
Simplifying Algebraic Functional Systems

Cynthia Kop kop@few.vu.nl

Department of Computer Science
VU University Amsterdam, the Netherlands.

Abstract. A popular formalism of higher order rewriting, especially in
the light of termination research, are the Algebraic Functional Systems
(AFSs) defined by Jouannaud and Okada. However, the formalism is
very permissive, which makes it hard to obtain results; consequently,
techniques are often restricted to a subclass. In this paper we study
termination-preserving transformations to make AFS-programs adhere
to a number of standard properties. This makes it significantly easier to
obtain general termination results.

Key words: higher order term rewriting, algebraic functional systems,
termination, transformations, currying, η-expansion

1 Introduction

The last years have seen a rise in the interest in higher order rewriting, especially
the field of termination. Although this area is still far behind its first order coun-
terpart, various techniques for proving termination have been developed, such
as monotone algebras [11], path orderings [4,1] and dependency pairs [12,9,8].
Since 2010 the annual termination competition [13] has a higher order category.

However, a persistent problem is the lack of a fixed standard. There are
several formalisms, each dealing with the higher order aspect in a different way, as
well as variations and restrictions. Each style has different applications it models
better, so it is hard to choose one over the others. Because of the differences,
results in one formalism do not, in general, carry over to the next.

Consequently, when the topic of a higher order termination competition was
brought up last year, the first question was: “What formalism?” Even having
settled on monomorphic Algebraic Functional Systems, neither of the partici-
pating groups could immediately deal with the other’s benchmarks, since one
group used functional syntax and the other applicative.

In this paper we seek to alleviate this situation by studying transformations
of Algebraic Functional Systems. AFSs, which were introduced as a modelling
of functional programming languages, are an often recurring format in higher-
order termination research, although most of the time they appear with some
restrictions. Here we study an unrestricted version, with polymorphic types. Af-
ter transforming an AFS it will satisfy a number of pleasant properties, such as
β-normality and possibly η-normality, and we can freely swap between applica-
tive and functional notation. The transformations are designed to have as little
impact as possible and to preserve both termination and non-termination.

The aim of this work is to simplify termination research and tools for AFS.
Without changing the syntactical freedom of the formalism, most unwelcome
intricacies of the syntax can be eliminated in the input module of a tool. Tech-
niques which are defined on a restricted subclass of AFSs (for example when
rules are assumed to be η-normal) become generally applicable.

We will first present the definition of (polymorphic) AFSs. Section 3 sketches
the problems we aim to solve; Sections 4–8 discuss various transformations. In
Section 9 we will say a few words about generalising existing results.

2 Preliminaries

Algebraic Functional Systems (AFSs) were first defined in [3], but we follow
(roughly) the more common definitions of [4]. Rather than using type declara-
tions for variables in an environment, we annotate variables with their types
directly in terms. This avoids the need to keep track of an environment.

Types Given a set of type constructors B, each with a fixed arity ar(b), and a
set of type variables A, the set of polymorphic types is defined by the grammar:

T = α | b(T n) | T →T (α ∈ A, b ∈ B, ar(b) = n)

A monomorphic type does not contain type variables. We assume at least one
type constructor has arity 0, so monomorphic types exist. A type σ → τ is
functional, and a type b(σ1, . . . , σn) is a data type. Types are written as σ, τ, ρ,
data types as ι, κ and type variables as α, ε, ω. The→operator associates to the
right. A type declaration is an expression of the form (σ1 × . . .× σn) −→ τ with
σ1, . . . , σn, τ ∈ T . A type declaration () −→ τ is usually just denoted τ . For any
type σ, let FTVar(σ) be the set of type variables occurring in σ.

Example 1. Examples of monomorphic types are nat, nat→bool, and list(nat),
and an example of a non-monomorphic type is α→list(α).

A type substitution θ is a finite mapping [α1 := σ1, . . . , αn := σn]; dom(θ) =
{α1, . . . , αn}, and τθ is the result of replacing all αi in τ by σi (with τ a type
or type declaration). We say σ ≥ τ if τ = σθ for some type substitution θ.
For example, α ≥ α ≥ α→ ε ≥ nat→ nat, but not α→ α ≥ nat→ bool.
Substitutions θ, χ unify types σ, τ if σθ = τχ1. We will use the following lemma:

Lemma 1 (most general unifiers). If σ, τ are unifiable, there exist type sub-
stitutions θ, χ which unify σ, τ such that for any unifying substitutions θ′, χ′,
there is a type substitution d such that θ′�FTVar(σ) = d◦θ and χ′�FTVar(τ) = d◦χ.

The type substitutions θ, χ in this Lemma are called most general unifiers. The
composition d ◦ θ is defined as [α := d(θ(α))|α ∈ dom(θ)], and θ′�FTVar(σ) is

defined as [α := θ′(α)|α ∈ dom(θ′) ∩ FTVar(σ)].

1 Note that this definition of unifiers considers the type variables in σ and τ as different
entities: the types α and b(α) are unified by θ = [α := b(ε)] and χ = [α := ε].

Terms Given a set F of function symbols, each equipped with a type declaration
(notation fσ), and an infinite set V of variables, the set of terms consists of those
expressions for which we can derive s : σ for some type σ, using the clauses:

(var) xσ : σ if x ∈ V and σ a type
(fun) fσ(s1, . . . , sn) : τ if fρ ∈ F and ρ ≥ σ = (σ1 × . . .× σn) −→ τ

and s1 : σ1, . . . , sn : σn
(abs) λxσ.s : σ→τ if x ∈ V, σ a type and s : τ
(app) s · t : τ if s : σ→τ and t : σ

Moreover, variables must have a unique type in s: if for x ∈ V both xσ and xτ
occur in s then σ = τ . The abstraction operator λ binds occurrences of a variable
as in the λ-calculus; term equality is modulo renaming of variables bound by an
abstraction operator (α-conversion). Write FVar(s) for the set of variables in
s not bound by a λ. The · operator for application associates to the left. To
maintain readability, we will regularly omit explicit type notation in function
symbols and variables, and just assume the most general possible type.

Example 2. As a running example we will use the system Fmap with symbols:{
map((α→α)×list(α))−→list(α), op(ω→ε×α→ω)−→α→ε, nillist(α), Onat,

cons(α×list(α))−→list(α), pow(α→α×nat)−→α→α, s(nat)−→nat

}
An example term in this system is map(λx.s(x), cons(O, nil)). Since type anno-
tations have been omitted, they should be imagined as general as possible to keep
the term well-typed, so cons, for instance, would be cons(nat×list(nat))−→list(nat).

We extend type substitutions and ≥ to terms in the obvious way, with a type
substitution θ replacing α by θ(α) in all type denotations in the term.

Example 3. Using the symbols of Example 2, op(α→ε×ε→α)−→ε→ε(Fα→ε, Gε→α)
[α := ε, ε := nat] = op(ε→nat×nat→ε)−→nat→nat(Fε→nat, Gnat→ε).

A (term) substitution is the homomorphic extension of a mapping [x1σ1
:=

s1, . . . , x
n
σn := sn], where each si : σi. Substitutions are denoted γ, δ, . . ., the

result of applying a substitution sγ. A substitution can not affect bound vari-
ables; applying a substitution (λxσ.s)γ assumes x occurs neither in domain nor
range of γ (a safe assumption since we can rename bound variables). A context
is a term C containing a special symbol �σ. The result of replacing �σ in C by
a term s of type σ is denoted C[s]. Here, s may contain variables bound by C.

β and η ⇒β is the monotonic relation generated by (λx.s) · t⇒β s[x := t]. This
relation is strongly normalising and has unique normal forms.

For a given set V of variables, we define restricted η-expansion: C[s] ↪→η,V

C[λxσ.s · xσ] if s : σ→τ , x is fresh and the following conditions are satisfied:

1. s is neither an abstraction nor a variable in V
2. s in C[s] is not the left part of an application.

By (2), s is not expanded if it occurs in a subterm of the form s t1 · · · tn; (1)
and (2) together guarantee that ↪→η,V terminates. Therefore every term s has a
unique η, V -long form s↑ηV which can be found by applying ↪→η,V until it is no
longer possible. We say a term s is in η-long form if s = s↑η = s↑η∅.

Rules and Rewriting An AFS consists of an alphabet F and a (finite or
countably infinite) set R of rules. Rules are tuples l⇒ r where l and r are terms
of the same type such that all variables and type variables in r also occur in l.
The relation⇒R induced by R is the monotonic relation generated by the β-rule
and: lθγ ⇒R rθγ if l⇒ r ∈ R, θ is a type substitution and γ a substitution.

Example 4. Using the symbols Fmap from Example 2, let Rmap be the set:

map(F, nil) ⇒ nil

map(F, cons(x, y))⇒ cons(F · x, map(F, y))
pow(F, 0) ⇒ λx.x
pow(F, s(x)) ⇒ op(F, pow(F, x))
op(F,G) · x ⇒ F · (G · x)
λx.F · x ⇒ F


As before, types should be imagined as general as possible. The last rule, for

example, should be read as λxα.Fα→ε · xα ⇒ Fα→ε. An example reduction:

map(pow(λx.s(s(x)), s(0)), cons(0, nil)) ⇒R
map(op(λx.s(s(x)), pow(λx.s(s(x)), 0)), cons(0, nil)) ⇒R
cons(op(λx.s(s(x)), pow(λx.s(s(x)), 0)) · 0, map(. . . , nil))⇒R
cons(op(λx.s(s(x)), pow(λx.s(s(x)), 0)) · 0, nil) ⇒R
cons(op(λx.s(s(x)), λy.y) · 0, nil) ⇒R
cons((λx.s(s(x))) · ((λy.y) · 0), nil) ⇒β

cons((λx.s(s(x))) · 0, nil) ⇒β

cons(s(s(0)), nil)

Note that the ⇒β steps in this are also ⇒R steps since ⇒β is included in ⇒R
by definition; they are named separately for clarity.

3 Problems

The permissive nature of AFS-syntax makes it difficult to obtain general results.
The first issue is the status of application. When extending first order results
it is convenient to consider the · operator as a (polymorphic) binary function
symbol. But this doesn’t work very well with applicative systems, which have
rules like map · F · (cons · x · y) ⇒ cons · (F · x) · (map · F · y); AFSs generated
from functional programs in e.g. Haskell will commonly have such a form. Due
to the repeated occurrence of the · symbol, no version of a higher-order path
ordering [4,1] can handle this system. To avoid this problem, we might consider

· as a stronger construction, much like function application; this is done in Nip-
kow’s Higher-Order Rewriting Systems (HRSs) [10], where terms are built using
only abstraction and application. Ideally, a term map · x · (cons · y · z) could be
translated to its functional counterpart map(x, cons(y, z)). But initially this is
impossible: a system with the rule x · 0⇒ f · 0 admits a self-loop f · 0⇒ f · 0,
whereas the corresponding functional rule, x · 0⇒ f(0), is terminating.

Another difficulty is the form of the left-hand side of a rule. Methods like the
dependency pair approach crucially rely on rules having a form f(. . .)⇒ r or, in
the recent dependency pair analysis for AFSs in [8], f(l1, . . . , ln)·ln+1 · · · lm ⇒ r.
Consequently, systems with rules like λx.F · x⇒ F cannot be handled.

Termination techniques are often defined only on a restricted subset of AFSs.
Since most common examples are expressed in a well-behaved manner, this does
not seem too high a price. However, a transformational approach, where for in-
stance a term f(s, t) is replaced by t·s, is likely to create rules which do not follow
the usual assumptions. Instead, we will see how any AFS can be transformed so
that all rules have a form l = f(s) · t⇒ r with l and r both β-normal and l not
containing leading free variables. We tackle standard assumptions (monomor-
phism and η-normality) which can be made about terms, and show that, after
the first transformations, functional and applicative syntax are interchangeable.
We aim to keep the complexity of the transformations minimal: a finite system
remains finite after transforming, a monomorphic system remains monomorphic.

4 Polymorphism

In a first step towards simplifying the system, let us investigate polymorphism.
To start, observe that polymorphism is only needed to define rules; for termina-
tion, at least, we never need to consider polymorphic terms.

Theorem 1. If a system is non-terminating, there is an infinite reduction on
monomorphic terms.

Proof. Given an infinite reduction s0 ⇒R s1 ⇒R . . ., let θ be a type substitution
which replaces all type variables in s0 by a type constructor b of arity 0. Since
⇒R does not create type variables and is closed under type substitution, s0θ ⇒R
s1θ ⇒R . . . is an infinite monomorphic reduction.

Polymorphism has its purpose in defining rules: any set of rules corresponds
with a monomorphic set, but instantiating type variables leads to infinitely many
rules. Finiteness is a high price to pay, since both humans and computers have
trouble with the infinite. Nevertheless, from a perspective of reasoning we might
as well use monomorphic rules, as long as we remember how they were generated.

Let a rule scheme be a pair l⇒ r of equal-typed (polymorphic) terms, such
that all free variables and type variables occurring in r also occur in l. Given a
set R of rule schemes, let RR = {lθ ⇒ rθ|l ⇒ r ∈ R and θ a type substitution
mapping all type variables in l to monomorphic types}. The following is evident:

Theorem 2. For a given set of rule schemes R, the set RR is a set of monomor-
phic rules and ⇒R is terminating if and only if ⇒RR is.

Henceforth, rules are understood to be monomorphic. Rule schemes
may not be. R indicates a set of rules, R a set of rule schemes.

A pleasant consequence of using monomorphic rules is that type substitution
is no longer needed to define the rewrite relation ⇒R; s ⇒R t if either s ⇒β t
or s = C[lγ] and t = C[rγ] for some substitution γ, context C and rule l⇒ r.

In the following sections we will define transformations on a set of rule
schemes. Note that a setR of rules is always generated from a set of rule schemes,
since even for monomorphic systems R := R is a suitable set.

5 Leading Variables

The presence of leading variables in the left-hand side of a rule l ⇒ r (that is,
subterms x · s where x is free in l) hinders techniques like dependency pairs2

and makes it impossible to swap freely between functional and applicative no-
tation (see also Section 7). We can avoid this problem by making applica-
tion a function symbol: replace s · t everywhere by @(σ→τ×σ)−→τ (s, t) and add
@(α→ε×α)−→τ (x, y)⇒ x ·y to R. The resulting system is terminating if and only
if the original was. However, as discussed in Section 3, this transformation is
not very good. A mostly applicative system would become almost impossible to
handle with conventional techniques. In addition, the new rule scheme uses type
variables, while the original system might be monomorphic. Thus, we will use a
more complicated transformation that leads to an easier system.

Sketch of the Transformation We sketch the idea for transforming a monomor-
phic system. Polymorphism brings in additional complications, but the rough
idea is the same. First we instantiate headmost variables with functional terms:
for any rule l = C[x · s]⇒ r all possible rules l[x := f(y) · z]⇒ r[x := f(y) · z]
are added. Now when a rule with leading variables is used, we can assume these
variables are not instantiated with a functional term. Second, we introduce a
symbol @ and replace occurrences s ·t in any rule by @(s, t) if s is not functional,
and its type corresponds with the type of a leading variable in any left-hand side.
We add rules @σ(x, y)⇒ x · y only for those @σ occurring in the changed rules.
With this transformation, the applicative map rule map(nat→nat)→list(nat)→list(nat)·
F · (cons · x · y) ⇒ cons · (F · x) · (map · F · y) either stays unchanged (if there
are no rules with a leading variable of type nat→nat in the left-hand side) or
becomes map · F · (cons · x · y)⇒ cons ·@(F, x) · (map · F · y) (if there are).

2 Leading variables in the right-hand side also complicate dependency pairs, but are
harder to avoid; existing methods use various techniques to work around this issue.

5.1 Output Arity

Polymorphism complicates this transformation. Even with finite F there may be
infinitely many terms of the form f(x) · y. So assign to every fσ ∈ F an integer
oa(f) ≥ 0; terms of the form f(s) ·t1 · · · tm with m ≤ oa(f) are “protected”. The
choice for oa is not fixed, but has one restriction: oa(f) > 0 for only finitely many
symbols f . Typically, if σ = (τ) −→ ρ1→ . . .→ ρm→ ι we choose oa(f) = m.
We may also choose the highest number m such that f(s) · t1 · · · tm occurs in
any rule scheme. Alternatively, in a (mostly) functional system we could choose
oa(f) = 0 for all f ; Transformations 1-2 have no effect then. We say a term is
limited functional if it has the form f(s) · t1 · · · tm with m < oa(f) (note that
f(s) is not limited functional if oa(f) = 0!).

Example 5. We follow the second guideline, so oa(f) is the highest number m
such that f(s)·t1 · · · tm occurs in a rule scheme. In the system Rmap from Example
4 this gives output arity 0 for all symbols except op, which gets output arity 1.

To start, we adjust rules for the chosen output arity. For any rule f(s) ·
t1 · · · tn ⇒ r with n < oa(f), we add a new rule f(s) · t1 · · · tn · x ⇒ r · x. This
is done because an application of the form f(s) · t · u will be “protected” while
r · u may not be.

Transformation 1 (respecting output arity) Given a set of rule schemes R, for
every l⇒ r ∈ R with l limited functional add a rule scheme l ·x⇒ r ·x if this is
well-typed (if l : α first apply the type substitution [α := α→ε]). Repeat for all
newly added rule schemes. This process terminates because oa(f) is bounded,
and the result, Rres, is finite if R is. ⇒Rres and ⇒R define the same relation.

Example 6. Since none of the left-hand sides of Rmap are limited functional,
Transformation 1 has no effect. If we had chosen, for example, oa(pow) = 2
(this is allowed, even if there is no point in doing so), then we would have had
to add four additional rules:

powσ(F, 0) · y ⇒ (λx.x) · y powσ(F, s(x)) · y ⇒ op(F, pow(F, x)) · y
powτ (F, 0) · y · z ⇒ (λx.x) · y · z powτ (F, s(x)) · y · z ⇒ op(F, pow(F, x)) · y · z

Here, σ is the type declaration (α→ α × nat) −→ α→ α and τ is ((α→ ε)→
(α→ε)× nat) −→ (α→ε)→α→ε.

5.2 Filling in Head Variables

With this preparation, we can proceed to a larger transformation. Let HV (s) be
the set of those xσ ∈ FVar(s) where xσ occurs at the head of an application in
s (so s = C[xσ · t] for some C, t). We will replace any rule l = C[xσ · t]⇒ r by a
set of rules where a limited functional term f(y) · z is substituted for xσ.

Transformation 2 (filling in head variables) For every rule scheme l ⇒ r in
Rres, every xσ ∈ HV (l), every function symbol fτ ∈ F and n < oa(f) such
that (. . .) −→ α1→ . . .→ αn→ σ unifies with τ , let θ, χ be their most general
unifiers and add a rule scheme lθδ ⇒ rθδ, where δ = [xσθ := fτχ(y) · z1 · · · zn]
(with y1, . . . , yk, z1, . . . , zn fresh variables). Repeat this for the newly added rule
schemes. If Rres is finite, this process terminates and the result, Rfill, is also
finite. Otherwise define Rfill as the limit of the procedure.

Example 7. Following on Example 6, the only rule with a leading variable in the
left-hand side is the η-reduction rule λxα1

.Fα1→α2
xα1
⇒ Fα1→α2

. Consequently,
Transformation 2 completes after one step, with a single new rule; Rfill contains:

map(F, nil) ⇒ nil op(F,G) · x ⇒ F · (G · x)
map(F, cons(x, y))⇒ cons(F · x, map(F, y)) λx.F · x ⇒ F
pow(F, 0) ⇒ λx.x λx.op(F,G) · x⇒ op(F,G)
pow(F, s(x)) ⇒ op(F, pow(F, x))

It is not hard to see that Rfill and Rres generate the same relation. Moreover:

Lemma 2. If s⇒Rfill t with a topmost step, then there are l⇒ r ∈ Rfill, type
substitution θ and substitution γ such that s = lθγ, t = rθγ and γ(x) is not
limited functional for any x ∈ HV (l).

Proof. By definition of topmost step, there exist l, r, θ, γ such that s = lθγ
and t = rθγ; using induction on the size of {xσ|xσ ∈ HV (l)|γ(xσθ) is limited
functional} and the definition of Rfill the Lemma follows without much effort.

5.3 Preparing Polymorphic Types

As suggested in the sketch of the transformation, we will introduce new symbols
@σ only for those σ where it is necessary. Formally, let S be a set of functional
types such that its closure under type substitution, Sc, contains all types σ where
xσ ∈ HV (l) for some variable x and l⇒ r ∈ Rfill. Transformation 4 will replace
subterms u ·v by @(u, v) if u : τ ≤ σ and u is not limited functional. There is one
remaining problem: a subterm u · v where the type of u unifies with a type in S
but is not an instance. We deal with this problem by adding some rule schemes.

Transformation 3 (S-normalising the rules) For every rule scheme l ⇒ r ∈
Rfill, add a rule scheme lθ ⇒ rθ if either l or r has a subterm s · t with s : σ not
limited functional, and σ unifies with a type τ ∈ S such that τ 6≥ σ. Here, θ and
some χ are the most general unifiers of σ and τ . Repeat this for the newly added
rules. If S and Rfill are both finite, this procedure terminates and the result,
RnormS , is finite. Otherwise we define RnormS as the limit of the procedure.

Example 8. Consider our main Example; Rfill is given in Example 7. We must
choose S = {α→ε} due to the rule λx.Fα→ε ·x⇒ F . But α→ε ≥ any functional
type, so Transformation 3 has no effect.

Again it is evident that the rewrite relations generated by RnormS and Rfill

are the same. Moreover, we can derive the following (technical) result:

Lemma 3. For l ⇒ r ∈ Rfill, type substitution θ, there are l′ ⇒ r′ ∈ RnormS
and type substitution χ such that lθ = l′χ, rθ = r′χ and for u · v occurring in l′

or r′ with u : σ not limited functional, either both σ, σχ ∈ Sc or both σ, σχ /∈ Sc.

5.4 Explicit Application

Finally, then, we move on to the main substitution. For every type σ→ τ ∈ S,
introduce a new symbol @(σ→τ×σ)−→τ and for all terms s define exp(s) as follows:

exp(f(s1, . . . , sn)) = f(exp(s1), . . . , exp(sn))
exp(x) = x (x a variable)
exp(λx.s) = λx.exp(s)

exp(s · t) =

{
exp(s) · exp(t) if s limited functional or type(s) /∈ Sc
@(exp(s), exp(t)) otherwise

That is, subterms s · t are replaced by @σ(s, t), provided the split does not occur
in a “protected” functional term, and s has a “dangerous” type.

Transformation 4 (Embedding head symbols) LetRnoapp = {exp(l)⇒ exp(r)|l⇒
r ∈ RnormS} ∪ {@(σ→τ×σ)−→τ (x, y)⇒ x · y|σ→τ ∈ S}.

Transformations 1–4 preserve monomorphism and finiteness, yet Rnoapp will
not have leading (free) variables. We pose the main theorem of Section 5.

Theorem 3. The rewrite relation ⇒Rnoapp generated by Rnoapp is terminating
if and only if ⇒R is.

Proof (Sketch). For one direction, if s⇒Rnoapp t then also s′ ⇒=
RnormS t

′, where
s′, t′ are s, t with occurrences of @(u, v) replaced by u · v. Equality only occurs if
s has less @ symbols than t, so any infinite⇒Rnoapp reduction leads to an infinite
⇒RnormS reduction, and RnormS defines the same relation as R. For the other
direction, s⇒Rres t implies exp(s)⇒+

Rnoapp exp(t) by induction on the size of s.
For the induction step the only difficult case is when s = u ·v ⇒Rres u

′ ·v with u
limited functional while u′ is not, but using Transformation 1 we can assume this
is a topmost step. For the base case, if s⇒Rres t by a topmost rule step, we note
that using Lemmas 2 and 3, s = lθγ and t = rθγ with l⇒ r ∈ RnormS , γ(x) not
limited functional if x ∈ HV (lθ) and for any subterm u · v of l with u : τ , either
both τ and τθ ∈ Sc or neither. With these facts it is easy to show (using induction
on the definition of exp) that exp(lθγ) = exp(l)θγexp and exp(r)θγexp ⇒∗Rnoapp

exp(rθγ). If s ⇒β t we use that exp(u)[x := exp(v)] ⇒∗Rnoapp exp(u[x := v]).
Thus, any ⇒R reduction leads to a ⇒Rnoapp reduction of at least equal length.

Example 9. Considering our example with S = {α→ε}, Rnoapp consists of:

map(F, nil) ⇒ nil op(F,G) · x ⇒ @(F,@(G, x))
map(F, cons(x, y))⇒ cons(@(F, x), map(F, y)) λx.@(F, x) ⇒ F
pow(F, 0) ⇒ λx.x λx.op(F,G) · x⇒ op(F,G)
pow(F, s(x)) ⇒ op(F, pow(F, x)) @(F, x) ⇒ F · x

6 Abstractions in left-hand sides and β-redexes

The next step is to get rid of rule schemes λx.l ⇒ r, where an abstraction is
reduced directly; rules like this will form a definite blockade to working with η-
expanded terms and they make it hard to define dependency pairs. The solution
is very similar to the one employed in Section 5: we identify the types of all
rule schemes of this form, and replace abstractions λx.s of such a type σ by
Λσ(λx.s), where Λσ is a new function symbol. As a side bonus, we will get rid
of any remaining β-redexes in the rule schemes (note that the transformations
of Section 5 may already have removed such redexes).

Formally, let Q be a set of types such that its closure under type substitution,
Qc, contains all types σ such that λx.l : σ ⇒ r ∈ R, or (λx.s) · t occurs in any
rule scheme. We could choose the set of all such types, or for instance {α→ε}.
As before we need to prepare polymorphic rule schemes for a type match.

Transformation 5 (Q-normalising the rules) For every rule scheme l⇒ r ∈ R,
add a rule scheme lθ ⇒ rθ if either l or r has a subterm λx.s : σ, and σ unifies
with a type τ ∈ Q such that τ 6≥ σ. Here, θ and some χ are the most general
unifiers of σ and τ . Repeat this for the newly added rules. If Q and R are both
finite, this procedure terminates and the result, RnormQ, is finite. Otherwise
define RnormQ as the limit of the procedure.

We can derive a Lemma very similar to Lemma 3, but it would not bring much
news. Let us instead pass straight to the main transformation:

expL(f(s1, . . . , sn)) = f(expL(s1), . . . , expL(sn))
expL(s · t) = expL(s) · expL(t)
expL(x) = x (x a variable)

expL(λx.s) =

{
Λ(σ)−→σ(λx.expL(s)) if λx.s : σ ∈ Qc
λx.expL(s) otherwise

Transformation 6 (Marking Abstractions) RΛ := {expL(l)⇒ expL(r)|l⇒ r ∈
RnormQ} ∪ {Λ(σ)−→σ(x)⇒ x|σ ∈ S}

It is evident that RΛ has no rule schemes of the form λx.l⇒ r and is β-normal.
Moreover, its termination is equivalent to termination of the original system.

Theorem 4. ⇒RΛ is terminating if and only if ⇒R is.

Proof. It is not too hard to derive that s ⇒R t implies expL(s) ⇒+
RΛ

expL(t),
using that expL(C[u]) = expL(C)[expL(u)] and a separate induction for the top
step (using Transformation 5 to choose the right rule and type substitution).
Defining s′, t′ as s, t with occurrences of any Λσ erased, it is also obvious that
s⇒RΛ t implies s′ ⇒=

R t
′, with equality only if the former was Λ-erasing.

Example 10. Continuing the transformation of Rmap, we choose Q = {α→ε} (we
have no other choice, because of the rule λx.@(Fα→ε, x)⇒ Fα→ε). Transforma-
tion 5 has no effect, and Transformation 6 introduces Λ around all abstractions:

map(F, nil) ⇒ nil Λ(λx.@(F, x)) ⇒ F
map(F, cons(x, y))⇒ cons(@(F, x), map(F, y)) Λ(λx.op(F,G) · x)⇒ op(F,G)
pow(F, 0) ⇒ Λ(λx.x) Λα→ε(F) ⇒ F
pow(F, s(x)) ⇒ op(F, pow(F, x)) @(F, x) ⇒ F · x
op(F,G) · x ⇒ @(F,@(G, x))

Summing Up Combining Sections 5 and 6, we can transform a set of rule
schemes, without affecting termination, to satisfy the following properties:

1. both sides of rule schemes are β-normal
2. left-hand sides l have no subterms x · s with x a free variable
3. left-hand sides have the form f(l1, . . . , ln) · ln+1 · · · lm with m ≥ n

Property (3) holds by elimination: after transforming, the left-hand side of a rule
scheme is neither an abstraction, nor an application headed by an abstraction
or variable. If it is a variable, x⇒ r ∈ R, the AFS is non-terminating and (since
termination is all we are interested in) we might replace R by the set {a⇒ a}.
Henceforth, rule schemes are assumed to satisfy the requirements
listed above.

7 Currying

Let us turn our eyes to the status of application. As mentioned in Section 3, an
applicative AFS cannot be handled with most existing termination techniques,
nor can we naively turn it into a functional system. The issues are partial appli-
cation (an applicative map system has terms like map ·s which have no functional
counterpart) and leading free variables (a terminating rule g · (x · 0) ⇒ g · f(0)
has an applicative counterpart g · (x · 0)⇒ g · (f · 0) which is not terminating).
However, we have excluded rules with leading free variables in the left-hand side.
The issue of partial application can be dealt with using η-expansion.

There are two directions we might take. Usually, we would like to uncurry
an applicative system, transforming a term f · s · t into f(s, t). Such a form is
more convenient in for instance path orderings, or to define argument filterings.
On the other hand, we will have to deal with application anyway, since it is part

of the term syntax; to simplify the formalism it might be a good move to curry
terms, making the system entirely applicative.

Transformation 7 (Currying) Let R be a set of rules schemes over a set of
function symbols F . We define the following mapping on type declarations:
flat((σ1 × . . . σn) −→ τ) = σ1 → . . . → σn → τ . Next we define the map-
ping flat from functional terms over F to applicative terms over the ‘flattened
version’ of F , notation Fflat, as follows:

flat(fσ(s1, . . . , sn)) = fflat(σ) · flat(s1) · · · flat(sn)
flat(λx.s) = λx.flat(s)
flat(s · t) = flat(s) · flat(t)
flat(x) = x (x a variable)

The flattened version Rflat of the set of rule schemes R consists of the rule
scheme flat(l)⇒ flat(r) for every rule scheme l⇒ r in R.

Theorem 5. ⇒R is well-founded on terms over F if and only if ⇒Rflat is well-
founded on terms over Fflat.

Proof. It is easy to see that s⇒R t implies flat(s)⇒Rflat flat(t) (with induc-
tion on the size of s, and a separate induction for topmost steps to see that flat-
tening is preserved under substitution); this provides one direction. For the other,
let flat−1 be the “inverse” transformation of flat, which maps occurrences of f ·
s1 · · · sk with f(σ1×...×σn)−→τ ∈ F to λxk+1 . . . xn.f(flat−1(s1), . . . , flat−1(sk),
xk+1, . . . , xn) if k < n or to f(flat−1(s1), . . . , flat−1(sn)) · flat−1(sn+1) · · ·
flat−1(sk) otherwise. It is not hard to see that flat−1(s)[x := flat−1(t)]⇒∗β
flat−1(s[x := t]), and this ⇒∗β is an equality if HV (s) = ∅. Therefore, and be-

cause flat−1(Rflat) is exactly R, flat−1(s)⇒+
R flat−1(t) holds if s⇒Rflat t.

Note the if and only if in Theorem 5. Because of this equivalence the theorem
works in two ways. We can turn a functional system applicative, but also turn
an applicative system functional, simply by taking the inverse of Transforma-
tion 7. For an applicative system, there are usually many sets of corresponding
functional rules, all of which are equivalent for the purpose of termination.

Example 11. Our running example can be transformed into the applicative AFS:

pow · F · 0 ⇒ Λ · (λx.x) Λ · (λx.@ · F · x) ⇒ F
pow · F · (s · x) ⇒ op · F · (pow · F · x) Λ · (λx.op · F ·G · x)⇒ op · F ·G
op · F ·G · x ⇒ @ · F · (@ ·G · x) @ · F · x ⇒ F · x
map · F · nil ⇒ nil Λ · F ⇒ F
map · F · (cons · x · y)⇒ cons · (@ · F · x) · (map · F · y)

Related Work In first-order rewriting, the question whether properties such as
confluence and termination are preserved under currying or uncurrying is stud-
ied in [5,6,2]. In [6] a currying transformation from (functional) term rewriting
systems (TRSs) into applicative term rewriting systems (ATRSs) is defined; a
TRS is terminating if and only if its curried form is. In [2], an uncurrying trans-
formation from ATRSs to TRSs is defined that can deal with partial application
and leading variables, as long as they do not occur in the left-hand side of rewrite
rules. This transformation is sound and complete with respect to termination.

However, these results do not apply to AFSs, both due to the presence of
typing and because AFSs use a mixture of functional and applicative notation.
We may for instance have terms of the form f(x)·y, and currying might introduce
new interactions via application.

8 η-expansion

Finally, we consider η-expansion. It would often be convenient if we could assume
that every term of some functional type σ→ τ has the form λxσ.s, which only
reduces if its subterm s does. This is the case if we work modulo η, equating
s : σ→ τ , with s not an abstraction, to λxσ.(s · xσ). As is well-known, simply
working modulo η in the presence of β-reduction causes problems. Instead, we
will limit reasoning to η-long terms.

Theorem 6. Let R be a set of rules in restricted η-long form, that is, l =
l↑ηFVar(l) and r = r↑ηFVar(r) for every rewrite rule l ⇒ r in R. Then the set

of η-long terms is closed under rewriting. Moreover, the rewrite relation ⇒R is
terminating on terms iff it is terminating on η-long terms.

Proof. Evidently, if⇒R is terminating then it is terminating on all η-long terms.
For the less obvious direction, we see that s ⇒R t implies s↑η ⇒+

R t↑η. Hence
any infinite reduction can be transformed to an infinite reduction on η-long
terms. Writing γ↑ := {x 7→ γ(x)↑η|x ∈ dom(γ)} a simple inductive reasoning
shows that s↑ηV γ↑ ⇒∗β sγ ↑η if V = dom(γ), and this is an equality if HV (s) = ∅.
Thus, if s ⇒R t by a topmost reduction, then also s↑η = lγ ↑η = l↑ηFVar(l)γ

↑ =

lγ↑ ⇒R rγ↑ = r↑ηFVar(r)γ
↑ ⇒β rγ ↑η = t↑η. This forms the base case for an

induction on s, which proves s↑η ⇒+
R t↑η whenever s⇒R t.

The requirement that the rules should be η-long is essential. Consider for
example the system with a single rule fo→o · xo ⇒ g(o→o)→o · fo→o. The rela-
tion generated by this rule is terminating, but evidently the set of η-long terms
is not closed under rewriting. The η-long variation of this rule, fo→o · xo ⇒
g(o→o)→o · (λyo.fo→o · yo), is not terminating, as the left-hand side can be embed-
ded in the right-hand side. This example is contrived, but it shows that we cannot
be careless with η-expansion. However, when developing methods to prove ter-
mination of a system the most essential part of any transformation is to preserve
non-termination. At the price of completeness, we can use Transformation 8:

Transformation 8 (η-expanding rules) Let R be a set of rules. Define R↑ to
be the set consisting of the rules (l · x1σ1

· · ·xnσn)↑ηV ⇒ (r · x1σ1
· · ·xnσn)↑ηV , for

every rule l ⇒ r in R, with l : σ1 → . . . σn → ι, all xiσis fresh variables, and
V = FVar(l) ∪ {x1σ1

, . . . , xnσn}.

The proof of the following theorem is a straightforward adaptation of the
proof of Theorem 6.

Theorem 7. If the rewrite relation generated by R↑ is terminating on η-long
terms, then the relation generated by R is terminating on the set of terms.

Note that Theorems 6 and 7 concern rules, not rule schemes. The η-expansion
of a non-terminating set of rule schemes may be terminating, as demonstrated
by the system with R = {fα→α · gα ⇒ hα, hnat→nat · 0nat ⇒ f(nat→nat)→nat→nat ·
gnat→nat · 0nat}. Thus, η-expansion is mainly useful on monomorphic systems, or

for termination methods which, given rule schemes R, prove termination of R↑R.

9 Conclusions

We have seen various techniques to transform AFSs, essentially making it pos-
sible to pose restrictions on terms and rule schemes without losing generality.
Considering existing results, this has various applications:

Applicative terms As mentioned before, most applicative systems cannot be
dealt with directly. Consider for example the system with symbols splitnat→tuple

and pairα→ε→tuple which has the following rule:

split · (xnat→nat · ynat)⇒ pair · xnat→nat · ynat

Even the computability path ordering [1], which is the latest definition in a
strengthening line of path orderings, cannot deal with this rule. However, using
Transformations 1–4 we introduce @(nat→nat×nat)−→nat and this system becomes:

split ·@(x, y)⇒ pair · x · y @(x, y)⇒ x · y

This system has the same curried form as:

split(@(x, y))⇒ pair(x, y) @(x, y)⇒ x · y

Consequently, termination of one implies termination of the other by Theorem
5. But the latter is immediate with HORPO [4], using a precedence @ >F pair.

CPO The latest recursive path ordering, CPO, is defined only for monomor-
phic systems where all symbols have a data type as output type. It cannot, for
instance, deal with a system with rules:

emap(F, nil)⇒ nil

emap(F, cons(x, y))⇒ cons(F · x, emap(twice(F), y))
twice(F) · x⇒ F · (F · x)

Here, twice has type declaration (nat→nat) −→ nat→nat. By Theorem 6 we
can η-expand these rules, the result of which has the same curried form as:

emap(F, nil)⇒ nil

emap(F, cons(x, y))⇒ cons(F · x, emap(λz.twice(F, z), y))
twice(F, x)⇒ F · (F · x)

Thus, if this system can be proved terminating with CPO (which it can, if
a reverse lexicographical ordering is used), the original system is terminating.
CPO can be applied on any monomorphic system in this way, although the
transformation may lose termination due to the η-expansion.

Dependency Pairs Since rules can be assumed to have a form f(l1, . . . , ln) ·
ln+1 · · · lm, the dependency pair method for AFSs in [8] is now applicable without
restrictions other than monomorphism; a termination tool which has Transfor-
mations 1–6 built into the input module could build around a dependency pair
framework without losing out.

Summary and Future Work In this paper we discussed transformations
which simplify Algebraic Functional Systems significantly. We saw that poly-
morphism only has a function in defining rule schemes, that rule schemes can be
assumed to be β-normal and that there is no need for leading free variables in the
left-hand side of rules. We know that applicative and functional notation can be
interchanged, and rule schemes can be assumed to have a form f · l1 · · · ln ⇒ r
with f a function symbol. Moreover, when we are interested only in proving
termination, we may η-expand the rules and restrict attention to η-long terms.

A monomorphic version of the transformations given here was implemented in
WANDA v1.0 [7], which participated in the Termination Competition 2010 [13].

In the future, we intend to look further into other formalisms, and give con-
ditions and techniques to transfer results across.

Acknowledgement. We are indepted to the anonymous referees for their remarks
which helped to improve the paper.

References

1. F. Blanqui, J.-P. Jouannaud, and A. Rubio. The computability path ordering: The
end of a quest. In CSL 2008, volume 5213 of LNCS, pages 1–14, Bertinoro, Italy,
July 2008. Springer.

2. Nao Hirokawa, Aart Middeldorp, and Harald Zankl. Uncurrying for termination.
In LPAR 2008, volume 5330 of LNAI, pages 667–681, Doha, 2008. Springer-Verlag.

3. J.-P. Jouannaud and M. Okada. A computation model for executable higher-order
algebraic specification languages. In LICS 1991, pages 350–361, Amsterdam, The
Netherlands, July 1991. IEEE Computer Society Press.

4. J.-P. Jouannaud and A. Rubio. The higher-order recursive path ordering. In LICS
1999, pages 402–411, Trento, Italy, July 1999.

5. S. Kahrs. Confluence of curried term-rewriting systems. Journal of Symbolic
Computation, 19:601–623, 1995.

6. R. Kennaway, J.W. Klop, M.R. Sleep, and F.J de Vries. Comparing curried and
uncurried rewriting. Journal of Symbolic Computation, 21(1):15–39, 1996.

7. C. Kop. Wanda. http://www.few.vu.nl/ kop/code.html.
8. C. Kop and F. van Raamsdonk. Higher order dependency pairs for algebraic

functional systems. In Proceedings of RTA 2011, June 2011. To Appear.
9. K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static dependency pair method

based on strong computability for higher-order rewrite systems. IEICE Transac-
tions on Information and Systems, 92(10):2007–2015, 2009.

10. T. Nipkow. Higher-order critical pairs. In LICS 1991, pages 342–349, Amsterdam,
The Netherlands, July 1991.

11. J.C. van de Pol. Termination of Higher-order Rerwite Systems. PhD thesis, Uni-
versity of Utrecht, 1996.

12. M. Sakai, Y. Watanabe, and T. Sakabe. An extension of the dependency pair
method for proving termination of higher-order rewrite systems. IEICE Transac-
tions on Information and Systems, E84-D(8):1025–1032, 2001.

13. Wiki. Termination portal. http://www.termination-portal.org/.

In this appendix I will present complete proofs of lemmas, theorems and loose
statements in the text.

A definition that we will regularly use is the following: s ⇒R,top t if there are
l⇒ r ∈ R, type substitution θ and substitution γ such that s = lθγ and t = rθγ.

If s ⇒R1,top t implies s ⇒+
R2

t, then s ⇒R1
t implies s ⇒+

R2
t, by definition

of the rewrite relation.

Preliminaries

Lemma 4 (welldefinedness of type substitution). If s : σ then sθ : σθ, so
sθ is a term.

Proof. A trivial induction on the form of s.

Lemma 5 (interchanging substitutions and type substitutions). Given
a type substitution θ and substitution γ, let γθ be the substitution mapping xσθ
to γ(xσ)θ for xσ ∈ dom(γ). Then (sγ)θ = sθγθ.

Proof. Note first that the substitution γθ is welldefined: if γ(xσ) : σ then
γθ(xσθ) = γ(xσ)θ : σθ by Lemma 4. To prove the lemma, we might perform
induction on s, which is utterly trivial. The only case where anything happens
is the case where s is a variable:
If s = xσ with x ∈ dom(γ) then sγθ = γ(xσ)θ = γθ(xσθ) = sθγθ.
If s = xσ with x ∈ V \ dom(γ) then sγθ = xσθ = xσθ = xσθγ

θ = sθγθ.
The other cass all proceed with the induction hypothesis. I copied them out

below for completeness.
If s = λxσ.t we can assume x does not occur in dom(γ); (λxσ.t)γθ =

(λxσ.tγ)θ = λxσθ.tγθ = (IH) λxσθ.tθγ
θ = (λxσθ.tθ)γ

θ = (λxσ.t)θγ
θ.

If s = t · u then sγθ = (tγθ) · (uγθ) = (IH) (tθγθ) · (uθγθ) = sθγθ.
Finally, if s = f(σ1×...×σm)→τ (s1, . . . , sn), then sγθ = f(σ1×...×σm)→τ (s1γ, . . . , smγ)θ =

f(σ1θ×...×σmθ)→τθ(s1γθ, . . . , smγθ) = (IH) f(σ1θ×...×σmθ)→τθ(s1θγ
θ, . . . , smθγ

θ) =

sθγθ.

Proof (Proof of Lemma 1). Let us say a type substitution θ unifies σ, τ if
σθ = τθ. This is the usual definition of unifying. Noting that our types are
essentially first-order terms (if we consider the→ as a binary function symbol),
the following is a well-known result:
If there is a type substitution θ which unifies σ, τ , then there is a type substitution
χ which unifies σ, τ such that for any type substitution θ′ which unifies σ and τ
there is some type substitution d such that θ′�FTVar(σ)∪FTVar(τ) = d ◦ χ.

Now, given two types σ and τ , let b be a type substitution which renames all
type variables in τ to fresh type variables; obviously b is invertible. If θ1, θ2 unify
σ and τ , then θ1 ∪ (θ2 ◦ b−1) is a single type substitution which unifies σ and
τb. But then there is a minimal type substitution χ. Choosing χ1 := χ�FTVar(σ)

and χ2 := χ�Ran(b) ◦ b we have the required minimal unifiers.

Section 4: Polymorphism

Proof (Proof of Theorem 1). Let s0 ⇒R s1 ⇒R . . . be an infinite sequence,
and α1, . . . , αn be the typevariables occuring in s0. Let b be a type constructor
of arity 0 (note that we have required such a type constructor exists) and let
θ(αi) = b for all i. Then for all i the term siθ is monomorphic, since si can
contain at most those type variables occurring in si−1 (due to the requirement
that FTVar(r) ⊆ FTVar(l) for l⇒ r ∈ R, and because⇒β also does not create
type variables). Also, a trivial induction on the size of the reduced term shows
that ⇒R is preserved under type substitution, so s0θ ⇒R s1θ ⇒R . . . is an
infinite reduction on monomorphic terms.

Proof (Proof of Theorem 2). Note that the definition of rule scheme corre-
sponds with our original definition of rule, and that if l ⇒ r is a rule scheme
then also lθ ⇒ rθ is a rule scheme for any type substitution θ.

Now, R contains rules lθ ⇒ rθ if l ⇒ r ∈ R and θ is a type substitution
mapping all α ∈ FTVar(l) to monomorphic types. Since FTVar(r) ⊆ FTVar(l)
it is evident that neither lθ nor rθ contain any type variables. Thus, R is indeed
a set of monomorphic rules.

By Theorem 1, we only have to consider monomorphic terms for termination.
So we must see: for monomorphic s, t: s⇒R t if and only if s⇒RR t. Since ⇒β

is by definition included in both relations, it suffices to show that s ⇒R,top t
if and only if s ⇒RR,top t (if this is the case, evidently the monotonic closures
of both relations are also equal). Thus, suppose s = lθγ and t = rθγ with
l⇒ r ∈ R. Since s is monomorphic, it must be true that all dom(θ) contains all
type variables in l and maps to monomorphic types. Since additional variables in
the domain have no effect, we can safely assume dom(θ) = FTVar(l). But then
l′ := lθ ⇒ rθ =: r′ is a rule of RR, so s = l′γ and t = r′γ. On the other hand, if
s = lθγ and t = rθγ with l ⇒ r ∈ RR, note that l and r are monomorphic and
thus θ has no effect on them; additionally, we can write l = l′χ and r = r′χ for
type substitution χ and l′ ⇒ r′ ∈ R. Thus, s = l′χγ and t = r′χγ as required.

The proof above also demonstrates the claim made below Theorem 2, that
type substitution is not needed to define the rewrite relation ⇒R.

Section 5: Head Variables

In this appendix I will give more formal and algorithmic definitions of the trans-
formations provided in the paper. This makes it easier (at least notationally) to
perform induction on them. However, the result of the transformations is exactly
the same.

Note that many transformations repeatedly add rule schemes. We consider rule
schemes modulo renaming of free variables, so a rule scheme f(x) ⇒ x is the
same as f(y)⇒ y. This equality is essential for finiteness of the transformations,
and to avoid adding masses of unnecessary rule schemes.

.1 Output Arity

Formal Version of Transformation 1
Let R0 := R and, for each n ∈ N: Rn+1 = Rn ∪ {lθ · x ⇒ rθ · x|l ⇒ r ∈ Rn, l
limited functional, x ∈ V fresh and θ, χ most general unifiers of type(l) and
α→ε}. Let Rres =

⋃
n∈NRn.

Lemma 6 (Stated in the Transformation). There is always N such that all
oa(f) ≤ N .

Proof. Consider the set {oa(f)|f ∈ F}. Since there are only finitely many sym-
bols with oa(f) > 0, this set is finite, and therefore has a maximum N .

Lemma 7 (Stated in the Transformation). If {oa(f)|f ∈ F} is bounded by
N then Rres = RN , is finite if R is.

Proof. In step k, only rule schemes of the form l · x1 · · ·xk ⇒ r · x1 · · ·xk with
l ⇒ r ∈ R are newly added, if we ignore typing; we see this with induction on
k: when defining R1 (step 1) this is evident, and in step k + 1, if l′ · y ⇒ r′ · y
is added with l′ ⇒ r′ ∈ Rk, we can safely assume that l′ ⇒ r′ was added in
step k (because if l′ ⇒ r′ ∈ Rk−1 then already l′ · y ⇒ r′ · y ∈ Rk). But then
by the induction hypothesis l′ ⇒ r′ has the form l · x1 · · ·xk ⇒ r · x1 · · ·xk, so
l′ · y ⇒ r′ · y has the required form l · x1 · · ·xk+1 ⇒ r · x1 · · ·xk+1.

Consequently, in step N + 1 only rule schemes of the form l · x1 · · ·xN+1 ⇒
r · x1 · · ·xN+1 can be added. But then l · x1 · · ·xN must be limited functional.
Which is impossible, since any limited functional term has the form f(s)·t1 · · · tm
with m < oa(f) ≤ N . We see: in step N + 1 and beyond no new rule schemes
are added. Moreover, in every step at most as many new rule schemes are added
as were already there; if R0 is finite, then any Rk is, including RN .

Lemma 8 (Stated in the Transformation). Rres and R define the same
relation.

Proof. Since R = R0 ⊆ R1 ⊆ . . . ⊆ RN = Rres, it is obvious that ⇒R is
included in ⇒Rres . For the other direction, note that any rule scheme in Rres

has a form lθ ·x with l⇒ r ∈ R: this holds with θ the substitution that assigns
all type variables in FTVar(l) to themselves and |x| = 0 if the rule scheme
was present in R0, and if it was added in step k + 1 then by induction it has
a form (lθ · x1σ1

· · ·xkσk)χ · xk+1
σk+1

⇒ (rθ · x1σ1
· · ·xkσk)χ · xk+1

σk+1
. This is the same

as lθχ · x1σ1χ · · ·x
k
σkχ
· xk+1

σk+1
⇒ rθχ · x1σ1χ · · ·x

k
σkχ
· xk+1

σk+1
. Since lθχ and rθχ are

exactly the same as l(χ◦θ) and r(χ◦θ) (as long as dom(θ) = FTVar(l), which we
guaranteed in the base case and satisfy in every induction step), the statement
holds.

Thus, if s ⇒Rres,top t then there exist type substitutions θ, χ, variables x
and substitution γ such that s = (lθ · x)χγ = (lχ ◦ θ · y)γ and t = (rθ · x)χγ =
(rχ◦θ ·y)γ. Since l⇒ r ∈ R and by monotonicity of the rewrite relation, s⇒R t
follows.

Rres has a nice property that we will need later, in the proof of Theorem 3.

Lemma 9. If s⇒Rres,head t and s is limited functional, then s ·u⇒Rres,top t ·u.

Here, s ⇒Rres,head t denotes that s has the form lθγ · v and t has the form
rθγ · v, for some rule l ⇒ r ∈ Rres, type substitution θ and substitution γ. A
topmost step is also a headmost step.

Proof. If s⇒Rres,head t and s is limited functional, there are l⇒ r ∈ Rres with
l = f(v) · w1 · · ·wk, type substitution θ, substitution γ and terms wk+1 · · ·wm
such that s = lθγ·wk+1 · · ·wm and t = rθγ·wk+1 · · ·wm. Choose l1, r1, θ1, k1, γ1 :=
l, r, θ, k, γ. Now suppose we have li, ri, pi, ki such that li is limited functional,
li ⇒ ri ∈ Rres and liθiγi ·wki+1 · · ·wm = s, riθiγi ·wki+1 · · ·wm = t. Note that
the output type of liθi is composed (since s ·u is well-defined): liθi : σ→τ . Hence
there are most general unifiers a, b which unify the output type of li with α→ε,
and d such that liad = liθi and d(b(α)) = σ, d(b(ε)) = τ . Then for some fresh
variable x there is a rule scheme l′ := lia · xb(α) ⇒ ria · xb(α) =: r′ ∈ Rres. If
ki < m, choose li+1, ri+1, θi+1, γi+1, ki+1 := l′, r′, d, γi∪[xd(b(α)) := wki+1], ki+1.
Each of the inductive requirements is satisfied. If ki = m, let δ := γi∪[xd(b(α)) :=
u]. Then s · u = l′dδ ⇒Rres,top r

′dδ = t · u as required.
ki increases in every step and is bounded by m, so after finitely many steps

we are done.

.2 Filling in Head Variables

Formal Version of Transformation 2
Let R0 = Rres and, for each n ∈ N: Rn+1 = Rn ∪ {lθδ ⇒ rθδ|l⇒ r ∈ Rn, xσ ∈
HV (l), fτ ∈ F , 0 ≤ k < oa(f) | ψ(xσ, fτ , k, θ, δ)}. Here, ψ(xσ, fτ , k, θ, δ) indi-
cates that:

– τ = (. . .) −→ ρ
– α1→ . . .→αk→σ and ρ can be unified, with most general unifiers θ, χ
– δ = [xσθ := fτχ(y) · z] for fresh variables y, z1, . . . , zk.

Define Rfill =
⋃
n∈NRn.

Lemma 10 (Stated in the Transformation). If Rres is finite, then there is
N such that Rfill = RN and moreover Rfill is finite.

Proof. If Rres is finite, the set {size(HV (l))|l ⇒ r ∈ Rres} is bounded by N .
With induction on k we see: the rule schemes which occur in Rk but not in Rk−1
have at most N −k head variables in the left-hand side. For k = 0 this is correct
(defining R−1 = ∅) by the choice of N . For larger k, the elements of Rk \ Rk−1
are those rule schemes created in step k, which have the form lθγ ⇒ rθγ with
l⇒ r ∈ Rk−1. If l⇒ r ∈ Rk−2 this rule scheme would have been added in Rk−1;

therefore it must have been added in step k−1 and thus l has at most N −k+ 1
head variables. Now, type substitution doesn’t affect number of head variables,
and the substitution δ removes one. Thus, lθγ has at most (N−k+1)−1 = N−k
head variables.

We see that nothing new can be added after step N (as a term cannot have
a negative number of head variables),so Rfill = RN . With induction on k, each
Rk is finite: R0 by assumption, and then in every step there are only finitely
many l ⇒ r ∈ Rk, finitely many xσ ∈ HV (l) and finitely many f such that
0 < oa(f). Thus, Rfill = RN is finite.

Lemma 11 (Stated in the text). s⇒Rres t iff s⇒Rfill t.

Proof. Since Rres = R0 ⊆
⋃
n∈NRn one direction is evident. For the other, note

that any ⇒Rfill step is a ⇒Rm step for some m (even if Rfill is infinite). It
suffices if s⇒Rn+1,top t implies s⇒Rn,top t for all n.

So, suppose s = lθγ and t = rθγ with l⇒ r ∈ Rn+1, some type substitution
θ and substitution γ. Since l ⇒ r ∈ Rn+1 either l ⇒ r ∈ Rn, in which case we
are immediately done, or there are χ, δ and l′ ⇒ r′ ∈ Rn such that l = l′χδ
and r = r′χδ. By Lemma 5 lθγ = l′χδθγ = l′χθδθγ. As we can safely assume
dom(χ) = FTVar(l) (extending χ with entries [α := α] if necessary) this term
is equal to l′θ ◦ χδθγ. Similarly, rθγ = r′θ ◦ χδθγ, and thus s⇒Rn,top t. ut

Proof (Proof of Lemma 2). If s ⇒Rfill,top t there are l0 ⇒ r0 ∈ Rfill, type
substitution θ0 and substitution γ0 such that s = l0θ0γ0 and t = r0θ0γ0. We can
safely assume that dom(θ0) contains all type variables in FTVar(l0) and dom(γ0)
contains all variables in FVar(l0θ0). Let A0 be the set of those xσ ∈ HV (l0) such
that γ0(xσθ0) is not limited functional.

Now, given li ⇒ ri ∈ Rfill such that s = liθiγi and t = riθiγi and a set
Ai which contains those xσ ∈ HV (li) such that γi(xσθi) is not limited func-
tional. If Ai = ∅, we are done (choosing l, r, θ, γ = li, ri, θi, γi). Otherwise, we
define li+1, ri+1, θi+1, γi+1, Ai+1 with the same properties, but with Ai+1 having
a smaller size. Since A0 is finite, this process will terminate and find the required
values.

Choose any xσ ∈ Ai and consider γi(xσθi) = fτχ(u) · v1 · · · vk with fτ ∈ F
and k < oa(f). Let τ = (e1 × . . . × el) −→ τ ′. Evidently τ ′χ has the form
(. . .) −→ τ1→ . . .→ τk→ ρ. The substitution θ′ := θ0 ∪ [α1 := τ1, . . . , αk := τk]
and χ therefore unify α1→ . . .→αk→σ and τ ′. Let a, b the most general unifiers
of these types, extend b with entries α := α for type variables α which occur in
some ej but not in τ ′, and let d be a type substitution such that θ′ = d◦a and χ =
d◦b (which exists by definition of most general unifier). Let δ be the substitution
[xa(σ) := fτb(y) ·z1 · · · zk] for fresh variables y, z of the right types. Then liaδ ⇒
riaδ is a rule scheme of Rfill (if li ⇒ ri ∈ Rm then laδ ⇒ raδ ∈ Rm+1). Let γ′

be the substitution [p := γ(p)|p ∈ dom(γ)|p 6= xσθi]∪ [y1e1χ := u1, . . . , y
l
elχ
, z1τ1 :=

v1, . . . , z
k
τk

:= vk]. Then δdγ′ and γi are equal on dom(γi). Thus we see: liθiγi =

liadγi = liadδ
dγ′ = (Lemma 5) (liaδ)dγ

′ and equally so, riθiγi = (riaδ)dγ
′. We

define li+1, ri+1, θi+1, γi+1, Ai+1 := liaδ, riaδ, d, γ
′, {yτa|yτ ∈ Ai}, which clearly

meets the requirements.

.3 Preparing Polymorphic Types

Formal Version of Transformation 3
LetR0 := Rfill and for n ∈ N, Rn+1 := Rn∪{lθ ⇒ rθ|l⇒ r ∈ Rn|φ(l, θ) or φ(r, θ)}.
Here φ(s, θ) if s has a subterm t · u such that (1) t is not limited functional, (2)
t : σ and σ unifies with some type τ in S, but not τ ≥ σ, (3) θ, χ are most general
unifiers of σ and τ for some type substitution χ. Define RnormS =

⋃
n∈NRn.

Lemma 12 (Stated in the Transformation). If S and Rfill are both finite
there is N such that RnormS = RN .

Proof. Suppose S and Rfill = R0 are both finite. Define R−1 := ∅. Let Ai =
{〈l⇒ r,B〉 | l⇒ r ∈ Ri, A ⊆ S | B is the set of all pairs 〈σ, τ〉 with σ ∈ S such
that l or r has some subterm t · u such that t : τ not limited functional and τ
unifies with σ but not σ ≥ τ . Choose N the maximum size of any B occurring
in A0. Since A0 is finite (because R0 is) and any B is also finite (because a rule
can only have finitely many subterms, and S is finite), N is well-defined. We will
prove inductively: if 〈l ⇒ r,B〉 ∈ Rn \ Rn−1 then |B| ≤ N − n. If this is the
case, evidently AN = AN+1 = . . .

The base case, R0, is evident. Given 〈l ⇒ r,B〉 ∈ Rn+1 \ Rn, note that
l ⇒ r has the form l′θ ⇒ r′θ with l′ ⇒ r′ ∈ Rn; let B′ be the corresponding
set such that 〈l′ ⇒ r′, B′〉 ∈ Rn. Since 〈l ⇒ r,B〉 /∈ Rn we know that 〈l′ ⇒
r′, B′〉 /∈ Rn−1, so by the induction hypothesis |B′| ≤ N − n. Consider all
subterms t · u of l ⇒ r and types σ ∈ S such that t : τ not limited functional
and τ, σ unify but not σ ≥ τ . For all such subterms there is a subterm t′ · u′ of
l′ ⇒ r′ such that t′ : τ ′ with τ ′θ = τ ; evidently t′ is also limited functional. If
σ ≥ τ ′ then also σ ≥ τ , so this cannot hold; 〈τ ′, σ〉 ∈ B′. Thus, every element
in B corresponds with a unique element in B′. But there is at least one element
〈τ, σ〉 in B′ such that σ ≥ τθ. Thus, B has strictly less elements than B′, that
is to say, |B| ≤ |B′| − 1 ≤ N − n− 1 = N − (n+ 1) as required.

Lemma 13 (Stated in the text). R and RnormS generate the same rewrite
relation.

Proof. Obvious, since RR = RRnormS .

Proof (Proof of Lemma 3). Note that the statement “either both σ, σθ ∈ Sc
or both σ, σθ /∈ Sc” is implied by the statement “for all τ ∈ S either τ ≥ σ or
not τ ≥ σθ” (because τ ≥ σ implies τ ≥ σθ). It is the latter statement we will
prove.

We are given l0 ⇒ r0 ∈ R0 and type substitution θ0. Suppose for all subterms
u · v of ln and rn either u is limited functional, or u : σ such that for all τ ∈ S
either τ ≥ σ or not τ ≥ σθn; then we are done choosing χ := θn, since all
Rn ⊆ RnormS . Otherwise, choose any τ ∈ S which breaks the required assertion.
Writing out the definition of ≥ there is ξ such that τξ = σθi. Determine most

general unifiers a, b and type substitution d such that ξ = d ◦ a and θn = d ◦ b;
Rn+1 contains a rule ln+1 ⇒ rn+1 := lnb ⇒ rnb. The procedure continues with
ln+1 ⇒ rn+1 and θn+1 := d.

Note that in every step, b is irrevertible: if b was just a variable renaming,
then we would have τab−1 = σbb−1 = σ, contradicting τ 6≥ σθn. Therefore either
ln+1 is larger than ln or it has less type variables. Consequently, since the size
of all lk is bounded by the size of lθ, this process must terminate (and thus find
suitable χ) eventually.

.4 Explicit Application

Lemma 14 (Required for Theorem 3). Let term s, type substitution θ and
substitution γ be such that γ(x) is not limited functional for any x ∈ HV (sθ)
and for any subterm t · u of s and σ ∈ S either t is limited functional, or both
type(t) and type(t)θ ∈ Sc or neither.
Then exp(sθγ) = exp(s)θγexp, where γexp is the substitution [x := exp(γ(x)) | x ∈
dom(γ)].

Proof. Induction on the form of s. If s = xσ with x ∈ V, then if xσθ /∈
dom(γ) both exp(sθγ) and exp(s)θγexp are just xσθ. However, if xσθ ∈ dom(γ)
then exp(sθγ) = exp(γ(xσθ)) = γexp(xσθ) = sθγexp = exp(s)θγexp. If s =
fσ(s1, . . . , sn) then exp(sθγ) = fσθ(exp(s1θγ), . . . , exp(snθγ)) = (by the induc-
tion hypothesis) fσθ(exp(s1)θγexp, . . . , snθγ

exp) = fσ(exp(s1), . . . , exp(sn))θγexp =
exp(s)θγexp. If s = λx.t then exp(sθγ) = λx.exp(tθγ) = (IH) λx.exp(t)θγexp =
exp(s)θγexp.

Finally, suppose s = t · u with t : σ. If t is limited functional, then so is tθγ
and therefore exp(sθγ) = exp(tθγ) ·exp(uθγ) = (IH) exp(t)θγexp ·exp(u)θγexp =
exp(s)θγexp. If t is not limited functional, but σ /∈ Sc, then by the assumption
in the lemma also σθ /∈ Sc. Therefore exp(sθγ) = exp(s)θγexp as before. Al-
ternatively, if t is not limited functional and σ ∈ Sc also σθ ∈ Sc. Since t is
not limited functional neither is tθγ: this could only hold if t = xρ · v1 · · · vm
with x ∈ V and γ(xρθ) limited functional, but in this case xρθ ∈ HV (sθ), which
contradicts our assumption. So in this situation exp(sθγ) = exp(tθγ · uθγ) =
@σθ(exp(tθγ), exp(uθγ)) = (induction hypothesis) @σθ(exp(t)θγexp, exp(u)θγexp) =
@σ(exp(t), exp(u))θγexp = exp(s)θγexp.

Lemma 15 (Required for Theorem 3). Let term s, type substitution θ and
substitution γ be such that for any subterm t·u of s and σ ∈ S either both type(t)
and type(t)θ ∈ Sc or neither.
Then exp(s)θγexp ⇒∗Rnoapp exp(sθγ).

Proof. The proof is much the same as the proof of Lemma 14, using ⇒∗Rnoapp

instead of = (note that ⇒∗Rnoapp is reflexive). The only different case is when
s = t · u with t : τ , τ ∈ Sc, τθ ∈ Sc, t = xρ · v1 · · · vn and γ(x) is limited
functional. It might still be that tθγ is not limited functional, in which case
we proceed as before, but if tθγ is limited functional while t is not, we have
exp(s)θγexp = @τ (exp(t), exp(u))θγexp = @τθ(exp(t)θγexp, exp(u)θγexp), which

by the induction hypothesis⇒∗Rnoapp @τθ(exp(tθγ), exp(uθγ))⇒Rnoapp exp(tθγ)·
exp(uθγ) (using the new rule @ρ(x, y)⇒ x · y), which equals exp(sθγ).

Lemma 16 (Part of Theorem 3). If s⇒Rres t, then exp(s)⇒+
Rnoapp exp(t).

Proof. By induction on the size of s.
If s⇒Rres t by a topmost step rule step, the combination of Lemmas 2 and

3 provides us with l⇒ r ∈ RnormS , type substitution θ and substitution γ such
that s = lθγ, t = rθγ, γ(x) is not limited functional for any x ∈ HV (lθ) and for
any subterm u · v occurring in either l or r: either both type(u) and type(u)θ ∈
Sc or neither. Using Lemmas 14 and 15 then exp(s) = exp(l)θγexp ⇒Rnoapp

exp(r)θγexp ⇒∗Rnoapp exp(rθγ) = exp(t).
If s⇒Rres t by a topmost β step, then s = (λx.u) · v and t = u[x := v]. Let

λx.u : σ. if σ /∈ Sc then exp(s) = (λx.exp(u)) · exp(v) ⇒β exp(u)[x := exp(v)]
which, by Lemma 15 ⇒∗Rnoapp exp(u[x := v]) = exp(t). If, however, σ ∈ Sc then
exp(s) = @σ(λx.exp(u), exp(v)) ⇒Rnoapp (λx.exp(u)) · exp(v) ⇒β exp(u)[x :=
exp(v)]⇒∗Rnoapp exp(t).

If s = λx.u0 or s = f(u1, . . . , un) and one of the ui is reduced, we use the
induction hypothesis. If s = u · v and either type(u) /∈ S or the reduction takes
place in v, we just use the induction hypothesis as well (whether u is limited
functional or not). Alternatively, let s = u ·v ⇒Rres u

′ ·v with type(u) = σ ∈ Sc.
If both u and u′ are limited functional, or they are both not, the induction
hypothesis immediately gives what we need. If u is not limited functional but
u′ is, we have exp(s) = @σ(exp(u), exp(v)) ⇒+

Rnoapp @σ(exp(u′), exp(v)) by the
induction hypothesis, ⇒Rnoapp exp(u′) · exp(v) = exp(t). Finally, if u is limited
functional but u′ is not, u must have been reduced with a headmost reduction.
Lemma 9 states that also s ⇒Rres,top t, which brings us back to the base case,
which has already been demonstrated.

Lemma 17 (Part of Theorem 3). Let exp−1(s) be s with all subterms of the
form @σ(u, v) replaced by u·v. Then s⇒Rnoapp t implies exp−1(s)⇒=

R exp−1(t),
with equality only possible if s contains more @σ symbols than t.

Proof. Let γexp
−1

be the substitution assigning exp−1(γ(x)) for x ∈ dom(γ).

First we prove inductively: exp−1(s)γexp
−1

= exp−1(sγ). This is evident in the
base case where s is a variable and immediate with the induction hypothesis
in each of the cases s = f(s1, . . . , sn), s = λx.u and even s = u · v. The

most interesting case is when s = @σ(u, v), but even then exp−1(s)γexp
−1

= (u ·
v)γexp

−1

= uγexp
−1 ·vγexp−1

= exp−1(sγ). It is similarly evident that exp−1(sθ) =
exp−1(s)θ.

Having this, the lemma is quite easy, by induction on the size of s: each
inductive case (where the reduction happens in a subterm) is trivial (for exam-
ple, if @σ(u, v) ⇒Rnoapp @σ(u′, v) then exp−1(u) · exp−1(v) ⇒=

Rnoapp exp−1(u′) ·
exp−1(v) by induction), and there are three base cases: if s = @σ(u, v)⇒Rnoapp

u · v = t then exp−1(s) = exp−1(t) but t has an @σ symbol less; if s =
(λx.u) · v ⇒β u[x := v] = t then exp−1(s) = (λx.exp−1(u)) · exp−1(v) ⇒β

exp−1(u)[x := exp−1(v)] = exp−1(u[x := v]) = exp−1(t) as we saw above;

if s = lθγ and t = rθγ with l ⇒ r ∈ Rnoapp, we use the observations to
note that exp−1(s) = exp−1(l)θγexp

−1

and exp−1(t) = exp−1(r)θγexp
−1

. Since
exp−1(l)⇒ exp−1(r) is a rule scheme in RnormS for all l ⇒ r ∈ Rnoapp, we are
done.

Proof (Proof of Theorem 3). If ⇒RnormS is non-terminating, so there is an
infinite reduction s0 ⇒RnormS s1 ⇒RnormS . . ., then note that by Lemma 16
there is also an infinite reduction exp(s0) ⇒+

Rnoapp exp(s1) ⇒+
Rnoapp . . . On

the other hand, if ⇒Rnoapp is non-terminating, so there is an infinite reduction
s0 ⇒Rnoapp s1 ⇒Rnoapp . . . then by Lemma 17 there is also an infinite reduction
exp−1(s0) ⇒=

RnormS exp−1(s1) ⇒=
RnormS . . ., with infinitely many non-equality

steps (since there cannot be an infinite tail exp−1(sn) = exp−1(sn+1) = . . ., as
sn has only finite size).

Section 6: Abstractions in left-hand sides and β-redexes

We assume the left-hand sides of rule schemes in R do not have any subterms
of the form x · s with x a (typed) variable.

Formal Version of Transformation 5
LetR0 := R and for n ∈ N, Rn+1 := Rn∪{lθ ⇒ rθ|l⇒ r ∈ Rn|φ(l, θ) or φ(r, θ)}.
Here φ(s, θ) if s has a subterm λx.t : σ and σ unifies with some type τ ∈ S, with
minimal unifiers θ, χ. Define RnormQ =

⋃
n∈NRn.

Lemma 18 (Stated in the Transformation). If Q and R are both finite
there is N such that RnormQ = RN .

Proof. This is essentially a copy of the proof of Lemma 12. The only difference
is the kind of subterms we consider, but this is not essential for the proof style.

Lemma 19 (Stated in the text). R and RnormQ generate the same rewrite
relation.

Proof. Obvious, since RR = RRnormQ .

Lemma 20 (Required for Theorem 4). For l⇒ r ∈ R and type substitution
θ, there are l′ ⇒ r′ ∈ RnormQ and type substitution χ such that lθ = l′χ, rθ = r′χ
and for u · v occurring in l′ or r′ with u : σ not limited functional, either both
σ, σχ ∈ Qc or both σ, σχ /∈ Qc.

Proof. This is essentially a copy of Lemma 20. The only difference is the kind of
subterms we consider, but this is not essential for the proof style.

Lemma 21 (Required for Theorem 4). Let s be a term and θ a type substi-
tution such that for all abstractions λx.t : σ occurring anywhere in s either both
σ, σθ ∈ Qc or both σ, σθ /∈ Qc. Let γexpL be the substitution [x := expL(γ(x)) | x ∈
dom(γ)]. Then expL(sθγ) = expL(s)θγexpL.

Proof. By induction on s. The cases s = f(s1, . . . , sn) and s = t · u are straight-
forward with the induction hypothesis. If s = xσ ∈ dom(γ) then expL(sθγ) =
exp(γ(xσθ)) = γexp(xσθ) = expL(s)θγexp. If s = xσ /∈ dom(γ) with x ∈ V then
expL(sθγ) = expL(xσθ) = xσθ = sθ = sθγexpL.

If s = λxτ .t : σ = τ → ρ, suppose σ ∈ Qc. Then by assumption also σθ ∈
Qc, and therefore expL(sθγ) = Λσθ(λxτθ.expL(tθγ)) = (induction hypothesis)
Λσθ(λxτθ.expL(t)θγexpL) = Λσ(λxτ .expL(t))θγexpL = expL(s)θγexpL.

Now suppose σ /∈ Qc. Then by assumption also σθ /∈ Qc and therefore
expL(sθγ) = λxτθ.expL(tθγ) = (IH) λxτθ.expL(t)θγexpL = (λxτ .expL(t))θγexpL =
expL(s)θγexpL.

Lemma 22 (Part of Theorem 4). If s⇒R t then also expL(s)⇒+
RΛ

expL(t).

Proof. By induction on the size of s; all inductive cases (where the reduction is
done in a subterm) are trivial, even both cases when s is an abstraction (note
that ⇒R does not change the type of a term). For the base case, assume s⇒R t
by a reduction at the top of the term, either with a β-step or using a rule. In
the first case, s = (λx.u) · v and t = u[x := v], let λx.u : σ. We either have
expL(s) = Λσ(λx.expL(u)) · expL(v) ⇒RΛ (λx.expL(u)) · expL(v) (if σ ∈ Qc) or
exp(s) = (λx.expL(u))·expL(v) (if not). Either way, expL(s)⇒=

RΛ (λx.expL(u))·
expL(v) ⇒β expL(u)[x := expL(v)] = (Lemma 21) expL(u[x := v]) = expL(t).
In the second case, s = lθγ and t = rθγ with l ⇒ r ∈ R. Using Lemma 20 we
can find l′ ⇒ r′ ∈ RnormQ and type substitution θ′ such that also s = l′θ′γ and
t = r′θ′γ and additionally for all subterms λx.u : σ of l′ or r′ we have either
both σ, σθ ∈ Qc or both σ, σθ /∈ Qc. Now by Lemma 21 expL(s) = expL(l′θ′γ) =
expL(l′)θ′γexpL ⇒RΛ expL(r′)θ′γexpL = expL(r′θ′γ) = expL(t).

Lemma 23. Let expL−1 be the function that replaces all occurrences of Λ(s) in
some term by just s. Then s⇒RΛ t implies expL−1(s)⇒=

RnormQ expL−1(t), with
equality only possible if s has more Λ symbols than t.

Proof. We first see that expL−1(sθγ) = expL−1(s)θγexpL
−1

, where γexpL
−1

is
define in the usual way. This is a straightforward induction on the size of s;
all cases (s an application, functional term, variable in dom(γ), variable not in
dom(γ), abstraction with type in Qc or abstraction with type not in Qc) are
trivial. Similarly we see that always expL−1(expL(s)) = s.

Now suppose s ⇒RΛ t; we prove expL−1(s) ⇒RnormQ expL−1(t) with in-
duction on the size of s. The inductionstep (when the reduction was done in a
subterm) is trivial in all cases (distinguishing when s is a functional term with
root symbol in F , functional term Λ(s), application with the reduction on the
left or right, or abstraction), so consider the three base steps. If s = expL(l)θγ
and t = expL(r)θγ with l ⇒ r ∈ RnormQ, then as we have seen in the ob-

servations above, expL−1(s) = lθγexpL
−1 ⇒RnormQ expL−1(t) = lθγexpL

−1

. If
s = Λσ(t) ⇒RΛ t, then expL−1(s) = expL−1(t), but s has a Λ symbol more
than t. If s = (λx.u) · v and t = u[x := v] then expL−1(s) = (λx.expL−1(u)) ·
expL−1(v)⇒β expL−1(u)[x := expL−1(v)] = expL−1(u[x := v]).

Proof (Proof of Theorem 4). If ⇒R is non-terminating, there is an infinite
reduction s0 ⇒R s1 ⇒R . . ., and by Lemma 22 this implies an infinite reduction
expL(s0)⇒+

RΛ
expL(s1)⇒+

RΛ
. . .. If⇒RΛ is non-terminating, there is an infinite

reduction s0 ⇒RΛ s1 ⇒RΛ . . ., which by Lemma 22 implies an infinite reduction
expL−1(s0) ⇒=

RnormQ expL−1(s1) ⇒=
RnormQ with infinitely many strict steps.

This proves this direction because by Lemma 19⇒R and⇒RnormQ are the same
relation.

Section 7: Currying

Lemma 24 (Required for Theorem 5). For term s with symbols in F , type
substitution θ and substitution γ, let γflat = [x := flat(γ(x)) | x ∈ dom(γ)].
Then flat(sθγ) = flat(s)θγflat.

Proof. By induction on the size of s; it is safe to assume dom(γ) contains all
xσ ∈ FVar(sθ). Thus, if s = xσ then flat(sθγ) = flat(γ(xσθ)) = γflat(xσθ) =
sθγflat = flat(s)θγflat. If s = fσ(s1, . . . , sn) then write σ = (σ1×. . .×σn) −→ τ
and σ′ = σ1→ . . .→ σn→ τ . It should be noted that (σθ)′ = (σ′)θ. We have:
flat(sθγ) = flat(fσθ(s1θγ, . . . , s1θγ)) = f ′σθ ·flat(s1θγ) · · · flat(s1θγ) = (IH)
fσ′θ · flat(s1)θγflat · · · flat(sn)θγflat = (fσ′ · flat(s1) · · · flat(sn))θγflat =
flat(s)θγflat. The other cases, where s is an application or abstraction, are
both trivial with the induction hypothesis.

Lemma 25 (Part of Theorem 5). If s⇒R t then flat(s)⇒Rflat flat(t).

Proof. By induction on the form of s; the inductive cases (when the reduc-
tion takes place in a subterm) are all easy, we demonstrate only the case s =
fσ(s1, . . . , si, . . . , sn) ⇒R fσ(s1, . . . , s

′
i, . . . , sn) because si ⇒R sn. In this case

flat(s) = fσ′ · flat(s1) · · · flat(sn), which by the induction hypothesis ⇒Rflat

fσ′ · flat(s1) · · · flat(s′i) · · · flat(sn) = flat(fσ(s1, . . . , s
′
i, . . . , sn)). As for the

two base cases, if s = (λx.u) · v ⇒β u[x := v] then flat(s) = (λx.flat(u)) ·
flat(v)⇒β flat(u)[x := flat(v)] which by Lemma 24 equals flat(u[x := v]) =
flat(t). If s = lθγ ⇒R rθγ then by Lemma 24 flat(s) = flat(l)θγflat ⇒Rflat

flat(r)θγflat = flat(t).

Definition 1 (Inverse of flat).

flat−1(xσ · s1 · · · sn) = xσ · flat−1(s1) · · · flat−1(sn)
(x ∈ V)

flat−1((λxσ.s0) · s1 · · · sn) = (λxσ.flat
−1(s0)) · flat−1(s1) · · · flat−1(sn)

(n ≥ 0)
flat−1(fσ′ · s1 · · · sk) = λxk+1 . . . xn.fσ(flat−1(s1), . . . , flat−1(sk), xk+1, . . . , xn)

(k < n = ar(f))
flat−1(fσ′ · s1 · · · sk) = fσ(flat−1(s1), . . . , flat−1(sn)) · flat−1(sn+1) · · · flat−1(sk)

(k ≥ n = ar(f))

Here, ar(f) is the unique number n such that f(σ1×...×σn)−→τ ∈ F .

Lemma 26 (Required for Theorem 5). If s is a term without leading free

variables, then flat−1(sθγ) = flat−1(s)θγflat
−1

, where γflat
−1

is the substitu-
tion [x := flat−1(γ(x)) | x ∈ dom(γ)].

Proof. We prove the lemma for s, γ such that all dom(γ) does not contain any
leading free variables in s. This is evidently satisfied if s has no leading free
variables.

Consider first the case s = xσ · s1 · · · sn with x a variable. By assumption
either n = 0 or xσθ /∈ dom(γ). We assume the first. Then flat−1(sθγ) =
flat−1(xσθ · s1θγ · · · s1θγ) = xσθ · flat−1(s1θγ) · · · flat−1(snθγ), which by the

induction hypothesis equals xσθ · flat−1(s1)θγflat
−1 · · · flat−1(s1)θγflat

−1

=

(xσ · flat−1(s1) · · · flat−1(sn))θγflat
−1

= flat−1(s)θγflat
−1

. Alternatively, if
n = 0 (so s = xσ and xσθ ∈ dom(γ)), then flat−1(sθγ) = flat−1(γ(xσθ)) =

γflat
−1

(xσθ) = xσθγ
flat−1

= flat−1(s)θγflat
−1

.
The other cases are very simple with the induction hypothesis. For complete-

ness, and because they are used again in Lemma 27, I will present them here
regardless.

Now suppose s = (λxσ.s0)·s1 · · · sn. Then flat−1(sθγ) = flat−1((λxσ.s0θγ)·
s1θγ · · · snθγ) = (λxσθ.flat

−1(s0θγ))·flat−1(s1θγ) · · · flat−1(snθγ). Note that,
although x may occur as a leading variable in s, it does not occur in the domain
of γ. Therefore we can apply the induction hypothesis to s0 as to all other si, and
find that = (λxσθ.flat

−1(s0)θγflat
−1

)·flat−1(s1)θγflat
−1 · · · flat−1(sn)θγflat

−1

which equals ((λxσ.flat
−1(s0))·flat−1(s1) · · · flat−1(sn))θγflat

−1

= flat−1(s)θγflat
−1

.
Now let σ = (σ1 × . . . × σn) −→ τ and σ′ = σ1→ . . .→ σn→ τ . Suppose

s = fσ′ ·s1 · · · sk with k < n. Then flat−1(sθγ) = flat−1(fσ′θ ·s1θγ · · · skθγ) =
λxk+1

σk+1θ
. . . xnσnθ.fσθ(flat

−1(s1θγ), . . . , flat−1(skθγ), xk+1, . . . , xn).
With the induction hypothesis on each of the si this becomes:
λxk+1

σk+1θ
. . . xnσnθ.fσθ(flat

−1(s1)θγflat
−1

, . . . , flat−1(sk)θγflat
−1

, xk+1, . . . , xn) =

(λxk+1
σk+1

. . . xnσn .fσ(flat−1(s1), . . . , flat−1(sk), xk+1, . . . , xn))θγflat
−1

=

flat−1(s)θγflat
−1

.
Alternatively, if s = fσ′ · s1 · · · sk but k ≥ n we obtain the induction step in

an equally simple way: flat−1(sθγ) = flat−1(fσ′θ · s1θγ · · · skθγ) =
fσθ(flat

−1(s1θγ), . . . , flat−1(s1θγ)) · flat−1(sk+1θγ) · · · flat−1(snθγ) = (IH)

fσθ(flat
−1(s1)θγflat

−1

, . . . , flat−1(sk)θγflat
−1

)·flat−1(sk+1)θγflat
−1 · · · flat−1(sn)θ =

(fσ(flat−1(s1), . . . , flat−1(sk)) · flat−1(sk+1) · · · flat−1(sn))θγflat
−1

=

flat−1(s)θγflat
−1

as required.

Lemma 27 (Required for Theorem 5). For term s, type substitution θ and

substitution γ, flat−1(s)θγflat
−1 ⇒∗β flat−1(sθγ).

Proof. We use the same inductive reasoning as in Lemma 26, with⇒∗β instead of
= in the inductive steps (note that⇒∗β is reflexive so the base steps are included).
What remains is the case s = xσ ·s1 · · · sm with m > 0 and xσθ ∈ dom(γ). In this

case, flat−1(s)θγflat
−1

= flat−1(γ(xσθ))·flat−1(s1)θγflat
−1 · · · flat−1(sm)θ ⇒∗β

(IH) flat−1(γ(xσθ)) · flat−1(s1θγ) · · · flat−1(smθγ). Now, if γ(xσθ) is headed

by an abstraction or variable, this is exactly flat−1(sθγ). If γ(xσθ) has the form
fτ ′ ·t1 · · · tk with k ≥ ar(f), then this is also the case. The only exception is when
γ(xσθ) = fτ ′ ·t1 · · · tk with k < n := ar(f). In this case, the term we have expands
to (λxk+1 . . . xn.fτ (flat−1(t1), . . . , flat−1(tk), xk+1, . . . , xn)) ·flat−1(s1θγ) · · ·
flat−1(smθγ). If m ≤ n− k this term β-reduces to:
λxk+m+1 . . . xn.fτ (flat−1(t1), . . . , flat−1(tk), flat−1(s1θγ), . . . , flat−1(smθγ),
xk+m+1, . . . , xn) = flat−1(fτ ′ · t1 · · · tk · s1θγ · · · smθγ) = flat−1(sθγ).
On the other hand, if m > n− k this term β-reduces to:
fτ (t1, . . . , tk, flat

−1(s1θγ), . . . , flat−1(sn−kθγ)) · flat−1(sn−k+1θγ) · · ·
flat−1(snθγ) = flat−1(fσ′ · t1 · · · tk · s1θγ · · · smθγ) = flat−1(sθγ).

Lemma 28 (Part of Theorem 5). If s⇒Rflat t then flat−1(s)⇒+
R flat−1(t).

Proof. By induction on the form of s. The induction step (when the reduc-
tion takes place in a subterm) is easy in all cases (whether s is headed by
a variable, headed by an abstraction, or has the form f · s1 · · · sk with k ≤
ar(f) or k > ar(f)). Consider the two base cases. If s = (λx.u) · v and t =
u[x := v] then flat−1(s) = (λx.flat−1(u)) · flat−1(v) ⇒β flat−1(u)[x :=
flat−1(v)] ⇒∗β flat−1(u[x := v]) = flat−1(t) by Lemma 27. If s = flat(l)θγ

and t = flat(r)θγ with l⇒ r ∈ R then flat−1(s) = flat−1(flat(l)θγflat
−1

by
Lemma 26. It is evident that flat−1(flat(u)) = u for all u, so this term equals

lθγflat
−1 ⇒R rθγ

flat−1

, which by Lemma 27 ⇒∗β flat−1(rθγ) = flat−1(t).

Proof (Proof of Theorem 5). Evident with the combination of Lemmas 25
and 28.

Section 8: η-expansion

We first discuss several lemmas about η-long forms. Although η-expansion is
very common in the literature, the definition of restricted η-expansion used in
this paper is not, and therefore some attention to the details is in order.

Lemma 29. If l = l↑ηFVar(l) and r = r↑ηFVar(r) for all l⇒ r ∈ R, then R↑ = R.

Proof. Note that all rules in R are monomorphic, and have base type, the first
by convention, the second because by assumption l cannot be an abstraction or
variable. Thus, R↑ only contains base-type rules, where JlK = l↑ηFVar(l) = l and

JrK = r↑ηFVar(r) = r.

Lemma 30. If s = s↑ηdom(γ) and all γ(x) are η-long, then sγ is η-long.

Proof. By induction on s, all cases trivial (note that a term (λx.s0) · s1 · · · sn is
η-long if all si are).

Lemma 31. Suppose l = l↑ηV and γ is a substitution on domain V , and s is
an η-long term. If s = lγ and HV (l) ∩ V = ∅, then all γ(x) are η-long for
x ∈ FVar(l) ∩ V .

Proof. By induction on the size of l. If l is a (typed) variable not in V , then
there are no variables in FVar(l) ∩ V so the lemma automatically holds. If l is
a (typed) variable in V , note that FVar(l) ∩ V = {l} and γ(l) = s is η-long by
assumption. If l = x · l1 · · · ln, note that by assumption x /∈ dom(γ) and therefore
s = x · l1γ · · · lnγ; by induction all γ(x) occurring in any FVar(li)∩V are η-long,
and since all x ∈ FVar(l) occur in some i this suffices. The other inductive cases,
l = f(l1, . . . , ln) · ln+1 · · · lm and l = (λx.l0) · l1 · · · ln, are both similarly trivial
with induction.

Lemma 32 (Part of Theorem 6). If R is a set of rules in η-long form and
s⇒R t with s an η-long term, then t is also η-long.

Proof. Induction on the size of s. If s = f(s1, . . . , sn) · sn+1 · · · sm and t =
f(s′1, . . . , s

′
n) ·s′n+1 · · · s′m, with each si ⇒=

R s′i. Since by the induction hypothesis
all s′i are η-long, so is t. If s = x · s1 · · · sn of base type and t = x · s′1 · · · s′n,
then by the induction hypothesis all s′ are η-long and therefore so is t. If s =
(λx.s0) · s1 · · · sn and t = (λx.s′0) · s′1 · · · s′n then again by induction all si are
η-long and therefore so is t.

As for the two base cases, if s = (λx.u) · v ⇒β u[x := v] = t, then note
that u and v are both η-long, and therefore by Lemma 30 u[x := v] is as well.
If s = lγ ⇒R rγ with l ⇒ r ∈ R, then by Lemma 31 all γ(x) are η-long (and
dom(γ) = FVar(l), otherwise). Therefore we can use Lemma 30 to see that
t = rγ is η-long as well.

Lemma 33. (s↑η) · (t↑η)⇒∗β (s · t)↑η.

Proof. This is a property of η-expansion and independent from our definition of
restricted expansion. We will prove it below for completeness.

First note that for all variables: x↑η[x := x↑η] ⇒∗β x↑η, as we can see
by induction on the type of x – evident if x has base type, and if x↑η =
λy1 . . . yn.x · y1 ↑η · · · yn ↑η then x↑η[x := x↑η] = λy.(λy.x · y↑η) · y↑η ⇒∗β
λy.x · (y1 ↑η[y1 := y1 ↑η]) · · · (yk ↑η[yk := yk ↑η]), which by the induction hypoth-
esis ⇒∗β λy.x · y1 ↑η · · · yk ↑η = x↑η because the type of yi is a subtype of the
type of x.

Now we prove the lemma by induction on the type of s.
If s is an abstraction then (s↑η) · (t↑η) = (s · t)↑η.
Otherwise (s↑η)·(t↑η) = (λxy1 . . . yn.s

′ ·x↑η ·y1 ↑η · · · yn ↑η)·t↑η for some term s′

while (s · t)↑η = λy1 . . . yn.s
′·t↑η ·y1 ↑η · · · yn ↑η (as we can see by checking each of

the forms s might have). Then (s↑η)·(t↑η)⇒β λy1 . . . yn.s
′ ·(x↑η[x := t↑η])·y↑η.

We are done if x↑η[x := t↑η] ⇒∗β t↑η, which is certainly the case if x has base
type. Otherwise, write x↑η = λz1 . . . zk.x · z1 ↑η · · · zk ↑η and t↑η = λz1 . . . zk.t

′ ·
z1 ↑η · · · zk ↑η. Then x↑η[x := t↑η] = λz.(λz.t′ · z ↑η)z ↑η, which β-reduces to
λz.t′ · (z1 ↑η[z1 := z1 ↑η]) · · · (zk ↑η[zk := zk ↑η]). We have seen above that this
⇒∗β λz.t′ · z ↑η as required.

Lemma 34. Let s be a term and γ a substitution. Let V ⊆ dom(γ). Then
s↑ηV γ↑ ⇒∗β (sγ)↑η, and this is an equality if HV (s) ∩ dom(γ) = ∅ and V =
dom(γ).

Proof. By induction on the form of s.

If s = (λx.u)·v·w1 · · ·wk then s↑ηV γ↑ = λy.(λx.u↑ηV γ↑)·v↑
η
V γ
↑·w1 ↑ηV γ↑ · · ·wk ↑

η
V γ
↑·

y↑η. Note that if HV (s) ∩ dom(γ) = ∅ then also HV (u) ∩ dom(γ) = ∅, since
using α-conversion we can assume x is fresh. The same holds for v and each
wi. Therefore this term either ⇒∗β or, if the requirements are satisfied, equals
λy.(λx.(uγ)↑η) · (vγ)↑η · (w1γ)↑η · · · (wkγ)↑η · y↑η = (sγ)↑η.

We use the induction hypothesis in the same way if either s = xσ · s1 · · · sm
with xσ /∈ dom(γ) or s = f(s1, . . . , sn) · sn+1 · · · sn.

If s = xσ ∈ dom(γ), then s↑ηV γ↑ = xσγ
↑ = γ(xσ)↑η = (sγ)↑η if either

xσ ∈ V or σ is a data type. Otherwise xσ ↑ηV = λy1 . . . yk.x · y1 ↑η · · · yk ↑η and
we can write γ(xσ)↑η = λy1 . . . yk.ty1 ↑η · · · yk ↑η for some term t. But then
xσ ↑ηV γ↑ ⇒∗β λy.t · y1 ↑η[y1 := y1 ↑η] · · · yk ↑η[yk := yk ↑η]. We have seen in the
proof of Lemma 33 that this term ⇒∗β λy.t · y↑η = sγ ↑η as required. Note that
the requirements for equality are not satisfied because V 6= dom(γ).

Finally, if s = xσ ·s1 · · · sn with n > 0 and xσ ∈ dom(γ), the requirements for
equality are not satisfied. However, s↑ηV γ↑ = λy.γ(xσ)↑η · s1 ↑ηV γ↑ · · · sn ↑

η
V γ
↑ ·

y↑η ⇒∗β (by the induction hypothesis) λy.γ(xσ)↑η · s1γ ↑η · · · snγ ↑η · y↑η ⇒∗β
(by Lemma 33) λy.γ(xσ) · s1γ ↑η · · · snγ ↑η · y↑η = sγ ↑η.

Lemma 35 (Support for both theorems in Section 8). If s ⇒R t then
s↑η ⇒+

R↑ t↑
η.

Proof. By induction on the form of s.

If s = λx.u⇒R λx.u′ = t, then by the induction hypothesis s↑η = λx.u↑η ⇒+
R↑

u′ ↑η = t↑η.

If s = (λx.u0) · u1 · · ·un and t = (λx.u′0) · u′1 · · ·u′n with each ui ⇒=
R u′i,

exactly one strict, then by the induction hypothesis each ui ↑η ⇒∗R↑ u
′
i ↑η, exactly

one strict. Thus s↑η = λy.(λx.u0 ↑η) · u1 ↑η · · ·un ↑η · y↑η ⇒+
R↑ λy.(λx.u

′
0 ↑η) ·

u′1 ↑η · · ·u′n ↑η · y↑η = t↑η.

In the same way we can immediately conclude with the induction hypothesis
if s = f(s1, . . . , sn) · sn+1 · · · sm or if s = xσ · s1 · · · sn and the reduction takes
place in one of the si.

There are two further possibilities: either s = (λx.u) · v · w1 · · ·wn and t =
u[x := v] ·w1 · · ·wn or s = lγ ·w1 · · ·wn and t = rγ ·w1 · · ·wn for some l⇒ r ∈ R
and substitution γ. In the first case, s↑η = λy.(λx.u↑η) · v↑η · w1 ↑η · · ·wn ↑η ·
y↑η ⇒β λy.(u↑η[x := v↑η]) · w1 ↑η · · ·wn ↑η · y↑η. By Lemma 34 this term β-
reduces to λy.(u[x := v]↑η) · w1 ↑η · · ·wn ↑ηy↑η, which by Lemma 33 β-reduces
further to λy.(u[x := v] · w1 · · ·wn · y)↑η = sγ ↑η.

In the second case, write l = f(l1, . . . , lk) · lk+1 · · · lm.
Then s↑η = λy.f(l1γ ↑η, . . . , lkγ ↑η) · lk+1γ ↑η · · · lmγ ↑η · w1γ ↑η · · ·wnγ ↑η · y↑η.
Write l′ = l · x1 · · ·xn · z1 · · · zm ↑ηV with V = FVar(l) ∪ {x, z}. Also write r′ =
r · x · z ↑ηV . Then l′ ⇒ r′ ∈ R↑. Let δ = γ ∪ [x1 := w1, . . . , xn := wn, z1 :=
y1, . . . , zm := ym]. Note that we can safely assume that dom(γ) = FVar(l)
and that HV (l) = ∅. Therefore we can use Lemma 34 to conclude that s↑η =
λy.(l · x · z)δ↑η = λy.l′δ↑ ⇒R↑ λy.r′δ↑ ⇒∗β λy.(r · x · z)δ↑η = t↑η.

Proof (Proof of Theorem 6). Let R be a set of rules in restricted η-long
form. Then ⇒R maps η-long terms to η-long terms by Lemma 32 and evidently
⇒R is non-terminating if it is non-terminating on η-long terms. If ⇒R is non-
terminating, so there is an infinite reduction s1 ⇒R s2 ⇒R . . . then by Lemma
35 also s1 ↑η ⇒R↑ s2 ↑η ⇒R↑ . . ., where all ⇒R↑ steps are also ⇒R steps by
Lemma 29.

Proof. Let R be a set of rules and R↑ the restricted η-long counterpart. Then
by Lemma 35 any infinite ⇒R reduction can be replaced by an infinite ⇒R↑
reduction on η-lnog terms.

