) u(arr,n,ret,i) — u(arr,n,ret + select(arr,i),i + 1)

i<nA0<i< size(arr)

]
(4) u(arr,n,ret,i) — return(ret) [i > n)
(5) sum2(arr k) — return(0) [k <0]
(6) sum2(arr, k) — error [k — 1 > size(arr)
(7)  sum2(arr, k) — w(select(arr,k — 1), sum2(arr, k — 1))

[0 <k —1<size(arr)]
(8) w(n, error) — error
(9) w(n, return(r)) — return(n + r)

Here, a constraint z < y < b should be read as: z < y Ay < b. Note that sum2
differs from the system in Example 2 only by adding error-handling.

In general, we can encode arrays of any data type, including arrays of ar-
rays, by defining Z,nay() = Z; for any ¢ with J, # () (we need some de-
fault value 0, € Val, for out-of-bound selects). We can also handle array up-
dates: let store : [array(t) X int X ¢] = array(c), and Jsore({ag, - .., an-1),k,v) =
(agy -y Qk—1,V, k11, .-« an—1) if 0 <k < n and <E>> otherwise. To reflect side
effects, we include updated array parameters in the return value.

Ezample 8. The function void empty(char arr([]) { arr[0] = ’\0’; } is
translated to the following LCTRS:

empty(arr) — errorempty [0 > size(arr)]
empty(arr) — return(store(arr,0,0)) [0 < size(arr)]

A more extensive discussion of this translation, including global variables,
integer overflow and dynamic pointers, is available online in [14, Section 3J.

4 Rewriting Induction for LCTRSs

In this section, we adapt the inference rules from [18,5,20] to inductive theorem
proving with LCTRSs. This provides the core theory to use rewriting induction,
which will be strengthened with a lemma generalization technique in Section 5.
We start by listing some restrictions we need to impose on LCTRSs for the
method to work (Section 4.1). Then, we provide the theory for the technique
(Section 4.2), making several changes compared to [18,5,20] to handle the new
formalism. We complete with two illustrative examples (Section 4.3).
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4.1 Restrictions

In order for rewriting induction to be successful, we need to impose certain
restrictions. We limit interest to LCTRSs which satisfy the following properties:

1. all core theory symbols (A, V,=-, - and each =,,#,) are present in Ztheory;
2. the LCTRS is terminating, so there is no infinite reduction s; =g s2 =R ...;
3. the system is quasi-reductive, i.e., for every term s either s € Terms(Cons, ()

(we say s is a ground constructor term), or there is some t such that s —x t;?
4. there are ground terms of every sort occurring in Y.

Property 1 is just the standard assumption we saw in Section 2. We will need
these symbols, for instance, to add new information to a constraint. Termination
(property 2) is crucial in the inductive derivation, as the method uses induction
on terms, oriented with an extension of —x. Property 3 which, together with
termination, provides sufficient completeness, makes it possible to do an ex-
haustive case analysis on the rules applicable to an equation. It also allows us
to assume that variables are always instantiated by ground constructor terms.
The last property is natural, since the method considers ground terms; function
symbols which cannot be assigned ground arguments can simply be omitted.

Methods to prove quasi-reductivity and termination have been published
for different styles of constrained rewriting; see e.g. [5] for quasi-reductivity
and [7,19] for termination. These methods are easily adapted to LCTRSs: see [14,
Appendix A] for quasi-reductivity and [12] for termination. The LCTRSs ob-
tained from procedural programs following Section 3 are always quasi-reductive.

4.2 Rewriting Induction
We now introduce the notions of constrained equations and inductive theorems.

Definition 9. A (constrained) equation is a triple s &~ t [p] with s and t terms
and ¢ a constraint. Let s ~t [p] denote either s &t [p] ort = s [p]. A substitu-
tion  respects s = t [¢] if v respects ¢ and Var(s)U Var(t) C Dom(vy). We say
~ is a ground constructor substitution if all y(x) are ground constructor terms.

An equation s =t [¢] is an inductive theorem of an LCTRS R if sy 3% ty
for any ground constructor substitution vy that respects this equation.

Intuitively, if an equation f (?) ~ g(?) [¢] is an inductive theorem, then f
and g define the same function (conditional on ¢, and assuming confluence).

To prove that an equation is an inductive theorem, we will consider five infer-
ence rules, originating in [18,5,20]. These rules modify a proof state: a pair (€, H)
where £ is a set of equations and H a set of constrained rewrite rules with =z
terminating. A rule in #H plays the role of an induction hypothesis for proving that
the equations in £ are inductive theorems, and is called an induction rule.

3 A more standard definition of this property would be that for every defined or
calculation symbol f and suitable ground constructor terms si,...,Sn, the term
f(s1,...,8n) reduces. As observed in [14, Appendix A], this definition is equivalent.
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SIMPLIFICATION If s & t[¢] —run u =~ t[¢], where = is seen as a fresh con-
structor for the purpose of constrained term reduction,* then we may derive:

EW{(s>t[e)},H) Frs (EU{(urt [P])},H)
DELETION If s =t or ¢ is not satisfiable, we can delete s = ¢ [¢] from &:
Ew{s~tp]},H) Fu (E,H)

EXPANSION Let Ezpd(s,t, ¢, p) be a set containing, for all rules ¢ — r[¢)] € R®
such that £ is unifiable with s, with most general unifier v and ¢y A ¢y is
(or may be) satisfiable, an equation s’ ~ t' [¢'] where s[¢],y =~ tv [(¢7) A
(WVy)] =r ¢ = t' [¢/] with rule £ — r [¢)] at position 1 - p. Here, as in
SIMPLIFICATION, =~ is seen as a fresh constructor for the purpose of con-
strained term reduction. Intuitively, Ezpd generates all resulting equations
if a ground constructor instance of s & ¢ [¢] is reduced at position p of s.
Now, if p is a position of s such that s, is basic (i.e., s, = f(s1,...,5n)
with f a defined symbol and all s; constructor terms) we may derive:

(EW{s=t[p]},H) Fri (EU Ezpd(s,t,p,p),H)
If, moreover, RUH U {s — t [¢]} is terminating, we may even derive:
(EW{s~t[p]},H) Fri (EU Ezpd(s,t,o,p),HU{s =t [¢]})

Note that, if — is non-deterministic (which may for instance happen when
considering irregular rules), we can choose how to build Expd.
EQ-DELETION If all s;,t; € Terms(Xipeory, Var(p)), then we can derive:

(EW{Cls1,... 8] = Cltr,....ta] [¢]} H) Frs
(EULCls1,- - n] = Clta, - ] [0 A (N2 s = 1))} H)

C] is allowed to contain symbols in Xeory . Intuitively, if /\?=1 s; = t; holds,
then C[si,...,s,]y <% . Clt1,...,tn]y and thus, we are done. We exclude
this case from the equation by adding —(A;_, s; = t;) to the constraint.
GENERALIZATION If for all substitutions v which respect ¢ there is a substitu-
tion § which respects 1 with sy = 5’6 and ¢y = t'5, then we can derive:

Ew{s~t o]} H) Fr EU{s =t [¢]},H)

* Tt is not enough if s [p] == w [¢]: when reducing constrained terms, we may manipu-
late unused variables at will, which causes problems if they are used in ¢. For example,
fl@+0)[z >y~ f(z+0) [z =2+ 0] —vase f(2)[z=2+0]~ f(z)[y <], but we
would not want to replace an equation f(z+0) = g(y) [z > y] by f(z) = g(y) [z < y]!

5 Here, we assume that the variables in the rules are distinct from the ones in s, ¢, ¢.

5 Although we do not have to include equations in Ezpd(s,t, ¢, p) which correspond
to rules that give an unsatisfiable constraint, it is sometimes convenient to postpone
the satisfiability check; the resulting equations can be removed with DELETION.
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The first three of these rules originate in [18], but they are adapted in several
ways. Partially, this is because we consider LCTRSs rather than plain TRSs,
and have to handle the constraints: hence we use constrained reduction rather
than normal reduction in SIMPLIFICATION, and include an unsatisfiability case in
DELETION. In EXPANSION, we have made more structural changes; our definition
also differs from the corresponding rules in [5,20], where the method is defined
for different styles of constrained rewriting.

To start, we use constrained reduction, whereas the authors of [18,5,20] use
direct instantiation (e.g. Expd(s,t,p) contains elements s[ry], ~t when { — r €
R and s, unifies with £ with most general unifier ). This was changed to better
handle irregular rules, especially those where the right-hand side introduces fresh
variables, i.e. £ — r [¢] where Var(r) N Var(y) € Var(€). Such rules occur for
example in transformed iterative functions where variables are declared but not
immediately initialized. The alternative formulation of R in Section 5, which is
essential for our lemma generalization technique, also uses such irregular rules.

Second, the case where no rule is added is new. This is needed to allow
progress in cases when adding the rule might cause loss of termination. It some-
what corresponds to, but is strictly stronger than, CASE-SIMPLIFY in [5].

EQ-DELETION originates in [20] and can, in combination with DELETION, be
seen as a generalized variant of THEORY in [5]. Most importantly, this inference
rule provides a link between the equation part s ~ t and the constraint. The
last rule, GENERALIZATION, can be seen as a special case of POSTULATE in [18].
By generalizing an equation, the EXPANSION rule gives more powerful induction
rules, which (as discussed in Section 5) is often essential to prove a theorem.

The inference rules are used for rewriting induction by the following theorem:

Theorem 10. Let an LCTRS with rules R and signature X, satisfying the
restrictions from Section 4.1, be given; let £ be a finite set of equations. If
(&,0) bri -+ bFri (0,H), then every e € £ is an inductive theorem of R.

Proof Sketch: We follow the proof method of [20] (with a few adaptations), which
builds on the original proof idea in [18]. That is, we define >¢ in the expected
way (treating an equation as a rule) and prove the equivalent statement that
¢ C <% on ground terms by making the following observations:

L If (€1, H1) Fri (2, H2), then <3g, C=% g, (26, U =) ¢F 3, on ground
terms (which we see by a careful analysis of all inference rules); using induc-
tion we obtain that <+¢ C =% 4, - = <Run € <run-

2. If (51,7‘[1) Fri ((‘:2,7‘[2) and —)Ruylg—Mg . _>)7k2U'H1 '(<—>gl U :) <_ileU’H1’
then also —ru,C—=R * —Rup, (e U =) <Ry, (Which follows by
a case analysis, paying particular attention to the EXPANSION rule); using
induction we obtain that =ruxC—r - =Ruy * “Run-

3. By point 2 and induction on —ruy, we find that <5 = <% 4.

Details are provided in our technical report [14]. O

Following e.g. [1], there are many other potential inference rules we could
consider. For space reasons, we limit interest to the rules needed for our examples.
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4.3 Some Illustrative Examples

To show how the method works, recall the suml and sum2 rules from Section 3
(page 7). We want to see that these two implementations are equivalent, at least
when the input makes sense, so the given length is at least 0 and does not exceed
the array size. This is the case if the following equation is an inductive theorem:

(A) suml(a, k) ~ sum2(a, k) [0 < k < size(a)]
Thus, we start the procedure with ({(A)},0). From SIMPLIFICATION, we obtain:
({(B) u(a,k,0,0) = sum2(a, k) [0 < k < size(a)]}, D)

None of SIMPLIFICATION, EQ-DELETION, DELETION and CONSTRUCTOR is ap-
plicable, so we apply EXPANSION to the right-hand side of (B) at the root. Since
k < size(a) and k — 1 > size(a) cannot both hold, the error rule leads to an
unsatisfiable constraint. Therefore, this step only gives two new equations:

(C) : return(0) =~ u(a, k,0,0) [0 < k < size(a) A k < 0]
(D) : w(select(a, k — 1), sum2(a, k — 1)) ~ u(a,k,0,0) »,{ (B}
[0 <k <size(a) N0 <k —1 < size(a)]

Here, (B~!) should be read as the rule generated from (B) right-to-left, so
sum2(a, k) — u(a, k,0,0) [0 < k < size(a)]. We use SIMPLIFICATION with rule (4)
to reduce (C) to return(0) ~ return(0) [...], which we quickly delete. Simplifying
the right-hand side of (D) with rule (3), we obtain ({(E)},{(B~1)}), with:

(E) : w(select(a, k — 1),sum2(a, k — 1)) ~ u(a, k, 0 + select(a,0),0 + 1)
[0 <k <size(a) A0 < k —1 < size(a)]

Next we use SIMPLIFICATION with the calculation rules. As these rules are ir-
regular, this requires some care. There are three standard ways to do this:

— if $ —ca1c ¢ then s[p] =r t[p], e.g. f(0+ 1) ~ r [¢] reduces to f(1) ~ r [¢];

— a calculation can be replaced by a fresh variable, which is defined in the
constraint, e.g. f(z + 1) = r [¢] reduces to f(y) =7 [p Ay =z + 1];

— a calculation already defined in the constraint can be replaced by the relevant
variable, e.g. f(z + 1) = 7 [p Ay = = + 1] reduces to f(y) =7 [p Ay =z +1].

These ways are not functionally different; if an equation e reduces both to e; and
eo with a calculation at the same position, then it is easy to see that e; ~ es.
We can do more: recall that, by definition of constrained term reduction, we
can rewrite a constraint ¢ with variables 7',y in a constrained term s [],
to any constraint ¢ over =,z such that 37[¢] is equivalent to 32'[¢] (if
Var(s) = {Z'}). We use this observation to write constraints in a simpler form af-
ter SIMPLIFICATION or EXPANSION, for instance by removing redundant clauses.
Using six more SIMPLIFICATION steps with the calculation rules on (E), and

writing the constraint in a simpler form, we obtain:

({(F): w(n, sum2(a, k) ~ u(a, k7, 1) [k/:k_l/\mo)}},{(B—l)})

0 < k' < size(a) A n = select(a, k') A r = 0+ select(
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Then, using SIMPLIFICATION with the induction rule (B—1):

(G): w(n,u(a,k’,0,0)) =~ u(a, k,r,1) [K'=k—1A 1
<{ 0 < k' < size(a) A n = select(a, k') Ar = 0+ select(a, 0)] } A BT })

As the simpler inference rules do not apply, we expand in the right-hand side:

o))

We have again omitted the error rule, as the corresponding constraint is not
satisfiable. For (I), the constraint implies that k¥ = 1, so SIMPLIFICATION with
rule (4) followed by (9) and prettifying the constraint gives return(r) = return(n+
0) [¥' =0 < size(a) A n=select(a, k') A r = select(a,0)]. EQ-DELETION gives an
unsatisfiable constraint ... A =(r = n + 0); we complete with DELETION.

We continue with ({(H)},{(B=1),(G™1)}). After applying SIMPLIFICATION
with (3) and calculation rules a few times, we have ({(J)}, {(B™1),(G™1)}):

(H): u(a,k,r+ select(a,1),1+ 1) = w(n,u(a, ¥, 0,0))
[ =k —1A0<Fk <size(a) An = select(a, k') A
r =0+ select(a,0) A1 < kA0 <1 <size(a) ,{
(D) : return(r) =~ w(n,u(a, k’,0,0)) [k =k—1A0< K <
size(a) A n = select(a, k') A r = 0 + select(a,0) A 1> k]

(
(

(J) :u(a, k,r1,2) =w(n,u(a,k’,r,1)) [ =k—1A0<k Al <k <size(a) A
n = select(a, k') Ar = 0+ select(a,0) A ry = r + select(a, 1)]

Here, we have used the third style of calculation simplification to reuse r.

We can use EXPANSION again, this time on the left-hand side. But now a
pattern starts to arise. If we continue like this, simplifying as long as we can,
and then using whichever of the other core rules is applicable, we get:

(K): u(a, k,re2,3)

w(n,u(a,k',m,2)) [ =k —1A2 <k <size(a) A .. ]
(L): u(a, k,r3,4) = w

(nyu(a,k’,re,3)) [ =k —1A3 <k <size(a) A..]

~
~
~
~

That is, we have a divergence: a sequence of increasingly complex equations,
each generated from the same leg in an EXPANSION (see also the divergence
eritic in [22]). Yet the previous induction rules never apply to the new equation.

So, consider the following equation (we will say more about it in Section 5):

(M): u(a, k,r,i) =w(n,u(a, k.7, i) [ =k —1A0<i <k <size(a) A
i’ =i—1Ar=r"+select(a,i’) A n = select(a, k)]

It is easy to see that (J) is an instance of (M); we apply GENERALIZATION
and continue with ({(M)}, {(B71),(G™1)}). Using EXPANSION, we obtain:

(N): u(a,k,r + select(a,i),i + 1) = w(n,u(a, k', r",i"))
[ =k—1AN0<i <k<sizela)Ni' =i—1Ar=1r'+
select(a,i’) An = select(a, k') ANi<k A0 <i<size(a)]
(0): return(r) = w(n, u(a, k', ;i) ¢
K =k—1A0<4 <k<size(a) Ni' =i—1A
r =1’ + select(a,i’) An = select(a, k') Ni > K]
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Again, the result of the error rule is omitted, because ¢ < 0 cannot hold if both
0 <¢ and ¢/ =4 —1, and 7 > size(a) cannot hold if both ¢ < k and k < size(a).
Consider (O). Investigating the constraint, we can simplify it with rules (4)
and (9), and then complete with EQ-DELETION and DELETION.
Ounly (N) remains. We simplify this equation with the normal rules, giving:

u(a,k,r”,i") =~ w(n,u(a, k' r 1))
[ =k—1A0<¥ <k<size(a) Ni' =i—1Ar=1"+select(a,i’) A
n = select(a, k') ANi < kA0 <i <size(a) N1’ =1+ 1L A7" =r + select(a, )]

But now note that the induction rule (M) applies! This rule is irregular, so for
the constrained reduction step we use a substitution that also affects variables

not occurring in its left-hand side: v = [a := a,k := k,r := " i =i, n =
n, k' := k',r’ := r,i’ := i]. Using SIMPLIFICATION, the equation is reduced to
w(n,u(a,k’',r,i)) = w(n,u(a,k’,r 7)) [...], which is removed using DELETION.

As ({(A)},0) b (0,H) for some H, we see that (A) is an inductive theorem.

For another example, let us look at an assignment to implement strlen, a
string function which operates on 0-terminated char arrays. As char is a numeric
data type, the LCTRS translation can implement this as integer arrays again
(although using another underlying sort Zcho, would make little difference).

The example function and its LCTRS translation are as follows:

int strlen(char *str) {
for (int i = 0; ; i++)

if (str[i] == 0) return i;
}
(10) strlen(z) — u(z,0)
(11)  u(z,4) — error [i <0Vi>size(z)]
(12)  u(z,4) — return(i) [0 < i < size(x) A select(z,7) = 0]
(13)  u(w,i) = u(z,i+1) [0 < i < size(z) A select(x, i) # 0]

Note that the overflow checks guarantee termination.
To see that strlen does what we would expect it to do, we want to know that
for valid C-strings, strlen(a) returns the first integer ¢ such that afi] = 0:

(P) strlen(z) =~ return(n)
[0 < n < size(r) AVi € {0,n — 1}[select(x, i) # 0] A select(z,n) = 0]

Here, we use bounded quantification, which, as described in Section 2, can be
seen as syntactic sugar for an additional predicate, e.g. nonzero_until.
Starting with ({(P)},0), we first use SIMPLIFICATION with rule (10), creating:

Q) u(z,0) = return(n)
[0 < n < size(z) AVi € {0,n — 1}[select(x, i) # 0] A select(z,n) = 0]
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We continue with EXPANSION; since the constraint implies that 0 < size(z), the
error case (11) gives an unsatisfiable constraint; we only get two new equations:

(R) return(0) = return(n) [0 < n < size(x) A Vi € {0,n — 1}[select(x,i) # 0] A
select(z,n) = 0 A0 < 0 < size(z) A select(x,0) = 0]
(S) u(z,0+ 1) = return(n) [0 < n < size(z) AVi € {0,n — 1}[select(z,7) # 0] A
select(x,n) = 0A 0 < 0 < size(x) A select(x, 0) # 0]

As the constraint of (R) implies that n = 0 (because of the quantification and
select(x,0) = 0), we can remove (R) using EQ-DELETION and DELETION.

As for (S), we simplify with a calculation, and expand again. This gives an
equation return(1l) = return(n) [...] that we can quickly remove again, and an
equation (T) which is simplified, expanded and eqg-deleted /deleted into:

(U) u(z,2 + 1) = return(n) [0 < n < size(x) AVi € {0,n — 1}[select(x,i) # 0] A
select(x,n) = 0 A 0 < size(z) A select(x,0) # 0 A
1 < size(z) A select(z,1) # 0 A 2 < size(x) A select(x,2) # 0]

Simplifying and reformulating the constraint, we obtain:

(V) u(z,3) = return(n) [0 < n < size(z) AVi € {0,n — 1}[select(z, ) # 0] A
select(z,n) = 0 A0 < 2 < size(x) AVj € {0,2}[select(z, j) # 0]]

Note that we grouped together the # 0 statements into a quantification, which
looks a lot like the other quantification in the constraint. We apply GENERAL-
IZATION to obtain ({(W)}, {...}), where (W) is u(z, k) = return(n) [p] with:

p:lk=m+1A0<n <size(x) AVi € {0,n — 1}[select(z,) # 0] A
select(z,n) = 0A 0 < m < size(z) AVj € {0, m}[select(x, j) # 0]

Obviously, (V) is an instance of (W); we proceed with EXPANSION on (W) to
obtain the proof status ({(X), (Y), (2)}, {..., (W)}), where:

(X) error &~ return(n) [ A (k < 0V k > size(z))]
(Y) return(k) = return(n) [¢ A 0 < k < size(x) A select(z, k) = 0]
(Z) u(z,k+ 1) = return(n) [p A0 < k < size(z) A select(z, k) # 0]

For all cases, note that the two V statements, together with select(z,n) = 0, imply
that m < n, so k < n. Hence the constraint of (X) is unsatisfiable: k = m + 1
and 0 < m imply that k £ 0, and k < n, k > size(z) imply that n £ size(x). By
DELETION, we remove (X). For (Y), we use EQ-DELETION. Note that the two V
statements, together with select(x, k) = 0, imply that n — 1 < k, so n < k. Since
also k < n, the resulting constraint is unsatisfiable; we use DELETION again.
Finally, simplifying (Z) with a calculation, and reformulating the constraint:

u(z, p) =~ return(n)
[p=Fk+1Aselect(z,n) =0A0<n <size(z) AVi € {0,n — 1}[select(z, ) # 0]
A0 <k <size(z) AVj € {0, k}[select(x, j) # 0] A some constraints on m]

The induction rule (W) lets us simplify this to return(n) = return(n) [...], which
is easily removed using DELETION.
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5 Lemma Generalization by Dropping Initializations

Divergence, like we encountered in both examples of Section 4, is very common
in inductive theorem proving. This is only natural: in mathematical proofs, when
basic induction fails to prove a theorem, we often need a more general claim to
obtain a stronger induction hypothesis. Viewed in this light, the generalization
of equations, or the generation of suitable auxiliary lemmas is not only part, but
even at the heart, of inductive theorem proving. Consequently, this subject has
been extensively investigated [3,10,11,16,21,22]. Candidates for such equations
are typically generated during solving, when the proof state is in divergence.

In this section, we propose a new method, specialized for constrained systems.
The generalizations from Section 4 were found using this technique. Although
the method is very simple (at its core, we just drop a part of the constraint), it
is particularly effective for LCTRSs obtained from procedural programs.

First, let us state the rules of our sum example differently. When the right-
hand side of a rule has a subterm f(...,n,...) with f defined and n a value, we
replace n by a fresh variable v;, and add v; = n to the constraint. In the LCTRS
R sum from page 7, rules (2)—(9) are not changed, but (1) is replaced by:

(1) suml(arr,n) — u(arr,n,vi,v2) [v1 =0A vy =0]

Evidently, these altered rules generate the same rewrite relation as the original.

Consider what happens now if we use the same steps as in Section 4.3. We do
not rename the variables v; in EXPANSION, and ignore the v; = n clauses when
simplifying the presentation of a constrained term. The resulting induction has
the same shape, but with more complex equations. Some instances:

(B):  ula,k,v1,v2) = sum2(a, k) [0 < k < size(a) Av; =0 A vy =0]
(F): w(n,sum2(a, k') ~ u(a, k, 79, io)
[ =k —1A0<Fk <size(a) Nvy =0A vy =0An=select(a, k') A
ro = v1 + select(a, v2) Aig = vy + 1]
(J): u(a, k,r1,11) = w(n,u(a, k', ro,i0))
[ =k —1A0<k <size(a) ANvy =0Avy =0An=select(a, k') A
ro = vy + select(a,v2) ANig =v2 + 1 Aig < kA0 <ig < size(a) A
i1 =10+ 1 Ary =1+ select(a, ip)]

Continuing from (J'), we get equations u(a, k,re,i2) ~ w(n,u(a,k’,r1,41)) [¢]
and u(a, k,r3,i3) ~ w(n,u(a,k’,re,42)) [] whose main part is the same as that
of (J'), modulo renaming of variables, while the constraint grows. Essentially,
we keep track of parts of the history of an equation in its constraint.

We generalize (J') by dropping all clauses v; = ¢;, where v; is an initialization
variable. Remaining occurrences of v; are renamed to avoid confusion. This gives:

(M) u(a, k,r1,41) = w(n,u(a, k', r,i9)) [ =k—1A0 <k <size(a) A
n = select(a, k') Aro = x1 + select(a, z2) Aig =2 + 1 Adg < k A
0 < iy <size(a) Niy =ig + 1 A1y = 1o+ select(a,ig)]

Note that (M) ~ (M): the clauses with z; and x2 can be removed, as suitable
x1, o always exist. Continuing with (M’) completes the proof as before.
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Discussion. Thus, our equation generalization technique is very straightforward
to use: we merely replace initializations by variables in the original rules, then
remove the definitions of those initializations when a divergence is detected.
The only downside is that, in order to use this technique, we have to use the
altered rules from the beginning, so we keep track of the v; variables throughout
the recursive procedure. For an automatic analysis this is no problem, however.
Note that we can only use this method if the equation part of the divergence
has the same shape every time. This holds for sum, because the rule that causes
the divergence has the form u(z,...,2z,) — u(ri,...,r,) [p], preserving its
outer shape. In general, the generalization method is most likely to be successful
when analyzing tail-recursive functions (with accumulators), such as those ob-
tained from procedural programs. This includes mutually recursive functions, like
U(Z1,. .o @n) = W(re, ..oy rm) o] and w(ys, - - ., yYm) — u(qa, - -, qn) [¢]. To ana-
lyze systems with general recursion, however, we will need different techniques.
The given generalization method also works for strlen from Section 4.3, and
for strcpy. In these cases, we additionally have to collect multiple clauses into a
quantified clause before generalizing, as was done for equation (W) in Section 4.3.

6 Implementation

We have implemented the rewriting induction and generalization methods in
this paper in Ctrl, our tool for analyzing constrained term rewriting. As pre-
requisites, we have also implemented basic techniques to prove termination and
quasi-reductivity. To deal with constraints, the tool is coupled both with a small
internal reasoner and the (quantifier-capable) external SMT-solver Z3 [15].

The internal reasoner has two functions. First, it uses standard tricks to de-
tect satisfiability or validity of simple statements, without a call to the external
solver; this is both faster, and lets us optimize for often recurring questions (e.g.
“find ny,...,n, € {—2,...,2} such that ¢ is valid”, as used for termination).
Second, it simplifies the constraints of equations, for instance combining state-
ments into quantifications. In addition, our notion of arrays is not supported by
mainstream SMT-solvers, so we translate our array formulas into the SMT-LIB
array-format; an array is encoded as a function from Z to Z, with an additional
variable encoding its size.

To obtain Ctrl, see: http://cl-informatik.uibk.ac.at/software/ctrl/.

Strategy. The rewriting induction method of Ctrl uses a simple strategy: we try,
in the following order: EQ-DELETION and DELETION together, SIMPLIFICATION,
EXPANSION, and GENERALIZATION (simply removing all v; = ¢ definitions).
When a rule succeeds, we continue from the start of the list. When we encounter
an obviously unsolvable problem, or have gone too deep without removing any
of the main equations, we backtrack and try something else. At the moment,
divergence is not automatically detected, although this is an obvious extension.

To rewrite an equation in SIMPLIFICATION (and EXPANSION) with an irregu-
lar rule, we instantiate as many variables in the rule by existing variables as pos-
sible (as done for (N) in Section 4.3). Other variables are instantiated with fresh
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variables. When simplifying constraints, clauses which are clearly implied by
other clauses (ignoring the v; = n definitions) or do not play a role are removed.
Most importantly, Ctrl introduces ranged quantifications Va € {k1, ..., kn}[e(2)]
whenever possible (as we also saw in Section 4.3), provided n > 3. If a boundary
of the range is a special variable v;, we replace it by the value it is defined as,
since it is typically better not to generalize the starting point of a quantification.

Experiments. To test performance of Ctrl, we used assignments from a group
of students in the first-year programming course in Nagoya. Unfortunately, al-
though we know how to translate C-programs to LCTRSs, we do not yet have
an implementation. Therefore, we translated five groups by hand: sum (given
n, implement Y. | i), £ib (calculate the first n Fibonacci numbers), sumfrom
(given n and m, implement y_.* i), strlen and strcpy. Due to the large effort
of manually translating, we only use this small sample space. We considered two
further assignments, with our own implementations: arrsum (the array summa-
tion from Section 4.3) and fact (the factorial function from Examples 1 and 7).

We quickly found that many implementations were incorrect: students had
often forgotten to account for, e.g., negative input. Correcting for this (by al-
tering the constraint, or excluding the benchmark), Ctrl automatically verified

most queries, as summarized to the right. Here, for in- - - -
“ ,, . function|verified |time
stance “3 / 5” means that 3 out of the 5 different correct sum | 9/ 13] 4.8
functions could automatically be verified. The runtime fib |10 /12|11.4
includes only queries where Ctrl succeeded. strlen| 3 /5 |16.2
Investigating the failures, the main problem is termi- | strcpy | 3 /6 ]30.0
nation. As Ctrl’s termination module is not very strong sunfrom| 2/5 | 5.6
. o arrsum | 1 /1 |14.2
yet, several times the initial LCTRS could not be han- fact | 1/1 | 4.3

dled; also, sometimes a natural induction rule was not
introduced because it would cause non-termination (although in most of these
cases, expanding at a different position still led to a proof). Another weakness
is that sometimes, generalizing removes the relation between two variables (e.g.
both x and y are initialized to 0, and are both increased by 1 in every loop
iteration). This suggests a natural direction for improvements to the technique.
An evaluation page, including exact problem statements, is given at:
http://cl-informatik.uibk.ac.at/software/ctrl/aplasi4/.

7 Related Work

The related work can be split into two categories. First, the literature on rewrit-
ing induction; and second, the work on program verification.

Rewriting Induction. Building on a long literature about rewriting induction
(see e.g. [1,5,18,20]), the method for inductive theorem proving in this paper is
primarily an adaptation of existing techniques to the new LCTRS formalism.
The most relevant related works are [5,20], where rewriting induction is de-
fined for different styles of constrained rewriting. In both cases, the formalisms
used are restricted to integer functions and predicates; it is not clear how they
can be generalized to handle more advanced theories. LCTRSs offer a more gen-
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eral setting, which allows us to use rewriting induction also for systems with for
instance arrays, bitvectors or real numbers. Additionally, by not restricting the
predicates in Xyjcory, we can handle (a limited form of) quantifiers in constraints.

To enable these advantages, we had to make subtle changes to the inference
rules, in particular SIMPLIFICATION and EXPANSION. Our changes make it pos-
sible to modify constraints of an equation, and to handle irreqular rules, where
the constraint introduces fresh variables. This has the additional advantage that
it enables EXPANSION steps when this would create otherwise infeasible rules.

Furthermore, the method requires a very different implementation from pre-
vious definitions: we need separate strategies to simplify constraints (e.g. deriving
quantified statements), and, in order to permit the desired generality, must rely
primarily on external solvers to manipulate constraints.

In addition to the adaptation of rewriting induction, we introduced a com-
pletely new lemma generalization technique, which offers a powerful tool for
analyzing loops in particular. A similar idea (abstract the initialization values)
is used in [16], but the execution is very different. In [16], an equation s ~ ¢ [¢] is
generalized by first adapting s = ¢ using templates obtained from the rules, then
generalizing ¢ using a set of relations between positions, which the proof process
tracks. In our method, the constraint carries all information. Our method suc-
ceeds on all examples in [16], and on some where [16] fails (cf. [14, Appendix B]).

For unconstrained systems, there are several generalization methods in the
literature, e.g., [10,11,21]. Mostly, these approaches are very different from ours.
Most similar, perhaps, is [10], which also proposes a method to generalize initial
values. As observed in [16], this is not sufficient even for our simplest benchmarks
sum and fact since the argument for the loop variable cannot be generalized. In
contrast, our method has no problem with such variables.

As far as we are aware, there is no other work for lemma generation of rewrite
systems (or functional programs) obtained from procedural programs.

Automatic Program Verification. Although this paper is a primarily theo-
retical contribution to the field of constraint rewriting induction, our intended
goal is to (automatically) verify correctness properties of procedural programs.
As mentioned in the introduction, however, most existing verifiers require
human interaction. Exceptions are the fully automated tools in the Competition
on Software Verification (SV-COMP, http://sv-comp.sosy-lab.org/), which
verify program properties like reachability, termination and memory-safety.
However, comparing our approach to these tools does not seem useful. While
we can, to some extent, tackle termination and memory-safety, the main topic of
this paper is equivalence, which is not studied int main() {
in SV-COMP. And while technically equiva- int x =

lence problems can be formulated as reacha- __VERIFIER_nondet_int();
bility queries (e.g., f(x) =~ g(x) [c] is handled if (c && £(x) !'= gx)) {
by the main function to the right), neither of ERROR: goto ERROR;

the top two tools in the “recursive” category }

of SV-COMP halts succesfully (in two hours) return O;
for our simplest (integer) example sum. }
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8 Conclusions

In this paper,we have extended rewriting induction to the setting of LCTRSs.
Furthermore, we have shown how this method can be used to prove correctness of
procedural programs. LCTRSs seem to be a good analysis backend for this since
the techniques from standard rewriting can typically be extended, and native
support for logical conditions and data types like integers and arrays is present.
We have also introduced a new technique to generalize equations. The idea of
this method is to identify constants used as variable initializations, keep track of
them during the proof process, and abstract from these constants when a proof
attempt diverges. The LCTRS setting is instrumental in the simplicity of this
method, as it boils down to dropping a (cleverly chosen) part of a constraint.
In addition to the theory of these techniques, we provide an implementa-
tion that automatically verifies inductive theorems. Initial results on a small
database of student programs are very promising. In future work, we will aim
to increase the strength of this implementation and couple it with an automatic
transformation tool which converts procedural programs into LCTRSs.

Acknowledgements. We are grateful to Stephan Falke, who contributed to an
older version of this paper, and to both the IJCAR’14 and APLAS’14 referees
for their helpful remarks.
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