
This paper is an extended version of a paper presented at DICE 2016, including
complete proofs. The 5-paper extended abstract in the DICE proceedings can
be found at:

https://arxiv.org/pdf/1711.03399v2.pdf

https://arxiv.org/pdf/1711.03399v2.pdf

ON FIRST-ORDER CONS-FREE TERM REWRITING AND PTIME

CYNTHIA KOP

Department of Computer Science, Copenhagen University
e-mail address: kop@di.ku.dk

Abstract. In this paper, we prove that first-order cons-free term rewriting with a call-by-
value reduction strategy exactly characterises the class of PTIME-computable functions.
We use this to give an alternative proof of the result by Carvalho and Simonsen which
states that cons-free term rewriting with linearity constraints characterises this class.

1. Introduction

In [4], Jones introduces the notion of cons-free programming : working with a small functional
programming language, cons-free programs are exactly those which can be specified without
introducing the list constructor. Put differently, a cons-free program is read-only : recursive
data cannot be created or altered (beyond taking subterms), only read from the input.

The interest in such programs lies in their applicability to computational complexity:
by imposing cons-freeness, the resulting set of programs can only compute functions in a
proper subclass of the Turing-computable functions. Jones shows that further limitations to
these programs lower the resulting expressivity to known classes. For example, cons-free
programs with data order 0 can decide exactly those decision problems which are in PTIME,
while tail-recursive cons-free programs with data order 1 characterise PSPACE.

Rather than an artificial functional programming language, it would make a lot of
sense to consider term rewriting instead. This well-established paradigm, which lies at the
heart of functional programming, both offers the expressivity to naturally define cons-free
programming, and the simplicity which real-life functional programming languages lack.
In addition, term rewriting is natively non-deterministic, which is likely to be useful for
characterising the non-deterministic complexity classes.

The authors of [3] explore a first definition of cons-free term rewriting, and prove that
this class – when limited to first-order term rewriting – characterises PTIME. However, in
order to do so they impose a partial linearity restriction on the programs. This restriction is
necessary since unrestricted first-order cons-free term rewriting allows for the implementation
of arbitrary algorithms operating in O(2k·n) for any k [5]. However, the restriction is not a
common one, and the proof is intricate.

The author is supported by the Marie Sk lodowska-Curie action “HORIP”, program H2020-MSCA-IF-
2014, 658162, and partially supported by the Danish Council for Independent Research Sapere Aude grant
“Complexity via Logic and Algebra” (COLA)..

c© C. Kop
Creative Commons

1

2 C. KOP

In this paper, we will provide an alternative, simpler proof of this result. We do so by
giving some simple syntactical transformations which allow a call-by-value reduction strategy
to be imposed, and show that call-by-value cons-free first-order term rewriting characterises
PTIME. This incidentally gives a new result with respect to call-by-value cons-free rewriting,
as well as a simplification of the linearity restriction in [3].

2. Preliminaries: first-order term rewriting

We assume given an infinite set of variables V and a finite, disjoint set of symbols F , each
f ∈ F equipped with an arity n ∈ N; we will either indicate membership using f : n ∈ F or
omit the arity and simply denote f ∈ F . The set of terms T (F ,V) is given by:

• V ⊆ T (F ,V);
• if f : n ∈ F , and {s1, . . . , sn} ⊆ T (F ,V), then f(s1, . . . , sn) ∈ T (F ,V).

Let Var(s) be the variables occurring in a term s; a term is ground if Var(s) = ∅. Let
T (F) := T (F , ∅) denote the set of ground terms over F . We say t is a subterm of s, notation
s� t, if either s = t, or s = f(s1, . . . , sn) and si � t for some i. Let s� t if s� t and s 6= t.

A substitution is a function from V to T (F ,V), often denoted [x1 := s1, . . . , xn := sn]
(this substitution is the identity on y /∈ {x1, . . . , xn}). For a term s and substitution γ, we
let sγ be s with all variables x replaced by γ(x). The domain of γ is the set of variables x
such that γ(x) 6= x.

A rule is a pair `→ r of terms such that Var(r) ⊆ Var(`) and ` is not a variable, i.e. `
can be written f(`1, . . . , `n); we call f the root symbol of the rule. Given a set of rules R,
the reduction relation →R is inductively defined:

• `γ →R rγ for all `→ r ∈ R and substitutions γ;
• if si →R ti, then f(s1, . . . , si, . . . , sn)→R f(s1, . . . , ti, . . . , sn).

We assume that R is finite. Fixing F and R, we let D be the set of root symbols of any rule
in R, and C := F \ D; symbols in D are called defined symbols and those in C constructors.
A constructor term is a term in T (C,V), and a data term a term in T (C). A basic term is a
term f(s1, . . . , sn) with f ∈ D and all si data. The call-by-value reduction relation allows
root reductions only on basic terms; formally:

• f(`1, . . . , `n)γ ;R rγ for all f(`1, . . . , `n)→ r ∈ R and substitutions γ such that all
`iγ are in T (C);
• if si ;R ti, then f(s1, . . . , si, . . . , sn) ;R f(s1, . . . , ti, . . . , sn).

Clearly, ;R⊆→R. A term rewriting system (TRS) is a pair (T (F ,V),→R) and a call-by-
value TRS is a pair (T (F ,V),;R). Both are typically given just by supplying (F ,R).

3. Cons-free Term Rewriting

Like Jones [4], we will limit interest to cons-free rules. To start, we must define what this
means in the setting of term rewriting.

Definition 1 (Cons-free Rules). A set of rules R is cons-free if it is a left-linear constructor-
system whose right-hand side introduces no new non-ground constructor terms. Formally,
R is cons-free if for all `→ r ∈ R:

• ` is linear; that is, no variable occurs more than once in `;
• ` has the form f(`1, . . . , `n) with all `i constructor terms (including variables);
• if r � t where t = c(r1, . . . , rm) with c ∈ C, then either t ∈ T (C) or `� t.

ON FIRST-ORDER CONS-FREE TERM REWRITING AND PTIME 3

Cons-free term rewriting enjoys many convenient properties. Most importantly, the set
of data terms that may be reduced to using cons-free rules is limited by the data terms in
the start term and the right-hand sides of rules, as described by the following definition:

Definition 2. For a given ground term s, the set Bs contains:

(1) all subterms of s which are data terms;
(2) all subterms of the right-hand side of some rule in R which are data terms.

Bs is closed under subterms and, since R is fixed, has linear size in the size of s. We
will see that cons-free reduction, when starting with a term of the right shape, preserves the
property of B-safety, which limits the constructors that may occur at any position in a term:

Definition 3 (B-safety). Given a set B of data terms which is closed under subterms, and
which contains all data terms occurring in a right-hand side of R. A term s is B-safe if all
its subterms rooted by a constructor are elements of B. Alternatively put:

(1) any term in B is B-safe;
(2) if f ∈ D has arity n and s1, . . . , sn are B-safe, then f(s1, . . . , sn) is B-safe.

We trivially observe:

Lemma 4. All subterms of a B-safe term are also B-safe.

The crucial property of cons-free TRSs is that they preserve B-safety:

Lemma 5. Let R be cons-free. If s is B-safe and s→∗R t, then t is B-safe.

Proof. By induction on the form of s. If the reduction does not take place at the root, then
s = f(s1, . . . , si, . . . , sn), t = f(s1, . . . , s

′
i, . . . , sn) and si →R s′i. As si reduces, it cannot be

a data term; therefore, B-safety of s must follow by clause (2), so f ∈ D and all sj are B-safe.
By the induction hypothesis, so is s′i, and B-safety of t follows similarly by clause (2).

If the reduction does take place at the root, then s = `γ and t = rγ for some `→ r ∈ R.
By Lemma 4, each γ(x) is B-safe. By induction on r, this implies t = rγ is B-safe:

• if r is a variable, then rγ = γ(r) is B-safe;
• if r = f(r1, . . . , rn) with f ∈ D, then by the induction hypothesis each riγ is B-safe,

and therefore B-safety of rγ = f(r1γ, . . . , rnγ) follows by clause (2);
• if r = c(r1, . . . , rn) with c ∈ D, then either r is a data term – so r ∈ B by definition

of B – or `� r, so rγ � `γ is B-safe by Lemma 4.

Thus, for a decision problem start(s1, . . . , sn)→∗R t or start(s1, . . . , sn) ;R t (where
t and all si are data terms), all terms occurring in the reduction are B-safe. This insight
allows us to limit interest to B-safe terms in most cases, and is instrumental in the following.

4. Call-by-value Cons-free Rewriting Characterises PTIME

Our first result – which will serve as a basis for the remainder – is that any decision problem
in PTIME can be accepted by a cons-free TRSs with call-by-value reduction, and vice versa.

To start, we must understand what it means for a TRS to accept a decision problem.

Definition 6. A decision problem is a set A ⊆ {0, 1}∗.
A TRS (F ,R) with nullary constructors true, false, 0, 1 and nil, a binary constructor

:: (denoted infix) and a unary defined symbol start accepts A if for all s = s1 . . . sn ∈ {0, 1}∗:
s ∈ A if and only if start(s1 :: · · · :: sn :: nil) →∗R true. Similarly, a call-by-value TRS
with those symbols accepts A if: s ∈ A if and only if start(s1 :: · · · :: sn :: nil) ;∗R true.

4 C. KOP

Note that it is not required that all evaluations end in true, just that there is such an
evaluation – and that there is not if s /∈ A. This is very relevant as TRSs are not required
to be deterministic. We say that a (call-by-value) TRS decides a decision problem A if
it accepts A and moreover each term has a unique normal form. This corresponds to the
notion for (non-deterministic) Turing Machines, where we say that a TM M accepts A if for
all s ∈ {0, 1}∗: some evaluation of M finishes in the accepting state if and only if s ∈ A.

We claim:

Lemma 7. If a decision problem A is in PTIME – that is, if some deterministic Turing
Machine exists which decides A and operates in polynomial time in the length of the input –
then there exists a call-by-value cons-free TRS which decides A.

Proof. We defer to [4]: the algorithm presented there can be seen as a deterministic call-by-
value TRS. The only difficulty is that the author admits a pair constructor, which we do not;
however, since the algorithm is deterministic this is easily solved by replacing tuples in the
left-hand sides of rules by separate arguments, and replacing any function which reduces to
a k-tuple by k-functions. For instance, a rule f (x, y) z → (y, z) in the functional program
is replaced by the two TRS-rules f1(x, y, z)→ y and f2(x, y, z)→ z.

Next, we will see that any decision problem that can be accepted by a cons-free call-by-
value TRS is in PTIME. This may seem surprising at first, as it implies that the ability to
take non-deterministic steps in a TRS adds no extra power. However, this is entirely in line
with known results: already in 1973, Cook [2] demonstrated that adding non-determinism
to a restricted machine model capable of characterising PTIME does not expand the class.
Most relevantly, the author of [1] observes that adding a non-deterministic choice operator
to cons-free first-order programming à la Jones does not add any expressive power.

To see that cons-free call-by-value term rewriting is indeed in PTIME, we will use a
deterministic algorithm, running in polynomial time, which calculates all normal forms of
basic terms f(~s) at once.

Algorithm 8. For a given starting term s, let B := Bs. For all f : n ∈ F and for all
s1, . . . , sn, t ∈ B, let Confirmedi[f(~s) ≈ t] = NO.

Now, for i ∈ N and f : n ∈ D and s1, . . . , sn, t ∈ B:

• if Confirmedi[f(~s) ≈ t] = YES, then Confirmedi+1[f(~s) ≈ t] := YES;
• if there is some rule ` → r ∈ R matching f(~s) and a substitution γ such that
f(~s) = `γ, and if t ∈ NFi(rγ), then Confirmedi+1[f(~s) ≈ t] := YES:
• if neither of the above hold, then Confirmedi+1[f(~s) ≈ t] := NO.

Here, NFi(s) is defined recursively for B-safe terms s by:

• if s is a data term, then NFi(s) = {s};
• if s = f(s1, . . . , sn), then let NFi(s) =⋃
{u ∈ B | ∃t1 ∈ NFi(s1), . . . , tn ∈ NFi(sn).Confirmedi[f(t1, . . . , tn) ≈ u] = YES}.

We stop the algorithm at the first index I > 0 where for all f ∈ F and ~s, t ∈ B:
ConfirmedI [f(~s) ≈ t] = ConfirmedI−1[f(~s) ≈ t].

As D and B are both finite, and the number of positions at which Confirmedi is YES

increases in every step, this process ends. The complexity is discussed below, but let us first
focus on correctness. We must see two things: that ConfirmedI captures rewriting, and that
it does not capture anything else. These results are explored in the next two lemmas.

First, we see that ConfirmedI captures rewriting:

ON FIRST-ORDER CONS-FREE TERM REWRITING AND PTIME 5

Lemma 9. For f : n ∈ D and s1, . . . , sn, t ∈ B: if f(~s) ;∗R t, then ConfirmedI [f(~s) ≈ t] =

YES. If s is B-safe, t ∈ B and s;∗R t, then t ∈ NFI(s).

Proof. We prove both properties together by mutual induction on the length of the reduction.
We start with the first claim, so we can assume it proven when considering the second.

In the base case, if f(~s) = t, we have a contradiction because f ∈ D and t must be
a data term. In the induction case, we have f(~s) ;R u ;∗R t. Since the only defined
symbol is at the root, f(~s) = `γ for some rule ` → r such that u = rγ. By the induction
hypothesis, t ∈ NFI(rγ) = NFI−1(rγ) (as ConfirmedI = ConfirmedI−1 by choice of I). But

then Confirmed(I−1)+1[f(~s) ≈ t] = YES by definition.
For the second claim, in the base case s = t implies s ∈ B, so t ∈ {s} = NFI(s). In the

induction case, s reduces, so s /∈ B and we can write s = f(s1, . . . , sn) with f ∈ D and all si
B-safe terms. Note that the reduction s;∗R t must take a root step at some point, since t
does not contain the defined symbol f . Thus we can write s;∗R f(u1, . . . , un) ;∗R t, where
f(~u) reduces by a call-by-value root step, so all ui are data terms; by Lemma 5 they are
all in B. By the induction hypothesis, we obtain ui ∈ NFI(si) for all i. By the main claim
proven above (for a reduction at most the length of s ;∗R t), ConfirmedI [f(~s) ≈ t] = YES.
Therefore indeed t ∈ NFI(s).

Then, we see that ConfirmedI does not capture anything else.

Lemma 10. For f : n ∈ D and s1, . . . , sn, t ∈ B: if ConfirmedI [f(~s) ≈ t] = YES, then
f(~s) ;∗R t. For B-safe s and t ∈ NFI(s): s;∗R t.

Proof. We prove both properties together for all relevant Confirmedi/NFi, by a mutual
induction on 0 ≤ i ≤ I.

For the first claim, assume Confirmedi[f(~s) ≈ t] = YES. This cannot hold for i = 0, so
(for the induction step) assume that both claims hold for i′ < i. We are done by the first
part of the induction hypothesis if Confirmedi−1[f(~s) ≈ t] = YES, so assume the alternative.
Then there are a rule `→ r ∈ R and a substitution γ such that f(~s) = `γ and t ∈ NFi−1(rγ).
But by the second part of the induction hypothesis this implies that rγ reduces to t. We are
done because of course `γ →R rγ.

For the second claim, let s be B-safe, t ∈ NFi(s) and assume that the first claim holds.
We will not use the induction hypothesis directly, but will use a second induction on the
size of s. If s is a data term, then NFi(s) = {s}, and we have t = s; evidently s ;∗R s.
Otherwise s = f(s1, . . . , sn) with f ∈ D, and there are some u1 ∈ NFi(s1), . . . , un ∈ NFi(sn)
such that Confirmedi[f(~u) ≈ t] = YES. By the induction hypothesis on s, each si ;

∗
R ui, so

indeed s;∗R f(~u). By the first claim, f(~u) ;∗R t.

Thus, the algorithm is correct. To see that is is polynomial, we count the steps.

Lemma 11. Algorithm 8 operates in O(n3k+3) steps, where n is the size of the input term
s and k the greatest arity in R (assuming the size and contents of R and F constant).

Proof. To understand the complexity of this algorithm, consider the calculation cost of the
set NFi(s), when Confirmedi is fully defined. Due to the recursive structure of the definition,
NFi(t) is calculated exactly once for every subterm t of s rooted by a defined symbol, and
for every topmost constructor symbol. For the constructor symbols only a single step is
done, while for defined symbols f of arity n, we must test for all ≤ |B|n+1 combinations
u1 ∈ NFi(s1), . . . , un ∈ NFi(sn), v ∈ B whether Confirmedi[f(~u) ≈ v] = YES. Taking into

6 C. KOP

account that in rγ the defined symbols can only occur at positions in r (since each γ(x) is a
subterm of some si and therefore itself an element of B), this means that NFi(rγ) can be
calculated in O(|r| ∗ |B|k+1) steps, where k is the greatest arity in D.

Furthermore, for the full algorithm, note that there are at most |D| ∗ |B|k+1 indexes in
each Confirmedi. Given the increasing nature of the process, that means I ≤ |D| ∗ |B|k+1 + 1.
It also means that in every step i, we consider at most |D| ∗ |B|k+1 positions, each giving
at most |R| ∗ O(〈size of largest r〉 ∗ |B|k+1) operations. In total, writing R for the size of
the largest right-hand side in R, we perform O((|D| ∗ |B|k+1)2 ∗ |R| ∗R ∗ |B|k+1) operations.
Given that we consider R and F fixed sets, and that B is linear in the size of the starting
term – say n – this algorithm has O(n3k+3) complexity; that is, polynomial in n!

In sum, we obtain:

Theorem 12. There is a polynomial algorithm to determine whether a cons-free TRS R
with call-by-value reduction reduces a basic term start(s1, . . . , sn) to true.

Proof. We let B := Bstart(~s), use the polynomial algorithm given above to determine

ConfirmedI , and look up whether ConfirmedI [f(~s) ≈ true] = YES. (If true /∈ B, then we can
immediately conclude that start(~s) 6;∗R true by Lemma 5.) If indeed start(~s) ;∗R true,
then this value is YES by completeness (Lemma 9). If not, then this value can only be NO by
soundness (Lemma 10).

Taking into account Lemma 7, we thus obtain:

Corollary 13. Cons-free call-by-value term rewriting characterises PTIME.

5. “Constrained” Systems

Now, let us move on to the main topic of this work. Carvalho and Simonsen [3] proved a
similar result to our Theorem 12, although they did not use call-by-value reduction. Instead,
they imposed an additional syntactic restriction on the rewriting rules, considering only
constrained cons-free TRS:

Definition 14. For any non-variable term f(`1, . . . , `n), let DVf(`1,...,`n) consist of those `i
which are variables. We say a rule `→ r is semi-linear if each x ∈ DV` occurs at most once
in r. A set of rules R is constrained if there exists A ⊆ D such that for all `→ r ∈ R:

• if the root symbol of ` is an element of A, then `→ r is semi-linear;
• for all x ∈ DV` and terms t: if r � t� x then the root symbol of t is in A.

It is not hard to obtain a counterpart to Lemma 7, specifying a “constrained” cons-free
TRS which simulates a given deterministic Turing Machine in PTIME. To also see that
constrained rewriting cannot decide problems beyond PTIME, the key insight is that we can
transform any such TRS into a cons-free call-by-value TRS without significantly altering
the TRS’s behaviour. This, we shall do in two steps.

• First, the “constrained” definition is hard to fully oversee. We will consider a simple
syntactic transformation to an equivalent system where all rules are semi-linear.
• Second, we add rules to the system to let every ground term reduce to a data term

(but not affecting the reduction behaviour to data terms over the original signature).
This, together with the semi-linearity restriction, is enough to allow a call-by-value
strategy to be imposed, simply by eagerly evaluating all inner terms.

ON FIRST-ORDER CONS-FREE TERM REWRITING AND PTIME 7

5.1. Semi-linearity. It is worth noting that, of the two restrictions, the key one is for rules
to be semi-linear. While it is allowed for some rules not to be semi-linear, their variable
duplication cannot occur in a recursive way. In practice, this means that the ability to have
symbols f ∈ D \ A and non-semi-linear rules is little more than syntactic sugar.

To demonstrate this, let us start by a few syntactic changes which transform a “con-
strained” cons-free TRS into a semi-linear one (that is, one where all rules are semi-linear).

Definition 15. For all f : n ∈ D, for all indexes i with 1 ≤ i ≤ n, we let count(f, i) :=
max({varcount(f, i, ρ) | ρ ∈ R} ∪ {1}), where varcount(f, i, g(`1, . . . , `m)→ r) is:

• 1 if f 6= g or `i is not a variable;
• the number of occurrences of `i in r if f = g and `i is a variable.

Note that, by definition of A, count(f, i) = 1 for all i if f ∈ A.
Let the new signature F• := C ∪ {f :

∑n
i=1 count(f, i) | f : i ∈ D}.

In order to transform terms to T (F•,V), we define ϕ:

Definition 16. For any term s in T (F ,V), let ϕ(s) in T (F•,V) be inductively defined:

• if s is a variable, then ϕ(s) := s;
• if s = c(. . .) with c ∈ C, then ϕ(s) := s;
• if s = f(s1, . . . , sn) with f ∈ D, then each si is copied count(f, i) times; that is:

ϕ(s) := f(s
(1)
1 , . . . , s

(count(f,1))
1 , . . . , s

(1)
n , . . . , s

(count(f,n))
n).

It is easy to see that indeed ϕ(s) respects the arities in F•, provided subterms c(. . .) of
s which are headed by a constructor are guaranteed to be data terms – which is the case
in B-safe terms and right-hand sides of cons-free rules. Moreover, B-safe terms over F are
mapped to B-safe terms over F•.

Definition 17. We create a new set of rules R• containing, for all elements f(`1, . . . , `n)→
r ∈ R, a rule f(`11, . . . , `

k1
1 , . . . , `

1
n, . . . , `

kn
n)→ r′′ where ki := count(f, i) for 1 ≤ i ≤ n and:

• for all 1 ≤ i ≤ n: `1i = `i, and all other `ji are distinct fresh variables;
• r′′ := ϕ(r′), where r′ is obtained from r by replacing all occurrences of a variable

`i ∈ DVf(`1,...,`n) by distinct variables from `1i , . . . , `
ki
i .

Due to the restrictions on the rules, we obtain:

Lemma 18. The rules in R• are well-defined, cons-free and semi-linear.

Proof. Let ρ ::= f(`11, . . . , `
k1
1 , . . . , `

kn
n)→ r′′ be a rule in R•, originating from `→ r.

For well-definedness, we note that f indeed respects the arity in F•, that all terms `ji
respect the new arities because they are constructor terms, and that ϕ(r′) respects those
arities because all constructor-headed subterms c(. . .) of r′ are either data terms in B or
(possibly renamed) subterms of some constructor term `j ; we also note that the renaming
from r to r′ can be done because by definition of ki := count(f, i) each variable in DV`

occurs at most as many times on the right as it does in the altered left-hand side.

The rules are also cons-free. Obviously all `ji are constructor terms, either because they
are immediate arguments of the left-hand side of a rule in R, or because they are variables.
Moreover, each subterm c(. . .) of r′′ with c ∈ C is either in B or a subterm of some `i, so of
`1i : by definition of ϕ, it is a subterm of r′, so a renaming of a subterm of some non-variable
argument `i, but as only the variables directly in `1, . . . , `n are renamed, not those occurring
in subterms (and we assumed left-linearity), the renaming has no effect.

8 C. KOP

As for semi-linearity: r′ is linear in the required variables. The mapping ϕ cannot alter
that, as the only duplicated subterms have the form g(r1, . . . , rm) with g ∈ D \ A (since
always count(g, i) = 1 for g ∈ A), and by definition of A, none of the dangerous variables
occur inside such subterms.

Lemma 19. Let s, t be B-safe terms. If s→R t, then ϕ(s)→+
R• ϕ(t).

Proof. By induction on the position of the redex; since s reduces and is B-safe we can safely
write s = f(s1, . . . , sn) with f ∈ D. Let ki := count(f, i) for 1 ≤ i ≤ n.

First suppose the reduction takes place in a subterm, so t = f(. . . , s′i, . . .) with si →R s′i;
by the induction hypothesis ϕ(si)→+

R• ϕ(s′i). As si is not a data term, f ∈ D by B-safety
of s. Thus

ϕ(s) = f(ϕ(s
(1)
1), . . . , ϕ(s

(k1)
1), . . . , ϕ(s

(1)
i), . . . , ϕ(s

(ki)
i), . . . , ϕ(s

(1)
n), . . . , ϕ(s

(kn)
n))

→+
R• f(ϕ(s

(1)
1), . . . , ϕ(s

(k1)
1), . . . , ϕ(s

(1)
i

′
), . . . , ϕ(s

(ki)
i), . . . , ϕ(s

(1)
n), . . . , ϕ(s

(kn)
n))

. . .

→+
R• f(ϕ(s

(1)
1), . . . , ϕ(s

(k1)
1), . . . , ϕ(s

(1)
i

′
), . . . , ϕ(s

(ki)
i

′
), . . . , ϕ(s

(1)
n), . . . , ϕ(s

(kn)
n))

= ϕ(t)

At least one step is done, because each ki ≥ 1.
For the base case, suppose s = `γ and t = rγ for some rule f(`1, . . . , `n)→ r ∈ R. Then

R• has a rule `′ := f(`
(1)
1 , . . . , `

(k1)
1 , . . . , `

(1)
n , . . . , `

(kn)
n) → ϕ(r′) =: r′′. In addition, we can

write ϕ(s) = f(ϕ(`1γ)(1), . . . , ϕ(`1γ)(k1), . . . , ϕ(`nγ)(1), . . . , ϕ(`nγ)(kn)).
Now, for 1 ≤ i ≤ n, consider `i. If `i is not a variable, then it must be a constructor term;

by B-safety of s, `iγ ∈ B. For all x ∈ Var(`i), we thus let δ(x) := γ(x) ∈ T (C) ⊆ T (F•, ∅).
In addition, we let δ(`ji) := ϕ(`iγ) for j > 1. If `i is a variable, then let δ(`ji) := ϕ(γ(`i)) for
all 1 ≤ j ≤ ki. Then δ maps all variables in `′ to T (F•, ∅), and ϕ(s) = ϕ(`γ) = `′δ.

We are done if also ϕ(t) = ϕ(r′)δ. Noting that r′ is obtained from r by replacing some
variables x by variables y with δ(x) = δ(y) – and therefore ϕ(r′) is obtained from ϕ(r) in
the same way – it suffices to prove that ϕ(rγ) = ϕ(r)δ. We prove this by a straightforward
induction on the form of r, using that δ(x) = γ(x) for all variables occurring below a
constructor in r, and δ(x) = ϕ(γ(x)) for the remainder.

This gives us one direction: →R• can simulate →R. Now we must see the converse:

Lemma 20. Let s be B-safe and t a data term such that ϕ(s)→∗R• t. Then s→∗R t.
Proof. By induction on the length of the reduction ϕ(s)→∗R• t.

First suppose the reduction contains no steps at the root. Since t is a data term, s must
have a constructor as root symbol, so by B-safety s itself is a data term; the reduction is
empty. As ϕ(s) = t, obviously also s = t.

Alternatively, we split the reduction in the first part (without root steps) and the
remainder; we may write s = f(s1, . . . , sn) and there is a rule f(`1, . . . , `n)→ r in R and a

corresponding rule `′ := f(`11, . . . , `
k1
1 , . . . , `

1
n, . . . , `

kn
n) → ϕ(r′) ∈ R•, a substitution γ and

numbers N,M such that:

• ϕ(s) = f(ϕ(s1)
(1), . . . , ϕ(sn)(kn))→N

R• `
′γ without root steps;

• ϕ(r′)γ →M
R• t;

• the length of the reduction is N +M + 1;

As the first part uses no root steps, we can split it further, letting N = N1
1 + · · ·+Nk1

1 +

· · ·+N1
n + · · ·+Nkn

n where N j
i is the number of steps in the reduction ϕ(si)→∗R• `

j
iγ.

ON FIRST-ORDER CONS-FREE TERM REWRITING AND PTIME 9

Now, let 1 ≤ i ≤ n. If `i is a variable, we define δ(`i) := si, so we certainly have
si →∗R `iδ. Otherwise, `i = `1i is a constructor term, and by B-safety (Lemma 5), this implies
`1i γ is a constructor term; we define δ(x) := γ(x) for all x ∈ Var(`i). Then also si →∗R `iδ
by the induction hypothesis (as ϕ(si)→∗R `1i γ = `iδ in N1

i ≤ N < N +M + 1 steps). Thus,
s = f(s1, . . . , sn)→∗R f(`1, . . . , `n)δ = `δ →R rδ.

We will see that moreover ϕ(rδ) →∗R• ϕ(r′)γ in at most N steps. Then we have
ϕ(rδ)→∗R• t in at most N +M < N +M + 1 steps, so s→∗R rδ →∗R t, and we are done.

To see this, we observe that ϕ(rδ) = ϕ(r)δϕ, where δϕ(x) = ϕ(δ(x)) for all x; this holds by

a trivial induction on r. Moreover defining η as the extension of δϕ with mappings `ji := δϕ(`1i)
for all i, j such that `i is a variable and 1 < j ≤ ki, we have ϕ(rδ) = ϕ(r)δϕ = ϕ(r′)η. Thus,
it suffices if each η(x)→∗R• γ(x), using in total no more than N steps.

But this is easy. For all variables x occurring in r′, either x ∈ Var(`i) for some

constructor term `i, or x = `ji for some i, j. In the former case, η(x) = δϕ(x) = γ(x), so

this reduction is free. In the latter case, η(x) = ϕ(δ(`i)) = ϕ(si) →∗R• `
j
iγ in N j

i steps by

definition of N j
i . As every `ji can occur at most once (following the semi-linearity observation

of Lemma 18), we obtain in total at most N steps.

Combining both lemmas, we obtain:

Corollary 21. For every B-safe term s ∈ T (F) and every data term t: s→∗R t if and only
if ϕ(s)→∗R• t.

The relevance of this is evident: to determine whether start(s1, . . . , sn)→∗R true for
some s1, . . . , sn, we simply calculate R• (which requires only a few purely syntactic changes,
and is independent of ~s so can be done in constant time) and need only determine whether
the semi-linear TRS R• admits the reduction ϕ(start(s1, . . . , sn))→∗R• true. To further
obtain a characterisation result, we merely have to add a new start symbol:

Theorem 22. “Constrained” cons-free term rewriting characterises PTIME if and only if
semi-linear cons-free term rewriting does.

Proof. We observe:

• For every semi-linear cons-free TRS (F•,R•) there is a constrained cons-free TRS
(F ,R) such that for all lists s ∈ T ({0, 1, [], ::}): start(s) →∗R• true if and only
if start(s) →∗R true. This follows trivially because every semi-linear TRS is
constrained, by choosing A := D.
• For every constrained cons-free TRS (F ,R) there is a constrained cons-free TRS

(F•′,R•′) such that for all lists s ∈ T ({0, 1, [], ::}): start(s)→∗R true if and only if
start′(s) →∗R•′ true. This follows by using the transformations described above,
and adding a symbol start′ : 1 and semi-linear rules start′([])→ ϕ(start([])) and
start′(x :: y)→ ϕ(start(x :: y)). Thus, we do not even need to alter the input to
the starting symbol.

Knowing this, every algorithm implemented in one of the styles immediately transfers to an
algorithm of the other, as does every algorithm determining the outcome of a reduction in
one of the styles.

10 C. KOP

5.2. Call-by-value Reduction. Now, to draw the connection with Theorem 12, we cannot
simply impose a call-by-value strategy and expect to obtain the same normal forms; an
immediate counterexample is the following TRS.

a → a f(x) → b

Then f(a)→∗R b, but this normal form is never reached using call-by-value rewriting.
Thus, we will use another simple syntactic adaptation:

Definition 23. We let F•⊥ := F•∪{⊥}, and letR•⊥ := R•∪{f(x1, . . . , xn)→ ⊥ | f : n ∈ D}.
We also include ⊥ in B.

Including the ⊥-symbols makes sure that every ground term reduces to a data term, so
allows a call-by-value strategy to work even in a non-terminating setting. Otherwise, it has
little effect, at least on the “x reduces to data term y” property we are interested in.

In the following, for purposes of induction, let cost(s→∗R•⊥ t) be the number of →∗R•
steps in the given reduction; that is, the length of the reduction when not counting any steps
with a rule f(. . .)→ ⊥.

Lemma 24. Let s be a B-safe term in T (F•) and t a data term other than ⊥. Then for
any number N ∈ N: s→∗R• t at cost N if and only if s→∗R•⊥ t at cost N .

Proof. If s →∗R• t, then obviously s →∗R•⊥ t at the same cost, as R• ⊆ R•⊥. For the other

direction, we let B := R•⊥ \ R•, so the set of the new rules f(~x)→ ⊥, and show that (**) if
u→∗B v →R• v′ for B-safe u ∈ T (F•) and v, v′ ∈ T (F•⊥), then exists some u′ ∈ T (F•) such
that u→R• u′ →∗B v′. If we have this, then all →R• steps in the reduction s→∗R•⊥ t can be

pushed to the left: using induction on the length of the reduction,

• if s→∗B t then s = t (since t does not contain ⊥);
• otherwise, s→∗B u→R• v →∗R•⊥ t for some u, v, which implies s→R• s′ →∗B v →∗R•⊥ t

(a reduction of the same cost), with s′ also being B-safe by Lemma 5 and in T (F•)
because the rules in R• do not introduce ⊥; we obtain s′ →∗R• t at cost N − 1 by
the induction hypothesis, s s→∗R• t at ocst N .

It remains to prove the claim (**), so let u→∗B v →R• v′. By B-safety of u, we can write
u = f(u1, . . . , un) with f ∈ D (as otherwise v = u does not reduce), and the reduction
u →∗B v does not take root steps (as otherwise v = ⊥ does not reduce). Thus, also
v = f(v1, . . . , vn) with ui →∗B vi for all i. We find u′ by induction on the size of v.

If the step v →R• v′ does not take place at the root, then v′ = f(v1, . . . , v
′
i, . . . , vn)

with ui →∗B vi →R• v′i. By the induction hypothesis we find u′i such that ui →R• u′i →∗B v′i.
We are done choosing u′ := f(u1, . . . , u

′
i, . . . , un). Otherwise, v = `γ and v′ = rγ for some

`→ r ∈ R• and substitution γ. Now, for each 1 ≤ i ≤ n:

• if `i is a variable, let δ(`i) = ui; then δ(x)→∗B γ(x) for all x ∈ Var(`i);
• otherwise, ⊥ 6= `i is a constructor term; by B-safety ⊥ 6= vi ∈ B, which gives ui = vi

since B has no elements with ⊥ as a strict subterm; let δ(x) = γ(x) for x ∈ Var(`i).

By left-linearity, this is well-defined, giving a substitution δ such that u = `δ and each
δ(x)→∗B γ(x). But then u→R• rδ →∗B v′; we are done choosing u′ := rδ.

More importantly, when we consider reductions with R•⊥, we are allowed to use a
call-by-value strategy.

Lemma 25. Let s be a B-safe term and t a data term such that s→∗R• t. Then s;∗R•⊥
t.

ON FIRST-ORDER CONS-FREE TERM REWRITING AND PTIME 11

The core idea is that we can trace the descendant of every non-data subterm t of s in a
reduction: due to the semi-linearity of R•, there will always be at most one copy of t, so
there is only one term which t is reduced to. But then, we can do this reduction immediately.

Proof. We prove three claims, by simultaneous induction on (N,M) ordered lexicographically:

(1) if M = 0 and s→∗R• t at cost N , then s;∗R•⊥
t at cost ≤ N ;

(2) if there are terms u and v such that:
• s→∗R• u;
• u→R• v by a reduction step at the root;
• v ;∗R•⊥

t;

• M = cost(s→∗R• u) + 2 and N = cost(s→∗R• u) + cost(v ;∗R•⊥
t)

then s;∗R•⊥
t by a call-by-value reduction of cost ≤ N + 1;

(3) if M = 1 and f(s1, . . . , sn) →∗R• `γ by reductions below the root, ` → r ∈ R•
and rγ ;R•⊥ t such that N = cost(f(~s) →∗R• `γ) + cost(rγ ;∗R•⊥

t), then

f(s1, . . . , sn) ;∗R•⊥
t by a call-by-value reduction of cost ≤ N + 1.

Consider statement (1). If N = 0, so s = t, then we are done. Otherwise, the last step
of the reduction must be at the root: if s→∗R• u→R• t, then by Lemma 5 also u is B-safe,
so its root symbol is defined, so if the reduction were not at the root then t would still have
a defined root symbol, contradiction. Thus, we conclude with the induction hypothesis, part
(2) for (N − 1, N + 1), taking v = t: this gives a reduction s;∗R•⊥

t of cost ≤ N − 1 + 1 = N .

Consider statement (2). Let ` → r ∈ R• and γ be the relevant rule and substitution
respectively for the root reduction u →R• v. We can write ` = f(`1, . . . , `n) and u =
f(`1γ, . . . , `nγ). Now, if the reduction s →∗R• u uses no root steps, then we can write
s = f(s1, . . . , sn) and conclude with the induction hypothesis, part (3) for (N, 1), since M ≥ 2.
If there is a root step, we can write s→∗R• w for some w at cost K1, w →R• f(s1, . . . , sn) by
a root step, f(s1, . . . , sn)→∗R• u by reduction steps below the root at cost K2 and v ;∗R•⊥

t

at cost K3, with M = K1 +K2 + 3 and N = K1 +K2 +K3 + 1.
By the induction hypothesis, part (3) for (K2 +K3, 1), f(~s)→∗R•⊥ t by a call-by-value

reduction at cost C ≤ K2 + K3 + 1. Then, by the induction hypothesis, part (2) for
(K1 +C,K1 + 2) – where K1 +C ≤ K1 +K2 +K3 + 1 = N and K1 + 2 < M – s;∗R•⊥

t by

a call-by-value reduction of cost ≤ K1 + C + 1 ≤ N + 1 as required.

Consider statement (3). We can reshuffle the reduction rγ ;∗R•⊥
t such that the steps at

the variable positions of r are all performed before any other step (due to the call-by-value
nature of the reduction: if the subterm at any of these positions is not yet normalised, then
it is not a data term, so other reduction steps can only occur at disjoint positions, so can
be postponed). This reshuffling does not affect the cost of the reduction. As r is linear in
all variables for which γ(x) is not a data term, and all normal forms of R•⊥ are data terms
(the ⊥-rules guarantee this), there is a substitution δ mapping Var(r) to data terms, such
that the reduction rγ ;∗R•⊥

t can safely be assumed to have the form rγ ;∗R•⊥
rδ ;∗R•⊥

t,

where each γ(x) ;∗R•⊥
δ(x). But then there is also such a substitution on Var(`): we choose

δ′(x) := δ(x) for x ∈ Var(r), δ′(x) := γ(x) for x ∈ Var(`) \ Var(r) if γ(x) is a data term,
and δ′(x) := ⊥ if x ∈ Var(`) \Var(r) and γ(x) is headed by a defined symbol (these are the
only possibilities by B-safety of `γ).

12 C. KOP

Now, as the reduction from f(~s) to `γ is fully below the root, we can write ` =
f(`1, . . . , `n), and the reduction f(~s)→∗R• `γ consists of the n reductions si →∗R• `iγ. Thus,

N =

(
n∑

i=1

cost(si →∗R• `iγ)

)
+

 ∑
x∈DVf (~̀)∩Var(r)

cost(γ(x) ;∗R•⊥
δ(x))

+cost(rδ ;∗R•⊥
t)

For 1 ≤ i ≤ n, we consider three cases:

• If `i is a variable with δ′(`i) = ⊥, then note that this can only occur if `iγ is not a
data term (as γ(`i) ;

∗
R•⊥

δ(`i) and γ(`i) ∈ T (F•)). If `iγ is not a data term, then

neither can si be. Thus, by stepwise replacing the innermost non-data subterm by
⊥, we obtain si ;

∗
R•⊥
⊥ = `iδ

′ at cost 0 ≤ cost(si →∗R• `iγ).

• If `i is a variable, but δ′(`i) 6= ⊥ and also `iγ is not a data term, then by Lemma 24
we have si →∗R• δ′(`i) at cost Ci := cost(si →∗R• `iγ = γ(`i)) + cost(γ(`i) ;∗R•⊥
δ′(`i)) ≤ N . By the induction hypothesis, part (1) for (Ci, 0) < (N, 1) therefore
si ;

∗
R•⊥

`iδ
′ by a call-by-value reduction of at most the same cost.

• If `iγ is a data term – which, by B-safety, is always the case if `i is not a variable
– then by the induction hypothesis, case (1) for (cost(si →∗R• `iγ), 0) < (N, 1),
si ;

∗
R•⊥

`iγ by a call-by-value reduction of at most the same cost as si →∗R• `iγ. As

`iγ = `iδ
′ in this case, we obtain cost(si ;

∗
R•⊥

`iδ
′) ≤ cost(si →∗R• `iγ).

Thus, overall, s;∗R•⊥
`δ′ by a call-by-value reduction of at most cost(

n∑
i=1

cost(si →∗R• `iγ)

)
+

 ∑
x∈DV

f(~̀)
∩Var(r)

cost(γ(x) ;∗R•⊥
δ(x))

 = N−cost(rδ′ ;∗R•⊥
t)

As all δ′(x) are data terms, the step `δ′ →R•⊥ rδ
′ is also call-by-value (and has cost 1), so

we obtain s;∗R•⊥
`δ′ ;R•⊥ rδ

′ ;∗R•⊥
rγ at cost ≤ N + 1.

Binding Lemmas 24 and 25 together, we obtain:

Corollary 26. For every B-safe term s ∈ T (F•) and data term t: s→∗R• t iff s;∗R•⊥
t.

6. Conclusion

Combining the results, we thus obtain the statement of [3] with an alternative proof:

Theorem 27. There is a polynomial algorithm to determine whether a constrained cons-free
TRS reduces a basic term start(~s) to true.

Proof. Using Definition 15–17, convert the TRS (F ,R) to a semi-linear TRS (F•,R•)
such that start(~s) →∗R true if and only if ϕ(start(~s)) →∗R• true. Use Definition 23 to
obtain (F•⊥,R•⊥) such that ϕ(start(~s)) →∗R• true if and only if ϕ(start(~s)) ;∗R•⊥

true.

Then, if start has arity n in the original signature F , add a symbol start′ : n and a rule
start′(x1, . . . , xn)→ ϕ(start(x1, . . . , xn)), creating the set of rules R•⊥

′. Then we clearly
have: start(~s)→∗R true if and only if start′(~s) ;∗R•⊥

true. By Theorem 12, there is an

algorithm to determine whether this holds.

ON FIRST-ORDER CONS-FREE TERM REWRITING AND PTIME 13

However, we have done a little more than this:

• we have shown that call-by-value cons-free term rewriting characterises PTIME;
• we have simplified the restrictions, showing that semi-linear cons-free term rewriting

characterises PTIME;

In addition, we have shown that, at least in the first-order setting, the question of expressivity
of semi-linear TRSs can be directly reduced to the same question for call-by-value TRSs.
This is particularly relevant with an eye on future extensions: it may be possible to use
the freedom with respect to evaluation strategy inherent in term rewriting to characterise
complexity classes we cannot easily handle with call-by-value programs, but in order to
succeed we must avoid definitions which admit this transformation.

It should be said that call-by-value is not a common strategy in the field of term
rewriting; it is more useful to instead impose an innermost evaluation strategy, where a
term may only be reduced when its immediate subterms are irreducible, rather than data.
The difference is evident in those cases where a ground normal form exists which is not a
data term; for instance:

a(0) → 0 b(x) → 0

Here, b(a(1)) reduces at the root using innermost reduction, but does not reduce at all using
call-by-value reduction.

Although not proved in this paper, we can also define a polynomial algorithm to
determine whether a basic term reduces to true when an innermost strategy is given. We
obtain the innermost variant of Corollary 26 immediately:

Theorem 28. For every B-safe term s ∈ T (F•) and data term t: s→∗R• t if and only if
s→∗R•⊥ t by an innermost reduction.

Proof. Every call-by-value reduction is obviously an innermost reduction, giving the only
if direction using Corollary 26. Observing that in →R•⊥ , a ground term is in normal form
if and only if it is a data term, and therefore every innermost reduction is a call-by-value
reduction, we obtain the other direction.

In future work, it would be interesting to see whether the parallel to Jones’ result
holds up for higher-order, i.e. whether kth-order innermost term rewriting characterises
EXPk−1TIME. In addition, we might consider whether higher-order extensions of semi-
linearity do give a truly different way of expressing algorithms than imposing an innermost
or call-by-value evaluation strategy.

References

[1] G. Bonfante. Some programming languages for logspace and ptime. In M. Johnson, editor, AMAST ’06,
volume 4019 of LNCS, pages 66–80, 2006.

[2] S.A. Cook. Characterizations of pushdown machines in terms of time-bounded computers. ACM, 18(1):4–
18, 1971.

[3] D. de Carvalho and J. Simonsen. An implicit characterization of the polynomial-time decidable sets by
cons-free rewriting. In G. Dowek, editor, RTA-TLCA ’14, volume 8560 of LNCS, pages 179–193, 2014.

[4] N. Jones. Life without cons. JFP, 11(1):5–94, 2001.
[5] C. Kop and J. Simonsen. Complexity hierarchies and higher-order cons-free rewriting. In D. Kesner and

B. Pientka, editors, FSCD ’16, volume 52 of LIPIcs, pages 23:1–23:18, 2016.

	1. Introduction
	2. Preliminaries: first-order term rewriting
	3. Cons-free Term Rewriting
	4. Call-by-value Cons-free Rewriting Characterises PTIME
	5. ``Constrained'' Systems
	5.1. Semi-linearity
	5.2. Call-by-value Reduction

	6. Conclusion
	References

