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Abstract. We study the termination method using dynamic depen-
dency pairs for higher order rewrite systems (HRSs), but restrict atten-
tion to the subclass of weak HRSs. For this class we define the notions of
dependency pair and chain, and demonstrate how the subterm property
can be weakened to allow a definition of argument filterings.
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1 Introduction

An important technique to (automatically) prove termination of first-order term
rewriting is the dependency pair approach by Arts and Giesl [3]. This method
transforms a term rewriting system into a set of ordering constraints, which can
be simplified using for instance argument filterings. Various optimisations of the
dependency pair approach have been studied, see for example [6].

This paper contributes to the study of dependency pairs for higher-order
rewriting. It is not easy to adapt the approach to this setting. A natural extension
is given in [17], but it relies on the subterm property as an ordering constraint.
Due to this property it is impossible to define optimisations like argument fil-
terings or usable rules. Moreover, unlike the first order case, the method is not
complete: a terminating system may have an infinite dependency chain. Other
definitions of higher order dependency pairs crucially rely on some restriction,
as discussed in Section 2. They either consider systems without β-reduction or
impose limitations on the rewrite rules. No existing approach is complete.

The present work continues on this second line of research. We consider
higher-order rewriting systems (HRSs) [15] and restrict attention to the class
of weak HRSs. In such systems the left-hand sides of rewrite rules are linear
and only contain abstractions in a very simple form; right-hand sides are not re-
stricted. Weak HRSs hence form an intermediate class between systems without
bound variables and pattern HRSs, which yields a natural class that contains
most common examples. Our definitions of dependency pair and dependency
chain conservatively extend the original ones for left-linear first-order rewriting,
and use a weakened version of the subterm property. We can define argument
filterings in a natural way, and obtain a termination method that is complete on
weak HRS. The method has been implemented in the termination tool WANDA.
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2 Related Work

Several variants of higher order dependency pairs exist. We discuss three cat-
egories: dependency pairs for applicative rewriting, the dynamic approach in
HRSs, and the static approach in HRSs. Our contribution is in the second part.

Dependency Pairs for Applicative Rewriting In applicative term rewriting sys-
tems, terms are built from variables, constants and a binary application oper-
ator. Functional variables may be present, as in x · a, but no abstractions, as
in λx. x. An important difference between the various approaches for depen-
dency pairs is in the treatment of leading variables in right-hand sides of rewrite
rules. In [7], an uncurrying transformation from untyped applicative systems to
functional systems that preserves and reflects termination is used; after trans-
forming, the first-order method can be applied. In [1,2], simply typed applicative
systems (STTRSs) are considered; leading variables are eliminated by instanti-
ating them with the relevant patterns. In [9,11,12], considering another version
of simply typed applicative rewriting (STRSs), leading variables are not elim-
inated, but the method is restricted to ‘plain function passing’ systems where,
intuitively, leading variables are harmless.

The issue of leading variables is also relevant for HRSs. However, the results
for applicative systems are not useful in this setting, because termination may
be lost by adding λ-abstraction (and hence anonymous functions). For instance,
the (weak) HRS app(abs(λx. Z(x)), Y ) → Z(Y ) for untyped λ-calculus is not
terminating, whereas the corresponding applicative system app · (abs · Z) · Y →
Z ·Y does terminate (since the size of a term decreases with every rewrite step).

Dynamic Dependency Pairs A first, natural definition of dependency pairs on
HRSs is given in [17]. Here, termination is not equivalent to the absence of infinite
dependency chains. Also, a term is required to be greater than its subterms (the
subterm property), which makes it impossible to define argument filterings.

Static Dependency Pairs The approach using static dependency pairs in [11]
is extended to the setting of HRSs in [10]. Unlike the dynamic approach, the
static approach does not admit dependency pairs of the form f#(l) ; x(r)
with x a variable. As a consequence, fewer ordering constraints are generated,
and in addition no subterm property is needed; hence it is possible to define
argument filterings and usable rules [18]. However, the approach is limited to
plain function passing systems, and is moreover not complete; it will often fail
on rules with abstractions in the right-hand side. For example, an HRS with a
rule I(s(n)) → twice(λx. I(x), n) generates a dependency pair I#(s(n)) ; I#(x),
which is impossible to handle.

The present work considers dynamic dependency pairs for HRSs and hence is
most related to [17]. We restrict attention to weak HRSs, for which we can
weaken the subterm property, characterize termination (Theorems 1,2), and in-
troduce argument filterings. The restrictions weak and plain function passing
are incomparable in the sense that neither implies the other.
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3 Preliminaries

We recall some standard definitions and notations concerning Nipkow’s higher-
order rewriting systems (HRSs) [15]. Here the objects that are rewritten are
simply typed λ-terms in long βη-normal form, and rewriting is modulo β. We
assume some familiarity with HRSs; see for instance [15,13,19]. The set of natural
numbers is denoted by N and the notation [. . .] is used for (possibly infinite) lists.

Types and Terms. The simple types (or just types) are built from base types,
written as ι, κ, and the binary type constructor⇒ which is right-associative.
Types are written as A,B,C. Every type has the form A1⇒ . . .⇒An⇒ ι for
some n ≥ 0, types A1, . . . , An and base type ι. A type A⇒B is called functional.

We assume a set V containing infinitely many variables of each type. Variables
are written as x, y, z,X, Y, Z, . . . or sometimes labelled with their type as in xA.
A signature is a non-empty set F , assumed to be disjoint with V, consisting
of function symbols, each equipped with a unique type. Function symbols are
written as f, g, h, or using more suggestive notation. If a symbol a ∈ F ∪ V has
type A we write a : A. The set of pre-terms over F and V consists of all s for
which we can infer s : A for some type A, using the following clauses:

(sym) a(s1, . . . , sn) : ι for a : A1⇒ . . .⇒An⇒ ι in V ∪ F
and s1 : A1, . . . , sn : An with n ≥ 0,

(abs) λx. s : A⇒B for x : A and s : B,
(app) t(s1, . . . , sn) : ι if t : A1⇒ . . .⇒An⇒ ι

and s1 : A1, . . . , sn : An with n ≥ 1.

The λ binds occurrences of variables as in the λ-calculus, and (pre-)term equality
is modulo α-conversion; bound variables are renamed if necessary. Pre-terms are
simply typed λ-terms in η-long form. Let FV (s) be the set of free variables of
a pre-term s. We write a instead of a() and denote the unique η-long form of a
symbol a as a↑ (if a : A1⇒ . . .⇒An⇒ ι, then a↑= λx1 . . . xn. a(x1↑, . . . , xn↑)).

A pre-substitution [x := s], with x and s non-empty finite vectors of equal
length, is the homomorphic extension of the type-preserving mapping x 7→ s
from variables to pre-terms. The set consisting of the variables x is called the
domain of the substitution, notation dom(·). Pre-substitutions are denoted by
γ, δ, . . ., and the result of applying the pre-substitution γ to the pre-term s is
denoted by sγ. Pre-substitutions do not capture free variables.

The β-reduction relation, denoted by →β , is induced by the following β-
reduction rule: (λx. s) (t) →β s[x := t], where the vectors x and t are non-
empty, finite, and of equal length. Note that long η-normal forms are preserved
under β-reduction, so the set of pre-terms is closed under β-reduction.

Terms are equivalence classes of pre-terms modulo β. Usually we take the
(unique) β-normal form as the representative of such a class. The β-normal form
of a pre-term s is denoted by s↓. The set of terms over F and V is denoted by
T (F ,V) or, considering V fixed, just by T (F). Note that a term has the form
λx. a(s) with a ∈ V ∪ F called the head of the term, x zero or more variables,
and s zero or more terms. Equivalently, it is a pre-term built without (app). A
substitution is a pre-substitution mapping all variables in its domain to terms.
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Rules and Rewriting. A term l is a pattern if every free variable x in l occurs
in the form x(y1↑, . . . , yn↑) with the yi different variables which are bound in
l. Patterns are defined by Miller [14], who proves that unification (and hence
matching) modulo β is decidable for patterns. A rewrite rule (or just rule) over
T (F) is a pair of terms l→ r in T (F) such that l and r have the same base type,
all free variables of r also occur in l, and l is a pattern of the form f(l1, . . . , ln)
for some n ≥ 0 and function symbol f . A higher-order rewriting system (HRS)
is usually specified by a set of rules. The reduction relation is generated by:

(head) lγ↓→ rγ↓ for a rewrite rule l→ r and a substitution γ,
(sym) if s→ t then a(. . . , s, . . .)→ a(. . . , t, . . .) for a ∈ V ∪ F ,
(abs) if s→ t then λx. s→ λx. t.

A rewrite rule l→ r is left-linear if every free variable occurs at most once in l;
an HRS is left-linear if all its rewrite rules are left-linear. If a function symbol
is the head of a left-hand side then it is said to be a defined symbol, otherwise
it is a constructor. The sets of constructors and defined symbols are denoted C
and D respectively. We call s→ t a rewrite or reduction step, and a sequence of
rewrite steps is called a reduction.

Example 1. Throughout this paper, we will consider as an example the HRS
eval. Its signature Feval consists of the following symbols:

o : M dom : M⇒M⇒M⇒M eval : M⇒M⇒M
s : M⇒M fun : (M⇒M)⇒M⇒M⇒M

And it has the following rewrite rules:

eval(fun(λx. F (x), X, Y ), Z)→ F (dom(X,Y, Z)) dom(X,Y, o)→ X
dom(s(X), s(Y ), s(Z))→ s(dom(X,Y, Z)) dom(o, o, Z)→ o

dom(o, s(Y ), s(Z))→ s(dom(o, Y, Z))

An example of a rewrite sequence in eval:

eval(fun(λx. fun(λy. y, o, s(s(x))), s(o), s(s(o))), s(o))
→ (λx. fun(λy. y, o, s(s(x)))) (dom(s(o), s(s(o)), s(o)))
= fun(λy. y, o, s(s( dom(s(o), s(s(o)), s(o)) )))
→ fun(λy. y, o, s(s( s(dom(o, s(o), o)) )))
→ fun(λy. y, o, s(s(s(o))))

The fun symbol represents a function over the natural numbers with an interval
it is defined on; eval calculates its value in a point, provided that the point is in
the domain of the function. All symbols have the same output type M, to enable
functions mapping to any kind of output.

4 Weak HRSs

The notion of a weak reduction in the λ-calculus, first defined by Howard in
1968 and revisited in [5], simplifies the standard λ-calculus, while preserving
most pleasant properties and expressivity. In the weak λ-calculus, a subterm
below an abstraction cannot be reduced.
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If we restrict attention to weak reductions, the subterm property from [17]
can be weakened enough to define argument filterings (by not filtering inside an
abstraction, see Section 6). However, since the goal of this paper is to define a
dependency pair method for HRSs with the usual reduction relation, we instead
impose a restriction on the rewrite rules, which guarantees that we only need
weak reductions. Intuitively, no matching is done on an abstraction.

Definition 1. A weak pattern is a linear term either of the form x↑ with x a
free variable, or the form f(s1, . . . , sn) with f ∈ F and all si weak patterns. A
rule l→ r is weak if l is a weak pattern. An HRS is weak if all of its rules are.

Obviously, a weak HRS is left-linear. Note that every weak pattern is a pat-
tern, but not every (linear) pattern is weak. Examples of linear, yet non-weak
patterns are f(λx. o), f(λx. s(x)) and f(λx. Z). All left-hand sides of the HRS
eval are weak. Weak rewrite rules are fully extended.

With this definition we can limit attention to a strict form of weak reduction,
where a reduction step does not take place below an abstraction.

Definition 2. A step s→ t is weak, notation s→weak t, if it is generated using
only the clauses (head) and (sym). Otherwise, it is strong, notation →strong.

The following lemma expresses that a strong step does not create a weak
redex. Thus, in an infinite reduction either strong steps do not play a role, or
eventually every step is inside an abstraction.

Lemma 1. Let s →strong t →weak u be a reduction in a weak HRS. Then there
exists a term w such that s→weak w →∗ u.

Proof. There can be no overlap in the redexes of an weak and a strong step. If the
weak redex occurs above the strong one, the latter can be postponed (although
this may duplicate or remove the redex). If the redexes occur in a different part
of the term, swap the steps. A strong step cannot occur above a weak one. ut

To illustrate the weak requirement, consider the following examples of non-weak
HRSs. In the left-linear HRS {f(λx. Z) → a, g(X) → a} we cannot swap the
steps f(λx. g(x)) → f(λx. a) → a, because the first creates the second. In the
left-linear and fully extended HRS {a → b, f(λx. b) → c}, we cannot swap the
steps f(λx. a) → f(λx. b) → c, for the same reason. In the HRS {f(X,X) →
b, a→ b} we cannot swap the steps f(λx. a, λx. b)→ f(λx. b, λx. b)→ b.

As discussed in Section 2, weak HRSs differ from frameworks for applicative
term rewriting because binders may be used in the term formation. The class of
weak HRSs contains for instance extensions of λ-calculus with β-reduction.

Note that we can often simulate a non-weak HRS by a weak one, with-
out affecting termination. For example, the rule f(λx. g(x), Y ) → r might be
replaced by two weak rules f(λx. Z(x), Y ) → test(Z(c), f ′(λx. Z(x), Y )) and
test(g(c), f ′(λx. Z(x), Y ))→ r . However, it seems hard to simulate a rule with
left-hand side f(λx. g(Z)) without potentially affecting termination.

In the remainder of this paper we will work with the class of weak HRSs.
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5 Dependency Pairs

The definition of a dependency pair uses the notion of candidate terms, intu-
itively those base type subterms which might cause non-termination. Their root
symbol is either a defined symbol or a variable of functional type. To avoid bound
variables becoming free when we take the body of a λ-abstraction, we use fresh
constants cA : A for each type A. The set of all such constants is denoted Const.

Definition 3. The set of candidate terms of a term s, notation Cand(s), is
defined inductively as follows:

1. Cand(x(t1, . . . , tn)) =

{
∅ if n = 0
{x(t1, . . . , tn)} if n > 0

2. Cand(f(t1, . . . , tn)) =

{
{f(t1, . . . , tn)} ∪ Cand(t1) ∪ Cand(tn) if f ∈ D
Cand(t1) ∪ . . . ∪ Cand(tn) if f ∈ C

3. Cand(λxA. t) = Cand(t[x := cA]).

Example 2. As an example we consider two right-hand sides of the HRS eval:

Cand(F (dom(X,Y, Z))) = {F (dom(X,Y, Z))}
Cand(s(dom(X,Y, Z))) = {dom(X,Y, Z)}

Besides candidate terms, the definition of dependency pair uses marked function
symbols. Let F# = F ∪ {f# : σ | f : σ in D}, so the set of function symbols
extended with for every defined symbol a marked symbol of the same type. Let
F#
c be the union of F# and Const. The marked version of a term s, notation

s#, is defined as f#(s1, . . . , sn) if s = f(s1, . . . , sn) with f ∈ D, and as s (not
introducing marks) otherwise.

Definition 4. The set of dependency pairs of a rewrite rule l → r, notation
DP(l → r), is defined as {l# ; p# | p ∈ Cand(r)}. The set of dependency pairs
of an HRS R, notation DP(R), is defined as

⋃
l→r∈R DP(l→ r).

Note that for a dependency pair l ; p both l and p have base type, but those
base types might not be the same. Term orderings such as for instance CPO [4]
can usually compare terms of different base types.

Example 3. The set of dependency pairs of the HRS eval consists of:

eval#(fun(λx. F (x), X, Y ), Z) ; F (dom(X,Y, Z))

dom#(s(X), s(Y ), s(Z)) ; dom#(X,Y, Z)

dom#(o, s(Y ), s(Z)) ; dom#(o, Y, Z)

Termination is characterised by means of dependency chains in Theorem 1. These
are sequences of dependency pairs with certain properties. First we need a defi-
nition of subterm which does not cause bound variables to become free.

Definition 5. The subterm relation, notation �, is generated by the clauses:
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1. s� s,
2. a(s1, . . . , sn) � t if si � t for some i (a ∈ F ∪ V)
3. λxA. s� t if s[x := cA] � t.

The strict part of � is denoted by �.

The subterms of f(λx.X(x)) are f(λx.X(x)), λx.X(x),X(c), and c. Contrary to
[17, Definition 1] we only have a single constant cA for every type A, whereas they
use a constant cx for every variable x. Thus, here λxAyA. f(x, y) has f(cA, cA) as
a subterm, while the corresponding subterm in [17] is f(cx, cy). We do not need
different constants for all variables because we consider only left-linear rules.

Definition 6. A dependency chain for a HRS R is a sequence [(li, pi, ti, γi) | i ∈
S] with either S = N or S = {1, . . . , n} for some n ∈ N, such that for all i ∈ S:

1. li ; pi ∈ DP(R), γi a substitution, ti a term;
2. if pi = f#(r1, . . . , rn) then ti = piγi;
3. if pi = x(r1, . . . , rn) then there is q such that ti = q# and piγi � q but not
γi(y) � q for any variable y;

4. ti →∗weak li+1γi+1.

The reduction in the last clause does not contain head-steps as the head of li+1

is some f#. The second clause is like in the first-order case, the third clause is
typical for higher-order dynamic dependency pairs. Omitting the subscripts, we
might for instance have p = X(Y ) and γ = [X := λx. h(x(a)), Y := λx. f(x)];
then pγ = h(f(a)), where each of h#(f(a)), f#(a), but not a#, could be chosen
for ti. As an example of an infinite dependency chain, the dependency pair
app#(abs(λx. Z(x)), Y ) ; Z(Y ) of the HRS for untyped λ-calculus yields an
infinite dependency chain with ti = app#(abs(λx. app(x, x)), abs(λx. app(x, x)))
and γi = [Z := λu. app(u, u), Y := abs(λu. app(u, u))] for all i.

Theorem 1. A weak HRS R is terminating if and only if it does not have an
infinite dependency chain.

Proof. (Sketch) Assume that R is not terminating and consider a minimal term
that admits an infinite reduction. Such a term has the form f(s1, . . . , sn) with
f ∈ D. Because it is minimal non-terminating its infinite reduction contains
a head-step at some point, and using Lemma 1 we can reach one with →weak

steps. The head-step results in a non-terminating term s again; taking a minimal
non-terminating subterm of s we can continue this process ad infinitum. This
analysis naturally suggests the components of an infinite dependency chain.

For the other direction, we derive from an infinite dependency chain an infi-
nite→ ∪� reduction (erasing the marks); this implies non-termination of→. ut

Remark 1. Note that in clause 1 of the definition of candidate terms we do not
take the direct subterms of a term x(s1, . . . , sn) as candidate terms. Had we done
that, the approach would not be complete; there would be terminating HRSs
with an infinite dependency chain. Consider for example the (terminating) HRS
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with rewrite rules {a→ f(λx. o), f(λx. Z(x))→ Z(a)}. Its dependency pairs are
a# ; f#(λx. o) and f#(λx. Z(x)) ; Z(a) which indeed do not admit an infinite
dependency chain. However, if a would also be a candidate term of Z(a), then
there is an additional dependency pair f#(λx. Z(x)) ; a#, which leads to the
infinite dependency chain a# ; f#(λx. o)→∗ f#(λx. o) ; a# . . ..

Definition 7. A reduction pair consists of a well-founded ordering > and a
quasi-ordering (transitive and reflexive) ≥ on base type terms in T (F#) where:

1. > · ≥ is contained in > (the pair is compatible),
2. if si ≥ s′i then a(s1, . . . , si, . . . , sn) ≥ a(s1, . . . , s

′
i, . . . , sn) for all a ∈ F#

c ∪ V
(≥ is base-monotonic),

3. for all terms s and t with s a weak pattern, for all substitutions γ and
R ∈ {>,≥}: if sRt then also sγRtγ (the pair is weakly stable).

Note that a reduction pair is not required to be fully monotonic or stable. As we
will see, the former is essential: the ordering generated by an argument filtering
will only be base-monotonic. The requirement on stability is lax because substi-
tution might cause β-reduction; even the subterm relation � and →R itself are
not fully stable.

Theorem 2. A weak HRS R on a signature F is terminating if and only if
there exists a reduction pair (>,≥) such that:

1. l > p for every dependency pair l ; p ∈ DP(R),
2. l ≥ r for every rewrite rule l→ r ∈ R,
3. lγ > t# for every term t, substitution γ and dependency pair l ; p ∈ DP(R)

such that pγ � t and p = x(p1, . . . , pn) and not γ(y) � t for any variable y.

The third requirement of this theorem is guaranteed by the first if the subterm
relation � is contained in ≥ (that is, if ≥ satisfies the subterm property).

Proof. Given a dependency chain we can see that each liγi > li+1γi+1; thus
well-foundedness of > proves termination of R by Theorem 1. For the other
direction, let (>,≥) be (→+

R ·�,→∗R). Then (>,≥) is a reduction pair satisfying
the requirements, and well-founded when the system is terminating. ut

Example 4. To prove termination of the HRS eval from Example 1 using the
method given by Theorem 2, we need a reduction pair (>,≥) that satisfies
requirement Th.2(3) and in addition the following constraints:

eval#(fun(λx. F (x), X, Y ), Z) > F (dom(X,Y, Z))

dom#(s(X), s(Y ), s(Z)) > dom#(X,Y, Z)

dom#(o, s(Y ), s(Z)) > dom#(o, Y, Z)
eval(fun(λx. F (x), X, Y ), Z) ≥ F (dom(X,Y, Z))

dom(s(X), s(Y ), s(Z)) ≥ s(dom(X,Y, Z))
dom(o, s(Y ), s(Z)) ≥ s(dom(o, Y, Z))

dom(X,Y, o) ≥ X
dom(o, o, Z) ≥ o
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A priori it seems difficult to find a reduction pair satisfying these constraints,
because if ≥ satisfies the subterm property (a very common property), we have:

eval#(fun(λx. F (x), X, Y ), Z) > F (dom(X,Y, Z)) ≥ F (Z)

Taking ω := fun(λx. eval#(x, x), cnat, cnat) we then have eval#(ω, ω) > eval#(ω, ω).
Fortunately, we don’t need the subterm property to satisfy Th.2(3); as we shall
see, we can avoid this problem with an argument filtering.

6 Argument Filterings

6.1 Beta-oblivious Reduction Pairs

We aim to simplify the constraints from the dependency pair method by using
an argument filtering. However, to enable this we need a further weakening of
property Th.2(3), which we can obtain by adding some dependency pairs we
previously omitted. Consider the following modification of Definition 3.

Definition 8. The set of β-oblivious candidate terms of a term s, notation
Candβo(s), is defined inductively as follows:

1. Candβo(x(t1, . . . , tn)) =

{
∅ if n = 0

{x(t1, . . . , tn)} ∪ Candβo(t1) ∪ Candβo(tn) if n > 0

2. Candβo(f(t1, . . . , tn)) =

{
{f(t1, . . . , tn)} ∪ Candβo(t1) ∪ Candβo(tn) if f ∈ D
Candβo(t1) ∪ . . . ∪ Candβo(tn) if f ∈ C

3. Candβo(λxA. t) = Candβo(t[x := cA]),

Example 5. We consider the two right-hand sides of eval as in Example 2:

Candβo(F (dom(X,Y, Z))) = {F (dom(X,Y, Z)), dom(X,Y, Z)}
Candβo(s(dom(X,Y, Z))) = {dom(X,Y, Z)}

The following notion of β-oblivious dependency pair follows Definition 4 closely.

Definition 9. The set of β-oblivious dependency pairs of a rewrite rule l → r,
notation DPβo(l → r), is {l# ; p# | p ∈ Candβo(r)}. The set of β-oblivious
dependency pairs of an HRS R, notation DPβo(R), is

⋃
l→r∈R DPβo(l→ r).

The difference with Definitions 3 and 4 is that we take subterms of a term
x(t1, . . . , tn) as candidates, even though such subterms might disappear by β-
reduction. Consequently, the if and only if in Theorems 1 and 2 does not hold,
as described in Remark 1.

Example 6. The set of β-oblivious dependency pairs of the HRS eval consists of
its dependency pairs given in Example 3, with in addition:

eval#(fun(λx. F (x), X, Y ), Z) ; dom#(X,Y, Z)

Now we can prove a β-oblivious version of Theorem 2.
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Theorem 3. A weak HRS R is terminating if there is a reduction pair (>,≥)
such that:

1. l > p for every dependency pair l ; p ∈ DPβo(R),
2. l ≥ r for every rewrite rule l→ r ∈ R,
3. lγ > t# for every term t, substitution γ and l ; p ∈ DPβo(R) such that

pγ� t and p = x(p1, . . . , pn) for some variable x but neither γ(y)� t for any
y ∈ dom(γ) nor piγ � t for any pi.

Compared to the statement of Theorem 2, there are more ordering constraints
to be satisfied, but we have gained the assumption piγ � t in requirement 3.

Proof. (Sketch) We use the ‘if’ part of Theorem 2. The first two requirements
follow easily by noting that every dependency pair is also a β-oblivious depen-
dency pair. The third requirement requires a little analysis. ut

6.2 Argument Filterings

Argument filterings are used to simplify the constraints from the dependency
pair method. An argument filtering either eliminates some direct arguments si
of a term f(s1, . . . , sn), or replaces the term by one of the si. An argument
filtering is defined as a partial mapping on a signature, which then induces a
mapping on terms, as given in the following definitions.

Definition 10. An argument filtering for a signature F is a partial mapping
π : F# → lists(nat)∪ nat such that for a function symbol f : A in the domain of
π with A1⇒ . . . An⇒ ι we have: either π(f) = [i1, . . . , ik] with 1 ≤ i1 < . . . <
ik ≤ n or π(f) = i with i ∈ {1, . . . , n} and Ai = ι.

In the first case (and only then), we introduce fπ of type Ai1⇒ . . .⇒Aik⇒
ι, the filtered version of the function symbol f . The set Fπ is defined as F#

c

extended with fπ for all f in the domain of π.

The induced mapping to obtain filtered terms is straightforward except in that
arguments cannot be eliminated if one of them contains a bound variable. There-
fore we need to keep track of the bound variables on a path from the root.

Definition 11. Given an argument filtering π for a signature F and a term t
over F , the filtered version π(t) of t is defined as π∅(t), where πS(t) for S ⊂ V
is defined as follows:

1. πS(x(t1, . . . , tn)) = x(πS(t1), . . . , πS(tn)) for x a (free or bound) variable,

2. πS(f(t1, . . . , tn)) =


fπ(πS(ti1), . . . , πS(tik)) if π(f) = [i1, . . . , ik]

and FV (f(t1, . . . , tn)) ∩ S = ∅
π∅(ti) if π(f) = i

and FV (f(t1, . . . , tn)) ∩ S = ∅
f(πS(t1), . . . , πS(tn)) otherwise

3. πS(λy. t) = λy. πS∪{y}(t).
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Note that the third possibility in clause 2 is applied if either the argument
filtering is not defined for f , or a variable from S appears in some ti.

Example 7. We use the signature Feval from Example 1. Let π be an argument
filtering with π(dom) = [1, 2] and π(s) = 1. Then we have:

π(λx. dom(s(x), o, dom(s(y), s(z), u))) = λx. dom(s(x), o, domπ(y, z))

Note that in the filtered term both the normal function symbol dom : nat⇒
nat⇒nat⇒nat and its filtered version domπ : nat⇒nat⇒nat occur.

We present the main result of this section: a weak HRS is terminating if a
suitable argument and reduction pair exist. Such a reduction pair should orient
both the filtered β-oblivious dependency pairs and the filtered rules, and should
additionally satisfy that an unfiltered symbol f is “heavier” than fπ and f#π .

Theorem 4 (Argument Filtering). A weak HRS R over a signature F is
terminating if there is an argument filtering π and a reduction pair (>,≥) with:

– π(l) > π(p) for every l ; p ∈ DPβo(R),
– π(l) ≥ π(r) for every l→ r ∈ R,
– > contains � (but doesn’t have to be monotonic),
– f(X1↑, . . . , Xn↑) ≥ fπ(Xi1↑, . . . , Xik↑) for every f ∈ F if fπ is defined,
– f(X1↑, . . . , Xn↑) ≥ f#π (Xi1↑, . . . , Xik↑) for every f ∈ D if f#π is defined.

The proof of Theorem 4 depends on a number of properties of the π function.
Let wAF be the filtering relation: wAF is the smallest transitive, reflexive and
monotonic relation on T (Fπ) such that f(s1, . . . , sn) wAF fπ(si1 , . . . , sik) if
π(f) = [i1, . . . , ik] and f(s1, . . . , sn) wAF si if π(f) = i. Note that, given a
reduction pair as described in the theorem, wAF is included in ≥.

Lemma 2 (properties of wAF and πX).

1. πS(x↑) = x↑ for all variables x.
2. If Y ∩ FV (s) = ∅, then πX∪Y (s) = πX(s)
3. If l is a weak pattern, so is π(l).
4. s wAF πX(s) (for s ∈ T (F#

c ), X ⊆ V).
5. If a(s1, . . . , sn) wAF q, then either q = a(q1, . . . , qn) (with each sj wAF qj)

or q = aπ(qi1 , . . . , qik) (if a ∈ F#, π(a) = [i1, . . . , ik] and each sij wAF qij )
or si wAF q (if π(a) = i). If λx. s wAF q then q = λx. q′ with s wAF q′.

6. sγ wAF tδ if s wAF t, dom(γ) = dom(δ) and each γ(x) wAF δ(x)
7. πX∪Y (s)πX(γ) wAF πX(sγ) (X,Y disjunct, dom(γ) = Y , s ∈ T (F#

c ))
8. πX(s)π(γ) wAF πX(sγ) (X ⊆ V, s ∈ T (F#

c ) and γ a substitution such that
dom(γ) and all FV (γ(x)) are disjunct from X)

9. π(l)π(γ) = π(lγ) for weak patterns l
10. If s := f(s1, . . . , sn) wAF q wAF πX(s), and FV (s) ∩X 6= ∅, then q has the

form f(q1, . . . , qn) with si wAF qi wAF πX(si) for all i.
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Proof. Most of the details of this proof are sheer drudgery, so we present a sketch
of the methods. Full proofs are available in the appendix.

(1), (2), (3) and (4) are proved by a straightforward induction on the type
of x, definition of πX , form of l and definition of πX respectively (the base case
of (3) is given by (1)). For (5), the relation given by those rules is monotonic,
reflexive, transitive and contained in wAF , and therefore equal to it. (6) holds
by induction on the pre-term sγ, ordered by the union of →β and the standard
subterm relation. We need→β in the case s = x(s1, . . . , sn) with x ∈ dom(γ) and
n > 0. (7) is proved by a similar induction on the pre-term sγ (with →β ∪�).
The interesting cases are when FV (s) ∩ Y = ∅ (and therefore πX∪Y (s)πX(γ) =
πX∪Y (s) = πX(s) by (2)), and when s = x(s1, . . . , sn) with x ∈ Y and n > 0
(here we use the→β part of the induction hypothesis). (8) holds by induction on
the size of s, using (7) if s is headed by a variable in dom(γ). The requirement
for the range of γ to be disjunct from γ is to have FV (sγ) ∩ X = ∅ when
FV (s) ∩X = ∅. (9) is a straightforward induction on l again.

For (10) we first prove (10a): if s�t and s has base type, FV (s)∩X 6= ∅, then
not t wAF πX(s). Let s = a(s1, . . . , sn) and, towards a contradiction, choose t
minimal such that s � t wAF πX(s) = a(πX(s1), . . . , πX(sn)). Then by (5) and
minimality, t = a(t1, . . . , tn) with each tj wAF πX(sj) and since some si � t� ti
and FV (si) ∩ X ⊇ FV (t) ∩ X ⊇ FV (πX(s)) ∩ X 6= ∅ we can always reduce
the example to a smaller one, contradiction. As to (10) itself, by (10a) never
si wAF πX(s), so neither s wAF q nor q wAF πX(s) uses the third possibility of
(5). Since πX(s) = f(πX(s1), . . . , πX(sn)) with f unfiltered, the only possibility
for q is f(q1, . . . , qn) with each qi wAF πX(si). ut

Lemma 2 provides most of the necessities to prove Theorem 4. The only remain-
ing problem is Thm.3(3). Lemma 3 will solve this problem.

Lemma 3. Let sγ � t with t of base type and neither s � t nor any γ(x) � t.
Then πX(s)π(γ) � · wAF hπ(t), where X = dom(γ) and hπ(a(u1, . . . , un)) =
a(π(u1), . . . , π(un)).

Proof. The fundamental idea is that the head symbol of subterm t in sγ has
to occur somewhere in either s or γ, say s = C[a(u)] or some γ(x) = C[a(u)].
By the assumption a(u) 6= t, so some ui contains a variable in X or a bound
variable; consequently, πX will not filter this term away, nor will it affect the
head symbol. For the formal proof, we introduce a definition that allows for a
somewhat stronger induction hypothesis: u preserves v in w if either w = v and
u wAF hπ(v), or w � v and 1) if w = λx.w′, then u = λx. u′ and u′[x := c]
preserves v in w′[x := c], 2) if w = a(w1, . . . , wn) for a ∈ F#

c ∪ V, then u =
a(u1, . . . , un) and ui preserves v in wi for each i ≤ n. It is easy to see that a
statement “u preserves v in w” implies that if w� v, then also u� · wAF hπ(v).
The lemma follows if we can prove: given terms s, s′, base type term t, and
substitutions γ, γ′ on the same domain X, then s′γ′ preserves t in sγ if:

1. s, t and each γ(x) are terms in T (F#
c ); s′ and each γ′(x) are in T (Fπ);

2. s wAF s′ wAF πX(s) and all γ(x) wAF γ′(x) wAF π(γ(x));
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3. s′ preserves t in s and each γ′(x) preserves t in γ(x);

This follows with induction on the pre-term sγ, ordered by the union of→β and
the proper subterm relation. The proof uses Lemma 2(5,6,7,10). ut

Combining Lemmas 2 and 3, we are sufficiently prepared to prove Theorem 4.

Proof (proof of Theorem 4). Let s � t iff π(s) > π(t) and s � t iff π(s) ≥ π(t).
It is easy to see that � and � are compatible and that � is base-monotonic
(even though it is not fully monotonic). If l � r then also π(lγ) = π(l)π(γ) >
π(r)π(γ) ≥ π(rγ) by Lemma 2(9,3,8). Similarly � is weakly stable, so (�,�) is
a reduction pair. The first requirements of Theorem 3 are clearly met, for the
last we use Lemma 3 (noting that � is part of > and wAF part of ≥) and the
last two requirements of Theorem 4. ut

We apply Theorem 4 to our running example.

Example 8. We consider the weak HRS eval from example 1. We use the argu-
ment filtering π with π(dom) = π(dom#) = [1, 2]. In order to prove termination
of eval we need to satisfy the following constraints:

− eval#(fun(λx. F (x), X, Y ), Z) > F (domπ(X,Y ))

eval#(fun(λx. F (x), X, Y ), Z) > dom#
π (X,Y )

dom#
π (s(X, s(Y )) > dom#

π (X,Y )

dom#
π (o, s(Y )) > dom#

π (o, Y )
− eval(fun(λx. F (x), X, Y ), Z) ≥ F (domπ(X,Y ))

domπ(s(X), s(Y )) ≥ s(domπ(X,Y, Z))
domπ(o, s(Y )) ≥ s(domπ(o, Y ))
domπ(X,Y, o) ≥ X
domπ(o, o, Z) ≥ o

− dom(X1, X2, X3) ≥ domπ(X1, X2)

− dom(X1, X2, X3) ≥ dom#
π (X1, X2)

− � is contained in >

This is easy with a higher order path ordering as in [4], using a precedence
eval# =T eval >T domπ =T dom#

π >T s.

7 Implementation

We have implemented these results in C++ in the tool WANDA [8], which has
participated in the termination competition of 2010, the first year a higher-
order category was present. Unfortunately, the termination problem database
does not yet have many benchmarks for higher-order rewriting, and the ran-
dom selection of the competition chose no examples where dependency pairs are
needed. At present, the tool supports dependency pairs with argument filterings
and a recursive path ordering. An external SAT-solver is employed for choosing
the argument filtering and the RPO precedence.
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8 Concluding Remarks

In this paper, we have given a modified definition of the dependency pair ap-
proach for HRSs and demonstrated how argument filterings can be defined, as
long as these HRSs satisfy the weakness constraint. Other optimisations of the
dependency pair approach, such as using a dependency graph, usable rules and
an extension of the monotone algebra approach [16], are left for separate work.
We also believe the notion of argument filtering can be generalised, to allow
argument filterings where for instance a term f(s, t) can be replaced by s(t).

It is worth noting that, although we have used a very strict definition of weak
reduction, our notion of argument filterings uses only that a term containing a
bound variable is not reduced. Therefore, if we consider HRSs without limitations
on the rules, but where the rewrite relation is restricted to weak reductions as
in [5], we have little doubt that the notions and proofs in this paper can be
applied without much additional effort.

Acknowledgments. We thank Vincent van Oostrom for discussions and sug-
gestions, and the anonymous referees of an earlier version of this paper for their
constructive remarks.
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Appendix: complete proofs

.1 Proofs relating to Section 4

We split up Lemma 1 in two parts: Lemmas 7 and 8. Lemmas 4, 5 and 6 are
needed in these proofs. We use the notation →head for a reduction at the head,
→in for a reduction not at the head and →weak,in for a weak reduction not at
the head.

Lemma 4. If s→strong t we can find a context C and terms λx. u, λx. v such that
s = C[λx. u], t = C[λx. v], u →R v and λx. u does not freely contain variables
bound by C.

Proof. Suppose s →strong t; we must find context C, variable x and terms
u, v such that s = C[λx. u] and t = C[λx. v]. Noting that →strong is a sub-
relation of →R, we can perform induction on its derivation. It can not be
that s →R,head t, since clause (abs) must have been used in the derivation. If
s = a(s1, . . . , si, . . . , sn) with a ∈ F ∪ V, t = a(s1, . . . , s

′
i, . . . , sn) and si →R s′i,

then an (abs) step must have occurred in the derivation of si →R s′i, so by induc-
tion hypothesis si = D[λx. u], s′i = D[λx. v]; take C[] = a(s1, . . . , D[], . . . , sn).
Finally, if s = λx. u, then t must be λx. v with u →R v, so choose for C the
empty context. ut

Lemma 5. For a given context C and term q such that FV (q) ⊆ FV (C[q]), for
a fresh variable x of the same type as q, C[q] = C[x↑][x := q].

Proof. By induction on the size of C. The base case, x↑ [x := q] = q, is a well-
known property of the βη-normal form. If C[q] = a(. . . , D[q], . . .), the induction
hypothesis gives that C[q] = a(. . . , D[q], . . .) = a(. . . , D[x ↑][x := q], . . .) =
a(. . . , D[x↑], . . .)[x := q] (since x is fresh), = C[x↑][x := q]. Finally, if C[q] =
λy.D[q] the induction hypothesis on D provides D[q] = D[x↑][x := q]; since y
does not occur in q this gives C[q] = λy.D[q] = λy. (D[x↑][x := q]) = (λy.D[x↑
])[x := q] = C[x↑][x := q]. ut

Lemma 6. Suppose l is a weak linear pattern and lγ = C[λx. u], with FV (λx. u) ⊆
FV (lγ). Let y be a fresh variable of the same type as λx. u. Then we can find a
substitution δ such that lδ = C[y↑] and δ[y := λx. u] = γ.

Proof. By induction on the form of l. Either l = z↑ for some variable z, or l =
f(l1, . . . , ln) with f ∈ F . In the first case, C[λx. u] = lγ = γ(z). Write γ = [a1 :=
q1, . . . , an := qn, z := C[λx. u]] and let δ := [a1 := q1, . . . , an := qn, z := C[y↑]].
Then evidently lδ = C[y↑], and δ[y := λx. u] = [a1 := q1, . . . , an := qn, z := C[y↑
][y := λx. u]] (because y is fresh), = [a1 := q1, . . . , an := qn, z := C[λx. u]] (by
Lemma 5), = γ.

In the second case, each li has a distinct set of free variables because l is
linear (this is part of the weakness constraint); let γi be the restriction of γ to
FV (li). We can write C[] = f(l1γ1, . . . , D[], . . . , lnγn) with D[λx. u] = liγi. By
the induction hypothesis on li (which is also a weak pattern) we find δ′ such
that liδ

′ = D[y↑] and δ′[y := λx. u] = γi. Taking δ := γ1 ∪ . . . δ′ ∪ . . . γn (all
these have disjunct domains) we have lδ = C[y↑] and δ[λx. u] = γ! ut
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Lemma 7. Let R be a set of weak rules. If s→R,strong w →R,head t, then there
exists q such that s→R,head q →∗R t.

Proof. Using Lemma 4, write s = C[λx. u], w = C[λx. v]. Let y be a fresh
variable of the same type as λx. u. Then s = C[y↑][y := λx. u] and t = C[y↑
][y := λx. v] (Lemma 5; λx. u does not freely contain variables bound by C). As
w →head t, write w = lγ, t = rγ for a rule l → r. Since l is a weak pattern it
will also match on C[y↑]: according to Lemma 6 there is a substitution δ with
C[y ↑] = lδ. Now observe that s = C[y ↑][y := λx. u] = lδ[y := λx. u] →head

rδ[y := λx. u]→∗ rδ[y := λx. v] = C[y↑][y := λx. v] = t; hence take q := rδ[y :=
λx. u]. ut

Lemma 8. Let R be a set of weak rules. If s →R,strong w →R,weak,in t, then
there exists q such that s→R,weak,in q →∗R,in t.

Proof. By induction on the structure of s. First observe that w has base type
(since w →weak t), and shares type with s and t. Hence, s = a(s1, . . . , sn) with
a ∈ F∪V. Since a strong step cannot occur at the head of a base type term, w =
a(s1, . . . , s

′
i, . . . , sn) and as the w → t step is internal w = a(w1, . . . , wj , . . . , wn)

and t = a(w1, . . . , w
′
j , . . . , wn). If j 6= i the two steps are independent; s→weak,in

a(s1, . . . , w
′
j , . . . , sn) →strong t. If j = i and wj →head w′j we apply Lemma

7 to find si →head v →∗ w′i and therefore s →weak,in a(s1, . . . , v, . . . , sn) =
f(w1, . . . , v, . . . , wn)→∗in f(w1, . . . , wn). Finally, if j = i and wj →weak,in w

′
j we

can apply the induction hypothesis for a similar result. ut

Lemmas 7 and 8 together prove Lemma 1.

.2 Proofs relating to Section 5

To demonstrate Theorem 1 we need a number of properties of the subterm rela-
tion �. These are straightforward and some of them have been proved elsewhere
for a real subterm relation. We give both a short proof and a complete version
with all the details.

Lemma 9 (properties of �). For all terms s, t and weak rules R:

1. s�t iff s = C[t′] with C 6= 2 and t′[x := c] = t where {x} = FV (t′)\FV (s).
2. s[x := c]→R t iff there is some t′ such that t = t′[x := c] and s→R t′.
3. If s� · →R t then also s→R ·� t (where · denotes composition).
4. If →R is terminating then so is →R ∪�.

Proof (short proof of lemma 9). (1) is proved by a simple induction, on the
size of C for the ⇐ implication and on the number of direct subterm steps
(f(. . . , s, . . .) � s, λx. s � s[x := c]) for ⇒. For (2), perform induction on the
definition of →R; the induction step reduces easily to the induction hypothesis,
and the base step follows from left-linearity of R. (3) is a combination of (1) and
(2) (if s = C[r′]�r′[x := c]→R t then s→R C[t′]�t). (4) is a consequence of (3),
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since by shuffling →R steps forward every infinite →R ∪� sequence would lead
to either an infinite →R reduction or an infinite � chain (which is impossible,
since � reduces to a smaller term). ut

Proof (long proof of lemma 9(1)). We have two directions to show.
For the ⇐ direction, suppose s = C[t′], FV (t′) \ FV (s) = {x} and t′[x :=

c] = t. We prove s � t by induction on the size of C, and s � t if C is not the
empty substitution follows immediately (since C[t′] has more symbols than t).
Certainly, if C is the empty substitution, s � t because s = t. Otherwise, write
either C[] = λy.D[] or C[] = a(. . . , D[], . . .) with a ∈ Fc ∪ V. In the first case
let {z} = FV (D[t′]) = {x} \ {y}. We have s � t if D[t′][y := c] � t = t′[y :=
c][z := c], which holds by the induction hypothesis. In the second case note that
FV (t′) \ FV (D[t′]) = FV (t′) \ FV (C[t′]), so D[t′] � t′[y := c] = t by induction
and therefore C[t′] � t.

For the⇒ direction, let !! denote the direct subterm relation, so a(. . . , q, . . .)!!q
and (λx. q)!!q[x := c] (� is the transitive closure of !!). If s � t then s =
s0!!s1!! . . .!!sn. We perform induction on n. Certainly, if n = 0 then s = t and we
can complete with t′ = t and C the empty substitution. If n > 0, let q = sn−1.
We may use the induction hypothesis to find a term q′, context C and vari-
ables {x} = FV (q′) \ FV (s) such that s = C[q′] and q′[x := c] = q. Now, if
q = a(q1, . . . , t, . . . , qn), then it can only be that q′ = a′(q′1, . . . , t

′, . . . , q′n)[x :=
c]; since FV (t′) \ FV (s) ⊆ FV (q′) \ FV (s) this suffices (choose environment
D[] = C[a′(q′1, . . . ,2, . . . , q

′
n)]). If q = λy. t we can write q′ = λy. t′ with

t′[x := c, y := c] = t; then FV (t′) \ FV (s) ⊆ {x} ∪ {y} and we can choose
context D = λy.2. ut

Proof (long proof of lemma 9(2)). Given s[x := c] →R t we must find t′ such
that s→R t′ and t′[x := c] = t.

To start, we prove by induction on l: if s[x := c] = lγ with l a weak pattern
and dom(γ) = FV (l), there is δ such that s = lδ and γ(z) = δ[x := c](z) for
all z ∈ FV (l). First, if l = y↑ for a variable y, take δ(y) := s; evidently δ[x :=
c](y) = s[x := c] = γ(y). Second, if l = f(l1, . . . , ln), then s = f(s1, . . . , sn) with
liγ = si[x := c] for all i. By linearity of l we can split γ in substitutions γ1, . . . , γn
on the disjunct domains dom(γ1), . . . ,dom(γn). Use the induction hypothesis on
each li; we find δi such that si = liδi and γi(z) = δ[x := c](z) for all z ∈ FV (l).
All δi can be assumed to have the same domain as γi, so taking δ := δ1∪ . . .∪ δn
we have a well-defined substitution satisfying all requirements.

Now, given s, t such that s[x := c] →R t. We find t′ with induction on the
definition of→R. In the base case, s[x := c]→R,head t, there are l→ r ∈ R and
substitution γ such that s[x := c] = lγ, rγ = t; we can assume dom(γ) = FV (l)
and FV (l) is disjunct from {x}. As we saw above, there is δ such that s = lδ and
δ[x := c] = γ; take t′ = rδ and we have s→head t

′ and t′[x := c] = rδ[x := c] =
r(δ[x := c]) = t, the last step because no xi occurs in r (being free variables
which don’t occur in l). For the induction step, either s[x := c] = λy. u →
λy. v = t with y /∈ {x} or s[x := c] = a(q1, . . . , u, . . . , qn) → a(q1, . . . , v, . . . , qn)
with a ∈ Fc ∪ V. We can write s = λx. u′ or s = a′(q′1, . . . , u

′, . . . , q′n) (a′
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might be one of the xi) and use the induction hypothesis to find v′ such that
u′ → v′ and v′[x := c] = v. If s = λy. u′ take t′ := λy. v′, otherwise choose
t′ := a′(q′1, . . . , v

′, . . . , q′n). In either case, the requirements are met. ut

Proof (long proof of lemma 9(3)). By (1) and (2) s = C[r′], r′ →R t′, r =
r′[x := c] and t = t′[x := c] (with {x} = FV (r′) \ FV (s) ⊇ FV (t′) \ FV (s)).
Postponing the � step, s = C[r′]→R C[t′] � t. ut

Proof (long proof of lemma 9(4)). Let t1 be an arbitrary term that is non-
terminating under→R ∪�. Given ti, let s be a minimal term such that ti�s and
an infinite such sequence starts in s; such s always exists. Since s is minimal the
first step in an infinite sequence starting in s would be s→R q; then ti� · →R q
so by (3) we can find ti+1 such that ti →R ti+1 � q. But then also an infinite
→R ∪� reduction starts from ti+1, and we can proceed with this term. This
infinite procedure generates a sequence t1 →R t2 →R . . .. ut

Having Lemma 9, and defining |s| as the term s with any marks removed, we
can prove Theorem 1 in detail:

Proof (proof of Theorem 1). For the ⇐ direction, we assume →R admits an
infinite reduction and create an infinite dependency chain. To that end, find a
minimal non-terminating term t and let t0 := t#. For all i ∈ N, given a term
ti = f(s1, . . . , sn)# such that |ti| = f(s1, . . . , sn) is minimal non-terminating,
consider an infinite reduction starting in |ti|. Since all sj are terminating not all
steps in this reduction can be strong (eventually a headmost step will have to
be done); using Lemma 1 pull weak steps to the left until we have a reduction
|ti| →weak,in u1 →weak,in . . . →weak,in w →head w

′ (a head step will be reached
eventually, again because |ti| is minimal). w′ is still non-terminating and w =
lγ, w′ = rγ for some rule l→ r and substitution γ, which we can safely assume
has domain FV (l). Since →weak,in steps do not affect the root symbol, l has the
form f(q1, . . . , qn), and thus f is a defined symbol. Define li+1 := l# and γi+1 :=
γ and let p be the smallest candidate term of r such that pγ is non-terminating.
Let pi+1 := p# and ti+1 := q# where q is the smallest non-terminating �-
subterm of pγ (so |ti+1| = q is also minimal non-terminating).

During this process, it is evident that li+1 ; pi+1 ∈ DP(R) and that
ti →∗weak li+1γi+1 (since for →in reductions it does not matter if the head sym-
bol is changed from f to f#). If p = f(p1, . . . , pm) with f ∈ D then pγ =
f(p1γ, . . . , pmγ); by minimality of p not piγ�q, so p#γ = t. If p = x(p1, . . . , pm)
there is no such guarantee, but evidently not q ⊆ γ(y) for any y, as these are
strict subterms of l. As such, the chain [(li, pi, γi, ti)|i ∈ N] created in this process
is an infinite dependency chain.

For the ⇒ direction, let an infinite dependency chain be given and define
si := |li|γi for all i ∈ N. Then always si →+

R ·� · →∗R si+1, which by Lemma 9(4)
implies non-termination of →R. ut

Theorem 2 follows without much difficulty.
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Proof (long proof of Theorem 2). Given a reduction pair (>,≥) satisfying the
requirements in the theorem, and infinite dependency chain [(li, pi, γi, ti)|i ∈ N]
we have for each i: liγi > ti either by requirement 1 and 7(3) (if head(pi) ∈ F#

c ),
or by 3 (if head(pi) ∈ V). We have ti ≥ li+1γi+1 by requirements 2, 7(3) and
7(2). By 7(1) then liγi > li+1γi+1 for all i, contradicting well-foundedness.

For the other direction, given a terminating rewrite relation →R, let s > t if
|s| →+

R ·� |t| and s ≥ t if |s| →∗R |t|. Evidently > is an ordering and ≥ a quasi-
ordering; compatibility (7(1)) holds by Lemma 9(3). ≥ is fully monotonic, and
as for weak stability, note that→R is weakly stable, as can be seen by induction
over the derivation s →R t (if s = lγ and t = rγ for l → r ∈ R, then sδ =
lγδ →R rγδ = tδ; if s = f(s1, . . . , si, . . . , sn) →R f(s1, . . . , s

′
i, . . . , sn) because

si →R s′i, then by induction siδ →R s′iδ so sδ = f(s1δ, . . . , siδ, . . . , snδ) →R
f(s1δ, . . . , s

′
iδ, . . . , snδ) = sδ; these are the only forms s might have, because x↑

with x a variable does not reduce). We can also see that � is weakly stable,
with induction over the derivation of s � t (if s = t then sγ = tγ and if s =
f(s1, . . . , sn) � t because si � t, then by induction sγ � tγ because siγ � tγ).
Combining this, both > and ≥ are weakly stable, and thus (>,≥) is a reduction
pair. It is also clear that l > p for all dependency pairs l ; p and that l ≥ r for
all rules l→ r. Requirement 3 is similarly satisfied. ut

.3 Proofs relating to Section 6.1

Proof (long proof of Theorem 3). We show that the reduction pair as described
in Theorem 3 satisfies the requirements of Theorem 2. Requirements 1 and 2 are
passed immediately by the corresponding requirements of Theorem 3. For the
last requirement let l ; x(p1, . . . , pm) ∈ DP(R) with x ∈ V, γ a substitution
with domain FV (l) and t � pγ such that not γ(y) � t for any y. If not piγ � t
for any of the pi we are done by condition 3 of Theorem 3. Otherwise, consider
the smallest q such that some pi � q and qγ � t. Since t has base type we can
assume that q does, too, so write q = a(q1, . . . , qn) and note that no qiγ � t by
minimality of q. If a ∈ V and n = 0, then γ(a) � t, contradiction. If a ∈ V and
n > 0 then l ; q# ∈ DPβo(R) and by Thm.3(3) it follows that lγ > t#. If
a ∈ Fc then qγ = a(q1γ, . . . , qnγ); since none of the qiγ� t we must have qγ = t,
and therefore a ∈ D. So in this case too, l ; q# ∈ DPβo(R), and by Thm.3(1)
and weak stability lγ > q#γ = t#. ut

.4 Proofs relating to Section 6.2

Individual proofs of Lemma 2

Proof (long proof of Lemma 2(1)). By induction on the type of x. It is ob-
vious for base type x, and if x ↑= λy1 . . . yn. x(y1 ↑, . . . , yn ↑) then πS(x ↑) =
λy1 . . . yn. x(πS∪{y1,...,yn}(y1↑), . . . , πS∪{y1,...,yn}(yn↑)), whether x ∈ S or x /∈ S.
By the induction hypothesis on all yi, this = λy1 . . . yn. x(y1↑, . . . , yn↑) = x↑. ut
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Proof (long proof of Lemma 2(2)). By induction on the definition of πX . Note
that always FV (s)∩X = FV (s)∩ (X ∪Y ). Note also that if FV (s)∩Y = ∅ and
q is a direct subterm of s, also FV (q) ∩ Y = ∅ Even when s = λy. q, as y can
be chosen fresh. Thus, πX∪Y (s) = λy. π(X∪{y})∪Y (q) = (IH) λy. πX∪{y}(q) =
πX(s). When s = a(s1, . . . , sn) and either a /∈ dom(π) or X ∩ FV (s) 6= ∅,
then πX∪Y (s) = a(πX∪Y (s1), . . . , πX∪Y (sn)) = (IH) a(πX(s1), . . . , πX(sn)) =
πX(s). If s = f(s1, . . . , sn) with f ∈ dom(π) and X ∩ FV (s) = ∅, then also
(X∪Y )∩FV (s) = ∅, so either πX∪Y (s) = fπ(πX∪Y (si1), . . . , πX∪Y (sik)) = (IH)
fπ(πX(si1), . . . , πX(sik)) = πX(s), or πX∪Y (s) = πX∪Y (si) = (IH) πX(si) =
πX(s). ut

Proof (long proof of Lemma 2(3)). By induction on l. If l = x↑, π(l) = l (by (1))
is a weak pattern. Otherwise l = f(l1, . . . , ln) and by induction hypothesis all li
are weak patterns. This proves the lemma whether π(l) = f(π(l1), . . . , π(ln)) or
π(l) = fπ(π(li1), . . . , π(lik)) or π(l) = π(li). ut

Proof (long proof of Lemma 2(4)). Given term s and set X, we need to see that
s wAF πX(s). Perform induction on the size of s. If s = λx. s′, then πX(s) =
λx. πX∪{x}(s

′). By the induction hypothesis s′ wAF πX∪{x}(s′), so s wAF πX(s)

by monotonicity of wAF . If s = f(s1, . . . , sn) with f ∈ F#
c ∪V, then by the induc-

tion hypothesis each si wAF πX(si), so s wAF s′ := f(πX(s1), . . . , πX(sn)). Now
πX(s) is either f(πX(s1), . . . , πX(sn)) or fπ(πX(si1), . . . , πX(sik)) or πX(si). In
the first case s′ = πX(s), in the second two s′ wAF πX(s) in a single step. ut

Proof (long proof of Lemma 2(5)). Define (only in this proof) a(s1, . . . , sn)!!t
if either t = aπ(si1 , . . . , sik) and π(a) = [i1, . . . , ik], or t = si if π(a) = i. By
definition wAF is the smallest monotonic and transitive relation containing !!.
Consider, however, the alternative relation ≥:

1. λx. s ≥ λx. t if s ≥ t
2. a(s1, . . . , sn) ≥ t if one of:

(a) t = a(t1, . . . , tn) with s1 ≥ t1, . . . , sn ≥ tn for a ∈ Fπ ∪ V
(b) t = aπ(ti1 , . . . , tik) with sij ≥ tij for all j, and π(a) = [i1, . . . , ik]
(c) si ≥ t and π(a) = i

≥ is evidently contained in wAF , by induction on its definition. If wAF is also
contained in ≥ the two relations are equal, and the statement follows. We know
that wAF is contained in ≥ if we can prove that ≥ is reflexive, transitive and
monotonic, and contains !!. Reflexivity and monotonocity are evident with induc-
tion on the size of the term, using points 1 and 2a of the definition of ≥ (in the
base case, a ≥ a for base type constants and variables by rule 2a), and using re-
flexivity it is also clear that ≥ contains !!. Transitivity, ∀s, t, r[s ≥ t ≥ r ⇒ s ≥ r],
follows by induction over the size of s, as we see below:

Let s ≥ t ≥ r. If s ≥ t by rule 1 then t ≥ r by the same rule, and s ≥ r by the
induction hypothesis. Otherwise write s = a(s1, . . . , sn). If s ≥ t by rule 2c then
it holds because some si ≥ t; by the induction hypothesis si ≥ r and therefore
s ≥ r by the same rule. If s ≥ t by rule 2b then t = aπ(ti1 , . . . , tik); the t ≥ r
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step can only be by rule 2a, so r = aπ(ri1 , . . . , rik) with each sij ≥ tij ≥ rij and
therefore by induction sij ≥ rij ; s ≥ r by rule 2b. Finally, if s ≥ t by rule 2a,
write t = a(t1, . . . , tn) with each si ≥ ti. Consider why t ≥ r. If this is also by
rule 2a, r = a(r1, . . . , rn) with each si ≥ ti ≥ ri, so by the induction hypothesis
si ≥ ri and thus s ≥ r by 2a. If it is by 2b r = aπ(ri1 , . . . , rik) and by the
induction hypothesis always sij ≥ rij ; s ≥ r by that same rule 2b. Finally, if
t ≥ r by 2c there is i such that π(a) = i and si wAF ti wAF r; by the induction
hypothesis si wAF r and thus t ≥ r by 2c. ut

Proof (long proof of Lemma 2(6)). Perform induction on the pre-term sγ, or-
dered by the union of →β with the proper subterm relation (this is not �; s is a
subterm of λx. s). It has been demonstrated in other sources that this union is
well-founded. On pre-terms, the subterm relation is closed under substitution.

First, consider s = λx. s′. By (5) t = λx. t′ and s′ wAF t′; by induction
s′γ wAF t′δ, and therefore s′γ wAF t′δ. Otherwise, write s = a(s1, . . . , sn).
Once more (5) provides three possible forms for t. If π(a) = [i1, . . . , ik] and
t = aπ(ti1 , . . . , tik) with each sij wAF tij , then by induction each sijγ wAF tijδ,
so similarly sγ = aπ(si1γ, . . . , sikγ) wAF aπ(ti1δ, . . . , tikδ) = tδ. If π(a) = i
and si wAF t, then by the induction hypothesis siγ wAF tδ. So assume t =
a(t1, . . . , tn) with each si wAF ti. If a /∈ dom(γ) (so also a /∈ dom(δ)), sγ =
a(s1γ, . . . , snγ) wAF a(t1δ, . . . , tnδ) = tδ by the induction hypothesis on the
siγ. If a ∈ dom(γ) and n = 0, sγ = γ(a) wAF δ(a) = tδ. If a ∈ dom(γ)
and n > 0, write γ(a) = λy1 . . . yn. q and (using (5)) δ(a) = λy1 . . . yn. q

′ with
q wAF q′. By the →β part of the induction hypothesis q[y1 := siγ, . . . , yn :=
snγ] wAF q′[y1 := t1δ, . . . , yn := tnδ] if each siγ wAF tiδ, which is the case by
the subterm part of the induction hypothesis. Since (as terms) sγ = q[y := sγ]
and tδ = q′[y := tδ], the lemma holds. ut

Proof (long proof of Lemma 2(7)). By induction on the pre-term sγ, ordered
by the union of →β and the subterm relation. If s is an abstraction we use (2)
to rewrite πX∪Y (λx. q) = λx. πX∪Y ∪{x}(q)πX(γ) to λx. πX∪Y ∪{x}(q)πX∪{x}(γ),
which by induction hypothesis wAF λx. πX∪{x}(qγ) = πX(λx. qγ). Otherwise

let s = a(s1, . . . , sn) with a ∈ F#
c ∪ V. If FV (s) ∩ Y = ∅ then FV (πX∪Y (s)) ∩

Y = ∅ as well, so πX∪Y (s)πX(γ) = πX∪Y (s) = πX(s) (by (2)), = πX(sγ). If
a ∈ FV (s) and n = 0, πX∪Y (s)πX(γ) = πX(γ)(a) = πX(γ(a)) = πX(sγ). So
assume FV (s)∩Y 6= ∅ and n > 0; write πX∪Y (s) = a(πX∪Y (s1), . . . , πX∪Y (sn)).
If a /∈ Y we have πX∪Y (s)πX(γ) = a(πX∪Y (s1)πX(γ), . . . , πX∪Y (sn)πX(γ)),
which by the induction hypothesis wAF -reduces to a(πX(s1γ), . . . , πX(snγ)) =
πX(sγ). If a ∈ Y let γ(a) = λy1 . . . yn. q and define δ := [y1 := s1γ, . . . , yn :=
snγ]. Since πX∪Y (si)πX(γ) wAF πX(siγ) for all i by the induction hypothesis,
πX∪Y (s)πX(γ) = πX∪{y}(q)[y1 := πX∪Y (s1)πX(γ), . . . , yn := πX∪Y (sn)πX(γ)]
wAF πX∪{y}(q)πX(δ). By the →β part of the induction hypothesis, this term
wAF -reduces to πX(qδ) = πX(sγ). ut

Proof (long proof of Lemma 2(8)). Perform induction on the size of s. For an ab-
straction, πX(λx. q)π(γ) = λx. πX∪{x}(q)π(γ) wAF λx. πX∪{x}(tγ) by induction

hypothesis, = πX((λx. q)γ). Otherwise, write s = a(s1, . . . , sn) with a ∈ F#
c ∪V.
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If a ∈ Dom(γ), let γ(a) = λy. q and define δ = [y1 := s1γ, . . . , yn := snγ].
By induction hypothesis πX(si)π(γ) wAF πX(siγ) for all i, so πX(s)π(γ) wAF
π{y}(q)πX(δ) = πX∪{y}(q)πX(δ) by (2), wAF πX(qδ) = πX(sγ) by (7). Alterna-
tively, if a ∈ dom(π) andX∩FV (s) = ∅, either πX(s)π(γ) = aπ(πX(si1)π(γ), . . . ,
πX(sik)π(γ)) or πX(s)π(γ) = πX(si)π(γ). Since X is disjunct from the range of
γ, also X ∩ FV (sγ) = ∅ so πX(sγ) = aπ(πX(si1γ), . . . , πX(sikγ)) or πX(sγ) =
πX(siγ) respectively. In both cases, the induction hypothesis supplies πX(s)π(γ)
wAF πX(sγ). Finally, if a /∈ Dom(γ) ∪ Dom(π), or X ∩ FV (s) 6= ∅ then
πX(s)π(γ) = a(πX(s1)π(γ), . . . , πX(sn)π(γ)) wAF a(πX(s1γ), . . . , πX(snγ)) by
induction hypothesis, which either = πX(sγ) (if a /∈ dom(π) or X ∩ FV (sγ) is
also non-empty), or reduces to it with a single wAF step on the top term. ut

Proof (long proof of Lemma 2(9)). By induction on the structure of s. If s is (the
eta-long form of) a variable x, π(s)π(γ) = sπ(γ) by (1), = π(γ)(x) = π(γ(x)) =
π(sγ). Alternatively, if s = f(s1, . . . , sn) with f ∈ F#

c , by the induction hy-
pothesis each π(si)π(γ) = π(siγ); this proves the lemma whether f /∈ Dom(π),
π(f) = [i1, . . . , ik], or if π(f) = i with si of base type (for example in the last
case, π(s)π(γ) = π(si)π(γ) = π(siγ) = π(sγ)). ut

Proof (long proof of Lemma 2(10a)). As stated in the proof of Lemma 2(10),
we will first prove: if s � t and s has base type and FV (s) ∩ X 6= ∅, then not
t wAF πX(s).

First we prove that always FV (s) ∩ X = FV (πX(s)) ∩ X, by induction on
the form of s. If X ∩FV (s) = ∅, then no element of X can occur in FV (πX(s))
either (π does not create new variables), so FV (s) ∩X = FV (πX(s)) ∩X = ∅.
If s = a(s1, . . . , sn) with X ∩ FV (s) 6= ∅, then πX(s) = a(πX(s1), . . . , πX(sn)).
Therefore, FV (πX(s))∩X = {a|a ∈ X}∪

⋃
1≤i≤n FV (πX(si))∩X = (IH) {a|a ∈

X}∪
⋃

1≤i≤n FV (si)∩X = FV (s)∩X. Finally, if s = λy. q then FV (πX(s))∩X =
FV (λy. πX∪{y}(q))∩X = (FV (πX∪{y}(q))\{y})∩X = (FV (πX∪{y}(q))∩ (X ∪
{y})) \ {y} = (IH) (FV (q)∩ (X ∪{y}) \ {y} = (FV (q) \ {y})∩X = FV (s)∩X.

To prove the statement, let s be a base type term a(s1, . . . , sn) and assume
that FV (s) ∩X 6= ∅ and s� t wAF πX(s); we will see that s = t, by induction
on the size of s. We can safely assume that t is the smallest �-subterm of s with
t wAF πX(s); if t = s we are done, so assume towards a contradiction that some
si � t. Write πX(s) = a(πX(s1), . . . , πX(sn)). By (5), t = a(t1, . . . , tn) with each
tj wAF πX(sj) (the other two forms are impossible since a is unfiltered and t
minimal). But some si� t, so si(c)� t� ti(c) wAF πX(si)(c), which by (7) wAF
πX(si(c)). But FV (si) ∩X ⊇ FV (t) ∩X ⊇ FV (πX(s)) ∩X = FV (s) ∩X 6= ∅,
and si(c) has as many symbols as si; we can apply the induction hypothesis to
find that si = ti, which leads to a contradiction because si � t! ut

Proof (long proof of Lemma 2(10)). Since s wAF q, q might have one of three
forms by (5). It cannot have the third form, since si wAF q wAF πX(si) would
contradicting (10a). Nor can it have the second form, as then q would be headed
by fπ, which πX(s) is not, and therefore still some sij wAF πX(s). Thus, q =
f(q1, . . . , qn) with each si wAF qi. Again we cannot have some si wAF qi wAF
πX(s), and πX(s) is headed by f , so by point 5 each qi wAF πX(si). ut
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Proofs relating to Lemma 3

Lemma 3 is probably the most fundamental Lemma of this paper, as it demon-
strates how we get rid of the rather awkward requirement 3 of Theorem 2 (or
the corresponding requirement in Theorem 3). We separate the definition given
in the short proof in the text, and prove two lemmas about it, which combine
to give Lemma 3.

Definition 12. Given terms v, w over F#
c and u over Fπ, we say u preserves

v in w if:

– if w = v, then u wAF hπ(v)
– if w � v, then:
• if w = λx.w′, then u = λx. u′ and u′[x := c] preserves v in w′[x := c]
• if w = a(w1, . . . , wn) for a ∈ F#

c ∪ V, then u = a(u1, . . . , un) and ui
preserves v in wi for each i ≤ n.

A statement “u preserves v in w” implies that if w�v, then also u�· wAF hπ(v),
and if the first � is strict, so is the second. Moreover, if w � v then w and u
have roughly the same form, at least in those subterms containing v. Thus, we
aim to see that π(p)π(γ) preserves t in pγ.

Lemma 10. Suppose u preserves v in w. Then u � · wAF hπ(v) if w = v and
u� · wAF hπ(v) if w � v.

Proof. By induction on the size of w. If w = v, then u wAF hπ(v) by definition.
Otherwise, assume w � v (as there is nothing to prove if this is not the case
either). If w is an abstraction λx.w′ then u = λx. u′ with u′[x := c] preserving v
in w′[x := c]. By the induction hypothesis u� u′[x := c]� ·hπ(v). Alternatively,
if w = a(w1, . . . , wn) with f ∈ Fc ∪ V, then u = a(u1, . . . , un) with each ui
preserving v in wi. Since w � v there must be some i with wi � v; by the
induction hypothesis u� ui � · wAF hπ(v). ut

Lemma 11. Given terms s, s′, base type term t and substitutions γ, γ′ on the
same domain X such that:

1. s, t and each γ(x) are terms over T (F#
c ); s′ and each γ′(x) are in T (Fπ);

2. s wAF s′ wAF πX(s) and all γ(x) wAF γ′(x) wAF π(γ(x));
3. s′ preserves t in s and each γ′(x) preserves t in γ(x);

Then s′γ′ preserves t in sγ.

Proof. Perform induction on the pre-term sγ, ordered with the union of →β

and the subterm relation, and assume that sγ � t (if not, we are done anyway).
Assume also FV (s) ∩X 6= ∅ (if not, s′γ = s′ preserves t in s = sγ by require-
ment 3). If s is an abstraction λx.w then by Lemma 2(5), s′ = λx.w′ with
w wAF w′ wAF πX∪{x}(w), and noting that sγ 6= t (different types) we conclude

with the induction hypothesis. Otherwise s = a(w1, . . . , wn) with a ∈ F#
c ∪ V
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and by Lemma 2(10) s′ = a(w′1, . . . , w
′
n) with each wi wAF w′i wAF πX(wi).

Applying the induction hypothesis on all wi, w
′
i, γ, γ

′, we find that w′iγ
′ al-

ways preserves t in wiγ. If a ∈ X let γ(x) = λy. r, and γ′(a) = λy. r′ (by
Lemma 2(5), r wAF r′ wAF π{y}(r)). The Lemma follows by the →β part of
the induction hypothesis on r, r′, δ, δ′, where δ(yi) = wiγ and δ′(yi) = w′iγ (by
Lemma 2(6) δ(yi) wAF δ′(yi) wAF πX(wi)π(γ), which by Lemma 2(7) wAF
π(wiγ) = π(δ(yi))). If a /∈ X then s′γ′ = a(w′1γ

′, . . . , w′nγ
′). Since each w′iγ

′ pre-
serves t in wiγ the second requirement of preserving is met. The first, s′γ′ wAF
hπ(t) if sγ = t, holds because s′γ′ wAF a(πX(w1)π(γ), . . . , πX(wn)π(γ)) wAF
a(π(w1γ), . . . , π(wnγ)) = hπ(sγ), the first step by assumption 2, and the second
by Lemma 2(7). ut

Lemma 3 follows from these two Lemmas:

Proof (proof of Lemma 3). Apply Lemma 11 on s, πX(s), t, γ, π(γ); due to Lemma
2(4) indeed s wAF πX(s) and γ wAF π(γ), and πX(s) preserves t in s because t
does not occur in s; each π(γ(x)) preserves t in γ(x) for the same reason. We de-
rive that πX(s)π(γ) preserves t in sγ, so by Lemma 10 πX(s)π(γ)� · wAF hπ(t).

ut

Proofs relating to Theorem 4

In Theorem 4 we must show that the ordering associated with a reduction pair
over the filtered rules is also a reduction pair, and fits the requirements of Theo-
rem 3. So, given a reduction pair (�,�) over T (Fπ) such that � contains wAF .
Define its associated pair (>,≥) as a pair of relations over T (F#

c ) as follows:
s > t if π(s) � π(t), and s ≥ t if π(s) � π(t).

Lemma 12. > and ≥ are compatible.

Proof. Let s > t ≥ r. That is, π(s) � π(t) � π(r). Then π(s) � π(r) because �
and � are compatible, and therefore s > r. ut

Lemma 13. ≥ is base-monotonic

Proof. Let sj have base type, and sj ≥ s′j , so π(sj) � π(s′j). For a ∈ F#
c ∪ V,

either a /∈ dom(π) or π(a) = [i1, . . . , in] or π(a) = i. In the first two cases
π(a(s1, . . . , si, . . . , sn)) � π(a(s1, . . . , s

′
i, . . . , sn)) by (base-)monotonicity of �,

or by reflexivity if j /∈ {i1, . . . , in}. In the last case, if j = i then π(f(s1, . . . , sn)) =
π(si) � π(s′i) = π(f(s1, . . . , s

′
i, . . . , sn)) by assumption, if j 6= i by reflexivity.

ut

Lemma 14. For weak patterns s and subtitutions γ on dom(s), if sRt then
sγRtγ (R ∈ {>,≥}).

Proof. If s > t, then π(s) � π(t), so π(sγ) = π(s)π(γ) (Lemma 2(9)), � π(t)π(γ)
(Lemma 2(3) and because � is weakly stable), wAF π(tγ) (Lemma 2(8)), which
proves sγ > tγ. The same reasoning works for ≥. ut
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Proof (long proof of Theorem 4). Given a reduction pair (�,�) on T (Fπ) which
satisfies the requirements of the theorem, Lemmas 12, 13 and 14 show that the
associated pair is a reduction pair on T (F#

c ) (because wAF is contained in �).
Moreover, requirements 1 and 2 of Theorem 3 are clearly met; the only difficulty
is condition 3. Consider suitable l, p, γ, t and write p = y(p1, . . . , pn) and γ(y) =
λx1 . . . xn. q. Using Lemmas 2(9) and 2(3), π(lγ) = π(l)π(γ) � π(p)π(γ) =
y(π(p1), . . . , π(pn))π(γ) = π{x}(q)[x := π(p)π(γ)] =: M . Since t neither occurs
in q nor in any piγ we can apply Lemma 3 and find that M� · wAF hπ(t), which
� π(t#) by the last two requirements of Theorem 4. Thus, either by transitivity
of � or compatibility of � and � we have π(lγ) � π(t#). ut


