
The Power of Non-Determinism in Higher-Order
Implicit Complexity ?

Characterising Complexity Classes using
Non-deterministic Cons-free Programming

Cynthia Kop and Jakob Grue Simonsen

Department of Computer Science, University of Copenhagen (DIKU)
kop@di.ku.dk simonsen@di.ku.dk

Abstract. We investigate the power of non-determinism in purely func-
tional programming languages with higher-order types. Specifically, we
consider cons-free programs of varying data orders, equipped with ex-
plicit non-deterministic choice. Cons-freeness roughly means that data
constructors cannot occur in function bodies and all manipulation of
storage space thus has to happen indirectly using the call stack.

While cons-free programs have previously been used by several au-
thors to characterise complexity classes, the work on non-deterministic
programs has almost exclusively considered programs of data order 0.
Previous work has shown that adding explicit non-determinism to cons-
free programs taking data of order 0 does not increase expressivity; we
prove that this—dramatically—is not the case for higher data orders:
adding non-determinism to programs with data order at least 1 allows for
a characterisation of the entire class of elementary-time decidable sets.

Keywords: implicit computational complexity, cons-free programming,
EXPTIME hierarchy, non-deterministic programming, unary variables

1 Introduction

Implicit complexity is, roughly, the study of how to create bespoke programming
languages that allow the programmer to write programs which are guaranteed
to (a) only solve problems within a certain complexity class (e.g., the class of
polynomial-time decidable sets of binary strings), and (b) to be able to solve all
problems in this class. When equipped with an efficient execution engine, the
programs of such a language may themselves be guaranteed to run within the
complexity bounds of the class (e.g., run in polynomial time), and the plethora
of means available for analysing programs devised by the programming language
community means that methods from outside traditional complexity theory can
conceivably be brought to bear on open problems in computational complexity.

? The authors are supported by the Marie Sk lodowska-Curie action “HORIP”, program
H2020-MSCA-IF-2014, 658162 and by the Danish Council for Independent Research
Sapere Aude grant “Complexity via Logic and Algebra” (COLA).

2 C. Kop and J. Simonsen

One successful approach to implicit complexity is to syntactically constrain
the programmer’s ability to create new data structures. In the seminal paper [12],
Jones introduced cons-free programming : working with a small functional pro-
gramming language, cons-free programs are read-only : recursive data cannot be
created or altered (beyond taking sub-expressions), only read from input. By im-
posing further restrictions on data order (i.e., order 0 = integers, strings; order 1
= functions on data of order 0; etc.) and recursion scheme (e.g., full/tail/primitive
recursion), classes of cons-free programs turn out to characterise various deter-
ministic classes in the time and space hierarchies of computational complexity.

However, Jones’ language is fully deterministic and, perhaps as a result, his
characterisations concern only deterministic complexity classes. It is tantalising
to consider the method in a non-deterministic setting instead: could adding non-
deterministic choice directly to Jones’ language suffice to increase the expressivity;
for example, from P to NP?

The immediate answer is no: Bonfante showed [3] that adding a non-deterministic
choice operator to cons-free programs with data order 0 makes no difference in
expressivity: deterministic or not, such programs characterise P. However, the
technical details are subtle and depend heavily on other features of the language:
if the language is restricted to having primitive recursion, adding non-determinism
does increase expressivity from L to NL [3].

While many authors consider the expressivity of allowing higher types, the
interplay of higher types and non-determinism is not completely understood.
For deterministic programs, Jones obtains several hierarchies of deterministic
complexity classes by increasing the data order [12], but these hierarchies have at
most an exponential increase in complexity between levels; given the expressivity
added by non-determinism, it is a priori not evident that similarly “tame”
hierarchies would arise in the non-deterministic setting.

The purpose of the present paper is to investigate the power of higher-order
(cons-free) programming to characterise complexity classes. The main surprise is
that while non-determinism does not add expressivity for first-order programs,
the combination of second-order (or higher) programs and non-determinism
characterises the full class of elementary-time decidable sets—and increasing the
order beyond second-order programs does not further increase expressivity.

1.1 Overview and contributions

We define a purely functional programming language with non-deterministic
choice and, following Jones [12], consider the restriction to cons-free programs.

Our results are summarised in Figure 1. For completeness, we have also
included the results from [12]; although the language used there is slightly more
syntactically restrictive than ours, the results easily generalise provided we limit
interest to deterministic programs, where the choose operator is not used. As
the technical machinations involved to procure the results for a language with
full recursion are already intricate and lengthy, we have not yet considered the
restriction to tail- or primitive recursion in the non-deterministic setting.

The Power of Non-Determinism in Higher-Order Implicit Complexity 3

data order 0 data order 1 data order 2 data order 3

cons-free P = EXP =
EXP2TIME EXP3TIME

deterministic EXP0TIME EXP1TIME

cons-free L PSPACE
tail-recursive = = EXP1SPACE EXP2SPACE
deterministic EXP−1SPACE EXP0SPACE

cons-free L P PSPACE EXP
primitive recursive = = = =

deterministic EXP−1SPACE EXP0TIME EXP0SPACE EXP1TIME

The characterisations obtained in [12], transposed to the more permissive language
used here. This list (and the one below) should be imagined as extending infinitely
to the right. The “limit” for all rows (i.e., all finite data orders allowed) characterises
ELEMENTARY, the class of elementary-time decidable sets.

data order 0 data order 1 data order 2 data order 3

cons-free P ELEMENTARY ELEMENTARY ELEMENTARY
cons-free P = EXP =

EXP2TIME EXP3TIME
unary variables EXP0TIME EXP1TIME

Characterisations obtained by allowing non-deterministic choice. As above, the “limit”
where all data orders are allowed characterises ELEMENTARY (for both rows).

Fig. 1. Overview of the results discussed or obtained in this paper.

On a grander scale, our paper has two major contributions: (a) we show
that previous observations about the increase in expressiveness when adding
non-determinism change dramatically at higher types, and (b) we provide a
characterisation of the EXPTIME hierarchy using a non-deterministic language.
We believe that this may provide a basis for future characterisation of the
non-deterministic classes between the members of this hierarchy.

Note that (a) is highly surprising: As evidenced by early work of Cook [5]
merely adding full non-determinism to a restricted (i.e., non-Turing complete)
computation model may result in it characterising a deterministic class of prob-
lems. This observation holds true for cons-free programs where non-determinism
has been added as well, by Bonfante [3], by de Carvalho and Simonsen [7], and by
Kop and Simonsen [14], all resulting in characterisations of deterministic classes
such as P but not in characterisations of NP (unless P = NP). With the exception
of [14], all of the above attempts at adding non-determinism have considered
data order at most 0, and one would expect few changes when passing to higher
data orders. This turns out to be patently false as simply increasing to data order
1 results in a characterisation of the elementary-time decidable sets.

1.2 Related work

The creation of programming languages that characterise complexity classes has
been a research area since Cobham’s work in the 1960ies, but saw rapid develop-
ment only after similar advances in the related area of descriptive complexity (see,

4 C. Kop and J. Simonsen

e.g., [10]) in the 1980ies and Bellantoni and Cook’s work on characterisations of P
[1] using constraints on recursion in a purely functional language with programs
reminiscent of classic recursion theoretic functions. Following Bellantoni and
Cook, a number of authors obtained programming languages by constraints on
recursion, and under a plethora of names (e.g., safe, tiered or ramified recursion,
see [4,6] for overviews), and this area continues to be active. The main difference
with our work is that we consider full recursion in all variables, but place syntactic
constraints on the function bodies (both cons-freeness and unary variables). Also,
as in traditional complexity theory we consider decision problems (i.e., what
sets can be decided by programs), whereas much research in implicit complexity
considers functional complexity (i.e., what functions can be computed).

Cons-free programs, combined with various limitations on recursion, were
introduced by Jones [12], building on ground-breaking work by Goerdt [9,8],
and have been studied by a number of authors and inspired similar results for
imperative languages (for example [16,15]). The main difference with our work
is that we consider full recursion with full non-determinism, but—in Section 7—
impose an extra constraint (unary variables) not present in the previous literature.

Characterisation of non-deterministic complexity classes via programming
languages remains a largely unexplored area. Bellantoni obtained a characterisa-
tion of NP in his dissertation [2] using similar approaches as [1], but at the cost
of having a minimisation operator (as in recursion theory), a restriction later
removed by Oitavem [17]. A general framework for implicitly characterising a
larger hierarchy of non-deterministic classes remains an open problem.

2 A purely functional, non-deterministic, call-by-value
programming language

We define a simple call-by-value programming language with explicit non-
deterministic choice. This generalises Jones’ toy language in [12] by supporting
different types and pattern-matching as well as non-determinism. Using a more
permissive language actually simplifies the proofs and examples, since we do not
need to encode all data as boolean lists, and have fewer special cases.

2.1 Syntax

We consider programs defined by the syntax in Figure 2

p ∈ Program ::= ρ1 ρ2 . . . ρN
ρ ∈ Clause ::= f `1 · · · `k = s
` ∈ Pattern ::= x | c `1 · · · `m
s, t ∈ Expr ::= x | c | f | if s1 then s2 else s3 | choose s1 · · · sn | (s, t) | s t
x, y ∈ V ::= identifier

c ∈ C ::= identifier disjoint from V (we assume {true, false} ⊆ C)
f, g ∈ D ::= identifier disjoint from V and C

Fig. 2. Syntax

The Power of Non-Determinism in Higher-Order Implicit Complexity 5

We call elements of V variables, elements of C data constructors and elements
of D defined symbols. The root of a clause f `1 · · · `k = e is the defined symbol
f. The main function f1 of the program is the root of ρ1. We denote Var(s) for
the set of variables occurring in an expression s. An expression s is ground if
Var(s) = ∅. Application is left-associative, i.e., s t u should be read (s t) u.

Definition 1. For expressions s, t, we say that t is a sub-expression of s, notation
s� t, if this can be derived using the clauses:

s � t if s = t or s� t
(s1, s2) � t if s1 � t or s2 � t if s1 then s2 else s3 � t if si � t for some i
s1 s2 � t if s1 � t or s2 � t choose s1 · · · sn � t if si � t for some i

Note: the head s of an application s t is not considered a sub-expression of s t.

Note that the programs we consider do not have pre-defined data structures
such as integers: these have to be encoded using inductive data structures in the
usual fashion.

Example 1. Integers can be encoded as bitstrings of unbounded length: C ⊇
{false, true, ::, []}. Here, :: is considered infix and right-associative, and [] denotes
the end of the string. Using little endian, for example the number 6 is encoded
by false::true::true::[] as well as false::true::true::false::false::[].

An example program using C is:

succ [] = true::[] succ (false::xs) = true::xs
succ (true::xs) = true::(succ xs)

Here, D = {succ}, and xs ∈ V and we for instance have 1::(succ xs) � xs.

2.2 Typing

Programs have explicit simple types without polymorphism, with the usual
definition of type order o(σ); this is formally given in Figure 3.

ι ∈ S ::= sort identifier
σ, τ ∈ Type ::= ι | σ × τ | σ ⇒ τ

o(ι) = 0 for ι ∈ S
o(σ × τ) = max(o(σ) , o(τ))
o(σ ⇒ τ) = max(o(σ) + 1, o(τ))

Fig. 3. Types and type orders

The (finite) set S of sorts is used to type atomic data such as bits; we assume
bool ∈ S. The function arrow ⇒ is considered right-associative, so σ ⇒ τ ⇒ π
should be read σ ⇒ (τ ⇒ π). Writing κ for either a sort or a pair type σ × τ ,
note that any type can be uniquely presented in the form σ1 ⇒ . . .⇒ σm ⇒ κ.

We will limit interest to well-typed, well-formed programs:

Definition 2. A program p is well-typed if there is an assignment F from C ∪D
to the set of simple types such that:

– the main function f1 is assigned a type κ1 ⇒ . . .⇒ κM ⇒ κ, with o(κi) = 0
for 1 ≤ i ≤M and also o(κ) = 0

6 C. Kop and J. Simonsen

– data constructors c ∈ C are assigned a type κ1 ⇒ . . .⇒ κm ⇒ ι with ι ∈ S
and o(κi) = 0 for 1 ≤ i ≤ m

– for all clauses f `1 · · · `k = s ∈ p, the following hold:
• f `1 · · · `k is linear: no variable occurs more than once;
• Var(s) ⊆ Var(f `1 · · · `k);
• there exist a type environment Γ mapping Var(f `1 · · · `k) to simple types,

and a simple type σ, such that both f `1 · · · `k : σ and s : σ using the rules
in Figure 4; we call σ the type of the clause.

if a : σ ∈ Γ ∪ Fa : σ
s : σ t : τ
(s, t) : σ × τ

s : σ ⇒ τ t : σ
s t : τ

s1 : bool s2 : σ s3 : σ
if s1 then s2 else s3 : σ

s1 : σ . . . sn : σ
choose s1 · · · sn : σ

Fig. 4. Typing (for fixed F and Γ , see Definition 2)

Example 2. The program of Example 1 is typed using F = {false : bool, true :
bool, [] : list, :: : bool⇒ list⇒ list, succ : list⇒ list}. As all argument
and output types have order 0, the variable restrictions are satisfied and all
clauses can be typed using Γ = {xs : list}, the program is well-typed.

Definition 3. A program p is well-formed if it is well-typed, and moreover:

– data constructors are always fully applied: for all data constructors c : κ1 ⇒
. . .⇒ κm ⇒ ι ∈ F such that c t1 · · · tn occurs as a sub-expression of the left-
or right-hand side of any clause: n = m;

– the number of arguments to a given defined symbol is fixed: if f `1 · · · `k = s
and f `′1 · · · `′n = t are both in p, then k = n; we let arityp(f) denote k.

Example 3. The program of Example 1 is well-formed, and arityp(succ) = 1.
However, the program would not be well-formed if the clauses below were

added, because here the defined symbol or does not have a consistent arity.

id x = x or true x = true or false = id x

Remark 1. Note that data constructors must (a) have a sort as output type
(not a pair), and (b) occur only fully applied. This is entirely consistent with
typical functional programming languages, where sorts and constructors tend to
be declared with a grammar like the following:

sdec ∈ SortDec ::= data ι = cdec1 | · · · | cdecn
cdec ∈ ConstructorDec ::= c σ1 · · · σm
In addition, we require that the arguments to data constructors have order 0.
This is not standard in functional programming, but is the case in [12]. We limit
interest to such constructors because, practically, these are the only ones which
can be used in a cons-free program (as we will define in Section 3). It is simpler
to define the notion of data that we will actually use from the start, rather than
defining a more general notion and limiting it later.

The Power of Non-Determinism in Higher-Order Implicit Complexity 7

Definition 4. A program has data order K if all clauses can be typed using type
environments Γ such that, for all x : σ ∈ Γ : o(σ) ≤ K.

Example 4. We consider a higher-order program, operating on the same data
constructors as Example 1; however, now we encode numbers using functions:

fsucc F [] = if F [] then set F false else set F [] true
fsucc F xs = if F xs then fsucc (set F xs false) (tl xs)

else set F xs true
set F val xs ys = if eqlen xs ys then val else F ys
tl (x::xs) = xs eqlen (x::xs) (y::ys) = eqlen xs ys
eqlen [] [] = true eqlen xs ys = false

There is only one possible typing, which has fsucc : (list ⇒ bool) ⇒
list ⇒ list ⇒ bool and therefore equips the fsucc clauses with type envi-
ronments Γ containing F : list ⇒ bool—which has type order 1. As other
variables have a type of order 0, this program has data order 1.

To explain the program: we use boolean lists as unary numbers of a limited
size; assuming that (a) F represents a bitstring of length N + 1, and (b) lst has
length N , the successor of F (modulo wrapping) is obtained by fsucc F lst .

In a program with data order K, we can assume wlog. that the defined
symbols are assigned a type of order ≤ K + 1, since there are no clauses for
symbols of a higher type order (patterns of a higher type must be variables or
tuples thereof). Moreover, we may assume wlog. that the output type of clauses
respects K. Formally:

Definition 5. A program is proper for data order K if for all f ∈ D with
f : σ1 ⇒ . . . ⇒ σm ⇒ κ ∈ F and arity k ≤ m we have: (a) o(σi) ≤ K for
1 ≤ i ≤ m, and (b) o(σk+1 ⇒ . . .⇒ σm ⇒ κ) ≤ K.

Example 5. The following program has data order 0, but is not proper for it:

start xs ys = choose (fst xs ys) (snd xs ys)
const x y = x fst x = const x
id x = x snd x = id

The problem is that fst and snd have output type nat⇒ nat of order 1, which
is not used in other clauses: in the start clause, both are called with a second
argument. To avoid conflicts with the notion of data order, we disallow such
programs. The program above is proper for data order 1, and may be adapted to
respect data order 0 by increasing the arity of the two offending functions; i.e.,
replacing them by fst x y = const x y and snd x y = id y respectively.

2.3 Semantics

Like Jones, our language has a closure-based call-by-value semantics. We let data
expressions, values and environments be defined by the grammar in Fig. 5.

8 C. Kop and J. Simonsen

d, b ∈ Data ::= c d1 · · · dm | (d, b)
v, w ∈ Value ::= d | (v, w) | f v1 · · · vn

(n < arityp(f))

γ, δ ∈ Env ::= V → Value

Instantiation:
xγ := γ(x)

(c `1 · · · `n)γ := c (`1γ) · · · (`nγ)

Fig. 5. Data expressions, values and environments

We let dom(γ) denote the domain of an environment (partial function) γ. Note
that values are ground expressions, and we only use well-typed values with fully
applied data constructors. To every pattern ` and environment γ with dom(γ) ⊇
Var(`), we associate a value `γ by instantiation the obvious way, see Figure 5.

Note that, for every value v and pattern `, there is at most one environment γ
with `γ = v. We say that an expression f s1 · · · sn instantiates the left-hand side
of a clause f `1 · · · `k if n = k and there is an environment γ with each si = `iγ.

Both input and output to the program are data expressions. If f1 has type
κ1 ⇒ . . . ⇒ κM ⇒ κ, we can think of the program as calculating a function
JpK(d1, . . . , dM) from M input data arguments to one output data expression.

Expression and program evaluation are given by the rules in Figure 6. Note
that, in the [Call] rule, there is at most one suitable γ on domain Var(f `1 · · · `k);
therefore, the only source of non-determinism in the language is the choose

operator. Programs without this operator are called deterministic.

Example 6. For the program from Example 1, JpK((true::false::true::[])) 7→
false::true::true::[], giving that 5 + 1 = 6 as expected. In the (fixed) pro-
gram from Example 5, we can both derive JpK(false, s false) 7→ false and
JpK(false, s false) 7→ s false.

The language is easily seen to be Turing-complete unless further restrictions
are imposed. In order to assuage any fears the reader may harbour about whether
the complexity-theoretic characterisations we obtain are due to brittle design
choices, we here give a few brief remarks on the language design.

Remark 2. We have omitted some constructs common to even some toy pure
functional languages, but these are in general simple syntactic sugar that can
be readily expressed by the existing constructs in the language, even in the
presence of non-determinism. For instance, a let-binding letx = s1 in s2 can
be straightforwardly encoded by a function call in a pure call-by-value setting
(replacing letx = s1 in s2 by helper s1 and adding a clause helper x = s2).

Remark 3. We do not require the clauses of a function definition to exhaust
all possible patterns. For instance, it is possible to have a clause f true = · · ·
without a clause for f false. Thus, a program has zero or more values.

3 Cons-free programs

Jones defines a cons-free program as one where the list constructor :: does not
occur in any clause. In our setting (where functions like hd and tl are not
predefined since they can be handled using pattern matching, and where more

The Power of Non-Determinism in Higher-Order Implicit Complexity 9

Expression evaluation:

[Instance]:
p, γ ` x→ γ(x)

p `call f→ w
[Function]: for f ∈ D

p, γ ` f→ w

p, γ ` s1 → b1 · · · p, γ ` sm → bm
[Constructor]:

p, γ ` c s1 · · · sm → c b1 · · · bm

p, γ ` s→ v p, γ ` t→ w
[Pair]:

p, γ ` (s, t)→ (v, w)

p, γ ` si → w
[Choice]: for 1 ≤ i ≤ n

p, γ ` choose s1 · · · sn → w

p, γ ` s1 → d p, γ `if d, s2, s3 → w
[Conditional]:

p, γ ` if s1 then s2 else s3 → w

p, γ ` s2 → w
[If-True]:

p, γ `if true, s2, s3 → w

p, γ ` s3 → w
[If-False]:

p, γ `if false, s2, s3 → w

p, γ ` s→ f v1 · · · vn p, γ ` t→ vn+1 p `call f v1 · · · vn+1 → w
[Appl]:

p, γ ` s t→ w

[Closure]: if n < arityp(f)
p `call f v1 · · · vn → f v1 · · · vn

p, γ ` s→ w
[Call]:

if f `1 · · · `k = s is the first clause in p such
that f v1 · · · vk instantiates f `1 · · · `k, and
dom(γ) = Var(f `1 · · · `k) and each vi = `iγ

p `call f v1 · · · vk → w

Program execution:

p, [x1 := d1, . . . , xM := dM] ` f1 x1 · · ·xM → b

JpK(d1, . . . , dM) 7→ b

Fig. 6. Call-by-value semantics

constructors are in principle admitted), this translates to disallowing non-constant
data constructors from occurring in the right-hand side of a clause. We define:

Definition 6. A program p is cons-free, if all clauses in p are cons-free. A clause
fi `1 · · · `n = s is cons-free if for all s� t: if t = c s1 · · · sm with c ∈ C, then t is
a data expression or `i � t for some i.

Example 7. Example 1 is not cons-free, due to the second and third clause.
Examples 4 and 5 are both cons-free.

The key property of cons-free programming is that no new data structures can
be created during program execution. Formally, this means that in a derivation
tree in the operational semantics having root JpK(d1, . . . , dM) 7→ b, all data values
(including b) are in the set Bpd1,...,dM , defined as follows:

10 C. Kop and J. Simonsen

Definition 7. Let Bpd1,...,dM := {d | ∃1 ≤ i ≤ M [di � d]} ∪ {d ∈ Data | ∃(` =
s) ∈ p[s� d]}.

Bpd1,...,dM is a set of data expressions, is closed under � and, for p fixed, has a
linear number of elements in the size of d1, . . . , dM . The property that no new
data structures can be created during execution is formally expressed by the
following lemma.

Lemma 1. Let p be a cons-free program, and suppose that JpK(d1, . . . , dM) 7→ b
is obtained by a derivation tree T . Then for all statements p, γ ` s → w or
p, γ `if b′, s1, s2 → w or p `call f v1 · · · vn → w, and all sub-expressions d such
that (a) w � d, (b) b′ � d, (c) γ(x) � d for some x or (d) vi � d for some i: if d
has the form c b1 · · · bm with c ∈ C, then d ∈ Bpd1,...,dM .

That is, any data expression in the derivation tree of JpK(d1, . . . , dM) 7→ b
(including occurrences as a sub-expression of other values) is also in Bpd1,...,dM .

Proof (Sketch). Induction on the form of T , using the assumption that for the
root of T , (1) the requirements on γ and the vi are satisfied, and (2) γ maps
sub-expressions t� s, s1, s2 to elements of Bpd1,...,dM if t has the form c t1 · · · tm
with c ∈ C. (Full details are given in Appendix A.)

Note that Lemma 1 implies that the program result b is in Bpd1,...,dM . Recall
also Remark 1: if we had admitted constructors with higher-order argument types,
then Lemma 1 shows that they are never used, since any constructor appearing
in a derivation for JpK(d1, . . . , dM) 7→ b must already occur in the (data!) input.

Example 8. By Lemma 1, functions in a cons-free programs cannot build inductive
data structures. Therefore, it is often necessary to “code around” a problem, for
instance by using sub-expressions of the input as a measure of size. Consider
the task of determining whether a given string of booleans is a palindrome.
We cannot use a clause such as palindrome cs = equal cs (rev cs), because,
by Lemma 1, it is impossible to define rev cs. Instead, in the solution below,
chk b (c0:: . . . ::cn−1) ys returns whether c|ys| = b, where |ys| is the length of ys.

palindrome cs = pal cs xs
pal cs (y::ys) = if pal cs ys then chk y cs ys else false

pal cs [] = true equal 0 0 = true

chk b (x::xs) [] = equal b x equal 1 1 = true

chk b (x::xs) (y::ys) = chk b xs ys equal x y = false

4 Turing Machines, decision problems and complexity

We assume familiarity with the standard notions of Turing Machines and com-
plexity classes (see, e.g., [18,11,19]); in this section, we fix the notation we use.

The Power of Non-Determinism in Higher-Order Implicit Complexity 11

4.1 (Deterministic) Turing Machines

Turing Machines (TMs) are triples (A,S, T) where A is a finite set of tape symbols
such that A ⊇ {0, 1, }, S ⊇ {start, accept, reject} is a finite set of states,
and T is a finite set of transitions (i, r, w, d, j) with i ∈ S \ {accept, reject}
(the original state), r ∈ A (the read symbol), w ∈ A (the written symbol),
d ∈ {L, R} (the direction), and j ∈ S (the result state). We sometimes denote

this transition as i
r/w d
===⇒ j. A deterministic TM is a TM such that every pair

(i, r) with i ∈ S \ {accept, reject} and r ∈ A is associated with exactly one
transition (i, r, w, d, j). Every TM in this paper has a single, right-infinite tape.

A valid tape is an element t of AN with t(p) 6= for only finitely many p.
A configuration is a triple (t, p, s) with t a valid tape, p ∈ N and s ∈ S. The
transitions T induce a relation ⇒ between configurations in the obvious way.

4.2 Decision problems

A decision problem is a set X ⊆ {0, 1}+.
A deterministic TM decides X if for any x ∈ {0, 1}+ we have x ∈ X iff

x1 . . . xn . . . , 0, start)⇒∗ (t, i, accept) for some t, i, and (x1 . . . xn . . . , 0,
start)⇒∗ (t, i, reject) iff x /∈ X. Thus, a deterministic machine which decides
X halts on all inputs, ending in accept or reject depending on whether x ∈ X.

If h : N −→ N is a function, a deterministic TM runs in time λn.h(n) if for all
n ∈ N\{0} and x ∈ {0, 1}n: any evaluation starting in (x1 . . . xn . . . , 0, start)
ends in the accept or reject state in at most h(n) transitions.

4.3 Complexity and the EXPTIME hierarchy

We define classes of decision problem based on the time needed to accept them.

Definition 8. Let h : N → N be a function. Then, TIME (h(n))) is the set of
all X ⊆ {0, 1}+ such that there exist a > 0 and a deterministic TM running in
time λn.a · h(n) that decides X.

Observe that, by design, TIME (h(n))) is closed under O, that is TIME (h(n)) =
TIME (O(h(n))).

Definition 9. For K,n ≥ 0, let exp0
2(n) = n and expK+1

2 (n) = expK2 (2n) =

2exp
K
2 (n). For K ≥ 0, define EXPKTIME ,

⋃
a,b∈N TIME

(
expK2 (anb)

)
.

Observing that for every polynomial h, there are a, b ∈ N such that h(n) ≤ a·nb
for all n > 0, we have that EXP0TIME = P and EXP1TIME = EXP (where EXP
is the usual complexity class of this name, see e.g., [18, Ch. 20]). Note that in
the literature, EXP is sometimes called EXPTIME or DEXPTIME (e.g., in the
celebrated proof that ML typability is complete for DEXPTIME [13]).

Using the Time Hierarchy Theorem [19], it is easy to see that P = EXP0TIME (
EXP1TIME (EXP2TIME (· · · .

Definition 10. The set ELEMENTARY of elementary-time computable languages
is
⋃
K∈N EXPKTIME.

12 C. Kop and J. Simonsen

4.4 Decision problems and programs

To solve decision problems by (cons-free) programs, we will consider programs
with constructors true, false of type bool, [] of type list and :: of type bool⇒
list⇒ list, and whose main function f1 has type list⇒ bool.

Definition 11. We define:

– A program p accepts a1a2 . . . an ∈ {0, 1}∗ if JpK(a1:: . . . ::an) 7→ true, where
ai = true if ai = 1 and ai = false otherwise.

– The set accepted by program p is {a ∈ {0, 1}∗ | p accepts a}.

Although we focus on programs of this form, our proofs will allow for arbitrary
input and output—with the limitation (as guaranteed by the rule for program
execution) that both are data. This makes it possible to for instance consider
decision problems on a larger input alphabet without needing encodings.

Example 9. Example 8 accepts the problem {x ∈ {0, 1}∗ | x is a palindrome}.

5 Deterministic characterisations

As a basis, we transfer Jones’ basic result on time classes to our more general
language. That is, we obtain the first line of the first table in Figure 1.

data order 0 data order 1 data order 2 data order 3 . . .
cons-free P = EXP =

EXP2TIME EXP3TIME . . .
deterministic EXP0TIME EXP1TIME

To show that deterministic cons-free programs of data order K characterise
EXPKTIME it is necessary to prove two things:

1. if h(n) ≤ expK2 (a · nb) for all n, then for every deterministic Turing Machine
M running in TIME (h(n)), there is a deterministic, cons-free program with
data order at most K, which accepts some x ∈ {0, 1}+ if and only if M does;

2. for every deterministic cons-free program p with data order K, there is a
deterministic algorithm operating in TIME

(
expK2 (a · nb)

)
for some a, b which,

given input expressions d1, . . . , dM , determines b such that JpK(d1, . . . , dM) 7→
b (if such b exists). As in Jones [12] we assume our algorithms to be im-
plemented on a sufficiently expressive Turing-equivalent machine like the
RAM. As any such machine can be simulated by, and can simulate, a Turing
machine with polynomial-time overhead, the desired result follows.

We will show part (1) in Section 5.1, and part (2) in Section 5.2.

5.1 Simulating Turing Machines using deterministic cons-free
programs

Let M := (A,S, T) be a deterministic Turing Machine running in time λn.h(n).
Like Jones, we start by assuming that we have a way to represent the numbers
0, . . . , h(n) as expressions, along with successor and predecessor operators and
checks for equality. Our simulation uses the following data constructors:

The Power of Non-Determinism in Higher-Order Implicit Complexity 13

– true : bool, false : bool, [] : list and :: : bool ⇒ list ⇒ list as
discussed in Section 4.4;

– a : symbol for a ∈ A (writing B for the blank symbol), and L, R : direc and
s : state for s ∈ S;

– action : symbol⇒ direc⇒ state⇒ trans;
– end : state⇒ trans.

The rules to simulate the machine are given in Figure 7.

run cs = test (state cs [h(|cs|)])
test accept = true transition i r = action w d j for all i

r/w d
===⇒ j ∈ T

test reject = false transition i x = end i for i ∈ {accept, reject}

state cs [n] = if [n = 0] then start else get3 (transat cs [n− 1])
transat cs [n] = transition (state cs [n]) (tapesymb cs [n])

get1 (action x y z) = x get1 (end x) = B

get2 (action x y z) = y get2 (end x) = R

get3 (action x y z) = z get3 (end x) = x

tapesymb cs [n] = tape cs [n] (pos cs [n])

tape cs [n] [p] = if [n = 0] then inputtape cs [p]
else tapehelp cs [n] [p] (pos cs [n− 1])

tapehelp cs [n] [p] [i] = if [p = i] then get1 (transat cs [n− 1])
else tape cs [n− 1] [p]

pos cs [n] = if [n = 0] then [0] else adjust cs (pos cs [n−1]) (get2 (transat cs [n−1]))
adjust cs [p] L = [p− 1] adjust cs [p] R = [p+ 1]

inputtape cs [p] = if [p = 0] then B else nth cs [p− 1]
nth [] [p] = B bit true = 1

nth (x::xs) [p] = if [p = 0] then bit x else nth xs [p− 1] bit false = 0

Fig. 7. Simulating a deterministic Turing Machine (A,S, T)

Types of defined symbols are easily derived. The intended meaning is that
state cs [n], for cs the input list and [n] a number in {0, . . . , h(|cs|)}, returns
the state of the machine at time [n]; pos cs [n] returns the position of the reader
at time [n], and tape cs[n] [p] the symbol at time [n] and position [p].

Clearly, the program is highly exponential, even when h(|cs|) is polynomial,
since the same expressions are repeatedly evaluated. This apparent contradiction
is not problematic: we do not claim that all cons-free programs with data order
0 (say) have a derivation tree of at most polynomial size. Rather, as we will see
in Section 5.2, we can find their result in polynomial time by essentially using a
caching mechanism to avoid reevaluating the same expression.

What remains is to simulate numbers and counting. For a machine running in
TIME (h(n)), it suffices to find a value [i] representing i for all i ∈ {0, . . . , h(n)}
and cons-free clauses to calculate predecessor and successor functions and to per-
form zero and equality checks. This is given by a (λn.h(n) + 1)-counting module:

14 C. Kop and J. Simonsen

Definition 12 (Adapted from [12]). For P : N → N \ {0}, a P -counting
module is a tuple Cπ = (απ,Dπ,Aπ, 〈·〉π, pπ) such that:

– απ is a type (this will be the type of numbers);
– Dπ is a set of defined symbols disjoint from C,D,V, containing symbols

seedπ, predπ and zeroπ, with types seedπ : list ⇒ απ, predπ : list ⇒
απ ⇒ απ and zeroπ : list⇒ απ ⇒ bool;

– for n ∈ N, Anπ is a set of values of type απ, all built over C ∪ Dπ (this is the
set of values used to represent numbers);

– for n ∈ N, 〈·〉nπ is a total function from Anαπ to N;
– pπ is a list of cons-free clauses on the symbols in Dπ, such that, for all lists
cs : list ∈ Data with length n:
• there is a unique value v such that pπ `call seedπ cs→ v;
• if pπ `call seedπ cs→ v, then v ∈ Anπ and 〈v〉nπ = P (n)− 1;
• if v ∈ Aπ and 〈v〉nπ = i > 0, then there is a unique value w such that
pπ `call predπ v → w; we have w ∈ Anπ and 〈w〉nπ = i− 1;

• for v ∈ Anπ with 〈v〉nπ = i: pπ `call zeroπ cs v → true if and only if
i = 0, and pπ `call zeroπ cs v → false if and only if i > 0.

It is easy to see how a P -counting module can be plugged into the program of
Figure 7. We only lack successor and equality functions, which are easily defined:

succπ cs i = scπ cs (seedπ cs) i
scπ cs j i = if equalπ cs (predπ cs j) i then j else sc cs (predπ cs j) i
equalπ cs i j = if zeroπ cs i then zeroπ cs j

else if zeroπ cs j then false

else equalπ cs (predπ cs i) (predπ cs j)

Since the clauses in Figure 7 are cons-free and have data order 0, we obtain:

Lemma 2. Let X be a decision problem which can be decided by a deterministic
TM running in TIME (h(n)). If there is a cons-free (λn.h(n)+1)-counting module
Cπ with data order K, then X is accepted by a cons-free program with data order
K; the program is deterministic if the counting module is.

Proof. By the argument given above.

The obvious difficulty is the restriction to cons-free clauses: we cannot simply
construct a new number type, but will have to represent numbers using only
sub-expressions of the input list cs, and constant data expressions.

Example 10. We consider a P -counting module Cx where P (n) = 3 · (n + 1)2.
Let αx = list× list× list and for given n, let Anπ = {(d0, d1, d2) | d0 is a list
of length ≤ 2 and d1, d2 are lists of length ≤ n}. Writing | x1:: . . . ::xk::[] | = k,
we let 〈(d0, d1, d2)〉nx := |d0| · (n+ 1)2 + |d1| · (n+ 1) + |d2|. Essentially, we think
of a number i as a 3-digit number i0i1i2 in base n+ 1, with each ij represented
by a list. For px we use:

seedx cs = (false::false::[], cs, cs)
predx cs (x0, x1, y::ys) = (x0, x1, ys) zerox cs (x0, x1, y::ys) = false

predx cs (x0, y::ys, []) = (x0, ys, cs) zerox cs (x0, y::ys, []) = false

predx cs (y::ys, [], []) = (ys, cs, cs) zerox cs (y::ys, [], []) = false

predx cs ([], [], []) = ([], [], []) zerox cs ([], [], []) = true

The Power of Non-Determinism in Higher-Order Implicit Complexity 15

It is easy to see that the evaluation requirements are satisfied. For example, if
cs = true::false::true::[], one value in A3

x is v = (false::[], false::true::[], []),
which is mapped to the number 1 ·42 + 2 ·4 + 0 = 24. Then px `call predx cs v →
w := (false::[], true::[], cs), which is mapped to 1 · 42 + 1 · 4 + 3 = 23 as desired.

Example 10 suggests a systematic way to create polynomial counting modules.

Lemma 3. For any a, b ∈ N \ {0}, there is a (λn.a · (n+ 1)b)-counting module
C〈a,b〉 with data order 0.

Proof (Sketch). A straightforward generalisation of Example 10.

By increasing type orders, we can obtain an exponential increase of magnitude.

Lemma 4. If there is a P -counting module Cπ of data order K, then there is a
(λn.2P (n))-counting module Ce[π] of data order K + 1.

Proof (Sketch). Let αe[π] := απ ⇒ bool; then o
(
αe[π]

)
≤ K+1. A number i with

bit representation b0 . . . bP (n)−1 (with b0 the most significant digit) is represented
by a value v such that, for w with 〈w〉π = i: pe[π] `call v w → true iff bi = 1,
and pe[π] `call v w → false iff bi = 0. We use the following clauses:

seede[π] cs x = true

zeroe[π] cs F = zhelpe[π] cs F (seedπ cs)

zhelpe[π] cs F k = if F k then false

else if zeroπ cs k then true

else zhelpe[π] cs F (predπ cs k)

prede[π] cs F = phelpe[π] cs F (seedπ cs)

phelpe[π] cs F k = if F k then flipe[π] cs F k

else if zeroπ cs k then seede[π] cs

else phelpe[π] cs (flipe[π] cs F k) (predπ cs k)

flipe[π] cs F k i = if equalπ cs k i then not (F i) else F i

not b = if b then false else true

We also include all clauses in pπ. Here, note that a bitstring b0 . . . bm represents
0 if each bi = 0, and that the predecessor of b0 . . . bi10 . . . 0 is b0 . . . bi01 . . . 1.

Combining these results, we obtain:

Lemma 5. Every decision problem in EXPKTIME is accepted by a deterministic
cons-free program with data order K.

Proof. A decision problem is in EXPKTIME if it is decided by a deterministic TM
operating in time expK2 (a · nb)) for some a, b. By Lemma 2, it therefore suffices if
there is a Q-counting module for some Q ≥ λn. expK2 (a · nb) + 1, with data order
K. Certainly Q(n) := expK2 (a · (n+ 1)b) is large enough. By Lemma 3, there is a
(λn.a · (n+ 1)b)-counting module C〈a,b〉 with data order 0. Applying Lemma 4 K
times, we obtain the required Q-counting module Ce[...[e[〈a,b〉]]].

Remark 4. Our definition of a counting module significantly differs from the one
in [12]. The changes serve to allow for an easy formulation of the non-deterministic
counting module in Section 6.

16 C. Kop and J. Simonsen

5.2 Simulating deterministic cons-free programs using an algorithm

We now turn to the second part of characterisation: that every decision problem
solved by a deterministic cons-free program of data order K is in EXPKTIME.
We give an algorithm which determines the result of a fixed program (if any) on
a given input in TIME

(
expK2 (a · nb)

)
for some a, b. The algorithm is designed to

extend easily to the non-deterministic characterisations in subsequent settings.

Key idea. The principle of our algorithm is easy to explain in the setting without
higher types, so where all variables have data order 0. Using Lemma 1, all such
variables must be instantiated by (tuples of) elements of Bpd1,...,dM , of which
there are only polynomially many in the size of the input. Thus, we can make a
comprehensive list of all expressions that might occur as the left-hand side of
a [Call] in the derivation tree. Now we can go over the list repeatedly, filling in
reductions to essentially trace a top-down derivation of the tree.

In the higher-order setting, there are infinitely many possible values. Therefore,
instead of looking directly at values we consider an extensional replacement:
partial functions with the same effect on the elements of Bpd1,...,dM .

Definition 13. Let B be a set of data expressions closed under �. For ι ∈ S,
let 〈|ι|〉B = {d ∈ B |` d : ι}. Inductively, define 〈|σ × τ |〉B = 〈|σ|〉B × 〈|τ |〉B and
〈|σ ⇒ τ |〉B = {Aσ⇒τ | A ⊆ 〈|σ|〉B × 〈|τ |〉B ∧ ∀e ∈ 〈|σ|〉B there is at most one u such
that (e, u) ∈ Aσ⇒τ}σ⇒τ . We call the elements of any 〈|σ|〉B extensional values.

Note that extensional values are data expressions in B if σ is a sort, pairs if
σ is a pair type, and sets of pairs (marked with a type) otherwise; these sets are
exactly partial functions, and can be used as such:

Definition 14. For e ∈ 〈|σ1 ⇒ . . . ⇒ σn ⇒ τ |〉B and u1 ∈ 〈|σ1|〉B, . . . , un ∈
〈|σn|〉B, we inductively define e(u1, . . . , un) ⊆ 〈|τ |〉B:

– if n = 0, then e(u1, . . . , un) = e() = {e};
– if n ≥ 1, then e(u1, . . . , un) =

⋃
Aσn⇒τ∈e(u1,...,un−1)

{o ∈ 〈|τ |〉B | (un, o) ∈ A}.

By induction on n, each e(u1, . . . , un) has at most one element as would be
expected of a partial function. We also consider a form of matching.

Definition 15. Fix a set B of data expressions. An extensional expression has
the form f e1 · · · en where f : σ1 ⇒ . . . ⇒ σn ⇒ τ ∈ D and each ei ∈ 〈|σi|〉B.
Given a clause ρ : f `1 · · · `k = r with f : σ1 ⇒ . . . ⇒ σk ⇒ τ ∈ F and variable
environment Γ , an ext-environment for ρ is a partial function η mapping each
x : τ ∈ Γ to an element of 〈|τ |〉B, such that for 1 ≤ j ≤ n: `jη ∈ 〈|σj |〉B. Here,

– `η = η(`) if ` is a variable;
– `η = (`(1)η, `(2)η) if ` = (`(1), `(2));
– `η = `[x := η(x) | x ∈ Var(`)] otherwise (in this case, ` is a pattern with

data order 0, so all its variables have data order 0, so each η(x) ∈ Data).

Then `η is an extensional value for ` a pattern. We say ρ matches an extensional
expression f e1 · · · ek with each ei ∈ 〈|σi|〉B if there is an ext-environment η for ρ
such that for all 1 ≤ i ≤ k: `iη = ei. We call η the matching ext-environment.

The Power of Non-Determinism in Higher-Order Implicit Complexity 17

Finally, for technical reasons we will need an ordering on extensional values:

Definition 16. We define a relation w on extensional values of the same type:

– For d, b ∈ 〈|ι|〉B with ι ∈ S: d w b iff d = b.
– For (e1, e2), (u1, u2) ∈ 〈|σ × τ |〉B: (e1, e2) w (u1, u2) if each ei w ui.
– For Aσ, Bσ ∈ 〈|σ|〉B with σ functional: Aσ w Bσ if for all (e, u) ∈ B there is
u′ w u such that (e, u′) ∈ A.

The algorithm. With these preparations, we are now ready to define our algorithm.

Algorithm 6 Let p be a fixed, deterministic cons-free program which is proper
for some data order K, and suppose f1 has a type κ1 ⇒ . . .⇒ κM ⇒ κ ∈ F .

Input: data expressions d1 : κ1, . . . , dM : κM .
Output: The set of values b with JpK(d1, . . . , dM) 7→ b.

1. Preparation.
(a) Let p′ by obtained from p as follows:

– replace any sub-expression (if b then s1 else s2) t1 · · · tn in the right-
hand side of a clause in p by if b then (s1 t1 · · · tn) else (s2 t1 · · · tn);

– replace any sub-expression (choose s1 · · · sm) t1 · · · tn in the right-
hand side of a clause in p by choose (s1 t1 · · · tn) · · · (sm t1 · · · tm);

– add a symbol start to D and a clause start x1 · · ·xM = f1 x1 · · ·xM
at the head of p′ (so that Jp′K(d1, . . . , dM) 7→ b iff p′ `call start d1 · · ·
dM → b).

(b) Let B := Bpd1,...,dM and let X be the set of all “statements”:
– ` f e1 · · · en ; o for (a) f ∈ D with f : σ1 ⇒ . . . ⇒ σm ⇒ κ′ ∈ F ,

(b) 0 ≤ n ≤ arityp(f) such that o(σn+1 ⇒ . . .⇒ σm ⇒ κ′) ≤ K, (c)
ei ∈ 〈|σi|〉B for 1 ≤ i ≤ n and (d) o ∈ 〈|σn+1 ⇒ . . .⇒ σm ⇒ κ′|〉B;

– η ` t ; o for (a) ρ : f `1 · · · `k = s a clause in p′, (b) s � t : τ , (c)
o ∈ 〈|τ |〉B and (d) η an ext-environment for ρ.

(c) Mark statements of the form η ` t; o in X as confirmed if:
i. t ∈ V and η(t) w o, or
ii. t = c t1 · · · tm with c ∈ C and tη = o.

All statements not of either form are marked unconfirmed.
2. Iteration: repeat the following steps, until we complete an iteration where no

changes are made.
(a) For all unconfirmed statements ` f e1 · · · en ; o in X with n < arityp(f):

write o = Oσ and mark the statement as confirmed if for all (en+1, u) ∈ o
there exists u′ w u such that ` f e1 · · · en+1 ; u′ is marked confirmed.

(b) For all unconfirmed statements ` f e1 · · · ek ; o in X with k = arityp(f):
i. find the first clause ρ : f `1 · · · `k = s in p′ that matches f e1 · · · ek

and let η be the matching ext-environment (if no such clause exists,
continue with the next statement);

ii. determine whether η ` s ; o is confirmed and if so, mark the
statement f e1 · · · ek ; o as confirmed.

18 C. Kop and J. Simonsen

(c) For all unconfirmed statements of the form η ` if s1 then s2 else s3 ; o
in X , mark the statement as confirmed if:

i. both η ` s1 ; true and η ` s2 ; o are marked confirmed, or
ii. both η ` s1 ; false and η ` s3 ; o are marked confirmed.

(d) For all unconfirmed statements η ` choose s1 · · · sn ; o in X , mark the
statement as confirmed if η ` si ; o for any i ∈ {1, . . . , n}.

(e) For all unconfirmed statements η ` (s1, s2) ; (o1, o2) in X , mark the
statement confirmed if both η ` s1 ; o1 and η ` s2 ; o2 are confirmed.

(f) For all unconfirmed statements η ` x s1 · · · sn ; o in X with x ∈ V,
mark the statement as confirmed if there are e1 ∈ 〈|σ1|〉B, . . . , en ∈ 〈|σn|〉B
such that each η ` si ; ei is marked confirmed, and there exists o′ ∈
η(a)(e1, . . . , en) such that o′ w o.

(g) For all unconfirmed statements η ` f s1 · · · sn ; o in X with f ∈ D,
mark the statement as confirmed if there are e1 ∈ 〈|σ1|〉B, . . . , en ∈ 〈|σn|〉B
such that each η ` si ; ei is marked confirmed, and:

i. n ≤ arityp(a) and ` f e1 · · · en ; o is marked confirmed, or
ii. n > k := arityp(a) and there are u, o′ such that ` f e1 · · · ek ; u is

marked confirmed and u(ek+1, . . . , en) 3 o′ w o.
3. Completion: return {b | b ∈ B∧ ` start d1 · · · dM ; b is marked confirmed}.

Note that, for programs of data order 0, this algorithm closely follows the
sketch presented at the start of the subsection. Values of a higher type are
abstracted to extensional values. The use of w is needed because a value of
higher type is associated to many different extensional values: for example, to
confirm a statement ` plus 3 ; {(1, 4), (0, 3)}nat⇒nat in some program, it may
be necessary to first confirm ` plus 3 ; {(0, 3)}nat⇒nat.

Remark 5. Case 2d is not relevant in the current deterministic setting, since a
deterministic algorithm is defined as one without choose. The case is included
to enable reuse of the algorithm in the non-deterministic settings to follow.

The complexity of the algorithm relies on the following key observation:

Lemma 7. Let p be a cons-free program, proper for data order K. Let Σ be the
set of all types σ with o(σ) ≤ K which occur as part of an argument type, or as
an output type of some f ∈ D.

Suppose that, given input of total size n, 〈|σ|〉B has cardinality at most F (n)
for all σ ∈ Σ, and testing whether e1 w e2 for e1, e2 ∈ JσKB takes at most F (n)
steps. Then Algorithm 6 runs in TIME

(
a · F (n)b

)
for some a, b.

Proof (Sketch). Due to the use of p′, all intensional values occurring in Algorithm 6
are in

⋃
σ∈Σ〈|σ|〉B. Writing a for the greatest number of arguments any defined

symbol f or variable x in p′ may take and r for the greatest number of sub-
expressions of any right-hand side in p′ (which is independent of the input!), X
contains at most a · |D| ·F (n)a+1 + |p′| · r ·F (n)a+1 statements. Since in all but the
last step of the iteration at least one statement is flipped from unconfirmed to
confirmed, there are at most |X |+ 1 iterations, each considering |X | statements.
It is easy to see that the individual steps in both the preparation and iteration
are all polynomial in |X | and F (n), resulting in a polynomial overall complexity.

The Power of Non-Determinism in Higher-Order Implicit Complexity 19

The result follows as Card(〈|σ|〉B) is given by a tower of exponentials in o(σ):

Lemma 8. If 1 ≤ Card(B) < N , then for each σ on L sorts, with o(σ) ≤ K:
Card(〈|σ|〉B) < expK2 (NL), where Card(X) denotes the cardinality of X. Testing

e w u for e, u ∈ 〈|σ|〉B takes at most expK2 (N (L+1)3) comparisons between b, d ∈ B.

Proof (Sketch). An easy induction on the form of σ, using that expK2 (X) ·
expK2 (Y) ≤ expK2 (X · Y) for X ≥ 2, and that for Aσ1⇒σ2

, each key e ∈ 〈|σ1|〉B
is assigned one of Card(〈|σ2|〉B) + 1 choices: an element u of 〈|σ2|〉B such that
(e, u) ∈ A, or non-membership; the second part uses the first.

We will postpone showing correctness of the algorithm until Section 6.3, where
we can show the result together with the one for non-deterministic programs.
Assuming correctness for now, we may conclude:

Lemma 9. Every decision problem accepted by a deterministic cons-free program
p with data order K is in EXPKTIME.

Proof. We will see in Lemma 19 in Section 6.3 that JpK(d1, . . . , dM) 7→ b if and
only if Algorithm 6 returns a set containing b. For a program of data order K,
Lemmas 8 and 7 together give that Algorithm 6 is in EXPKTIME.

Theorem 1. The class of deterministic cons-free programs with data order K
characterises EXPKTIME for all K ∈ N.

Proof. A combination of Lemmas 5 and 9.

6 Non-deterministic characterisations

A natural question is what the result would be if we do not impose the limitation
to deterministic programs. For data order 0, Bonfante [3] shows that adding the
choice operator to Jones’ language does not increase expressivity. We will recover
this result for our generalised language in Section 7.

However, in the higher-order setting, non-deterministic choice does increase
expressivity—dramatically so. Indeed, we obtain:

data order 0 data order 1 data order 2 data order 3 . . .
cons-free P ELEMENTARY ELEMENTARY ELEMENTARY . . .

As before, we will show the result—for data orders 1 and above—in two parts:
in Section 6.1 we see that cons-free programs of data order 1 suffice to accept all
problems in ELEMENTARY; in Section 6.2 we see that they cannot go beyond.

6.1 Simulating Turing Machines using (non-deterministic) cons-free
programs

We start by showing how Turing Machines in ELEMENTARY can be simulated
by non-deterministic cons-free programs. For this, we reuse the core simulation
from Figure 7. The reason for the jump in expressivity lies in Lemma 2: by taking
advantage of non-determinism, we can count up to arbitrarily high numbers.

20 C. Kop and J. Simonsen

Lemma 10. If there is a P -counting module Cπ with data order K ≤ 1, there
is a (non-deterministic) (λn.2P (n)−1)-counting module Cψ[π] with data order 1.

Proof. We let:

– αψ[π] := bool⇒ απ, which has type order max(1, o(απ));
– Anψ[π] := the set of those values v : αψ[π] such that:

• there is w ∈ Aπ with 〈w〉nπ = 0 such that pψ[π] `call v true→ w;
• there is w ∈ Aπ with 〈w〉nπ = 0 such that pψ[π] `call v false→ w;

and for all 1 ≤ i < P (n) exactly one of the following holds:
• there is w ∈ Anπ with 〈w〉nπ = i such that pψ[π] `call v true→ w;
• there is w ∈ Anπ with 〈w〉nπ = i such that pψ[π] `call v false→ w;

We will say that v true 7→ i or v false 7→ i respectively.

– 〈v〉nψ[π] :=
∑P (n)−1
i=1 {2P (n)−1−i | v true 7→ i};

– pψ[π] be given by the clauses in Figure 8 appended to pπ, and Dψ[π] be the
defined symbols occurring in it.

So, we interpret a value v as the number given by the bitstring b1 . . . bP (n)−1 with
the most significant digit first, where bi is 1 if v true has a value representing i
in Cπ, and bi is 0 otherwise—that is, exactly if v false has such a value.

– core elements; sti n F sets bit n in F to the value i
baseψ[π] x b = x
st1ψ[π] n F true = choose n (F true)
st1ψ[π] n F false = F false

st0ψ[π] n F true = F true

st0ψ[π] n F false = choose n (F false)

– testing bit values (using non-determinism and non-termination)
bitsetψ[π] cs F i = if equalπ cs (F true) i then true

else if equalπ cs (F false) i then false

else bitsetψ[π] cs F i
– the seed function
nulπ cs = nul′π cs (seedπ cs)
nul′π cs n = if zeroπ cs n then n else nul′π cs (predπ cs n)
seedψ[π] cs = seed′ψ[π] cs (seedπ cs) (baseψ[π] (nulπ cs))
seed′ψ[π] cs i F = if zeroπ cs i then F else seed′ψ[π] cs (predπ cs i) (st1ψ[π] i F)
– the zero test
zeroψ[π] cs F = zero′ψ[π] cs F (seedπ cs)
zero′ψ[π] cs F i = if zeroπ i then true

else if bitsetψ[π] cs F i then false

else zero′ψ[π] cs F (predπ cs i)
– the predecessor
predψ[π] cs F = prψ[π] cs F (seedπ cs) (baseψ[π] (nulπ cs))
prψ[π] cs F i G = if bitsetψ[π] cs F i then cpψ[π] cs F (predπ cs i) (st0ψ[π] i G)

else prψ[π] cs F (predπ cs i) (st1ψ[π] i G)
cp cs F i G = if zeroπ cs i then G

else if bitsetψ[π] cs F i then cpψ[π] cs F (predπ cs i) (st1ψ[π] i G)
else cpψ[π] cs F (predπ cs i) (st0ψ[π] i G)

Fig. 8. Clauses for the counting module Cψ[π].

The Power of Non-Determinism in Higher-Order Implicit Complexity 21

To understand the counting program, consider the number 4, with bit represen-
tation 100. If the numbers 0, 1, 2, 3 are represented in Cπ by values O,w1, w2, w3

respectively, then this bitstring corresponds for example to Q:

st1 w1 (st0 w2 (st0 w3 (baseψ[π] O)))

The null-value O functions as a default, and is a possible value of both Q true

and Q false for any function Q representing a bitstring.
The non-determinism truly comes into play when determining whether

Q true 7→ i or not: we can evaluate F true to some value, but we cannot
guarantee that it reduces to the value we need. Therefore, we find some value
of both F true and F false; if either gives a representation of i, then we have
confirmed or rejected that bi = 1. If both evaluations give a different value, we
gives a non-terminating program, but there is always exactly one value b such
that pψ[π] `call bitsetψ[π] cs F i→ b.

The seedψ[π] function generates the bit string 1 . . . 1, so the function F
with F true 7→ i for all i ∈ {0, . . . , P (n) − 1} and F false 7→ i for only
i = 0. The zeroψ[π] function iterates through bP (n)−1, bP (n)−2, . . . , b1 and tests
whether all bits are set to 0. The clauses for predψ[π] assume given a bitstring
b1 . . . bi−110 . . . 0, and recursively build b1 . . . bi−101 · · · 1 in the parameter G.

Example 11. Consider an input string of length 3, say false::false::true::[].
There is a (λn.n + 1)-counting module C〈1,1〉 representing i ∈ {0, . . . , 3}, and
therefore a second-order (λn.2n)-counting module Cψ[〈1,1〉] representing i ∈
{0, . . . , 7}. The number 6—with bitstring 110—is represented by the value w6:

set1ψ[〈1,1〉] (true::[]) (set1ψ[〈1,1〉] (false::true::[]) (
set0ψ[〈1,1〉] (false::false::true::[]) (consψ[〈1,1〉] []))) : bool⇒ list

But then there is also a (λn.22n−1)-counting module Cψ[ψ[〈1,1〉]], representing
i ∈ {0, . . . , 27 − 1}. For example the number 97—with bit vector 1100001—is
represented by the value S:

set1ψ[ψ[〈1,1〉]] w1 (set1ψ[ψ[〈1,1〉]] w2 (set0ψ[ψ[〈1,1〉]] w3 (
set0ψ[ψ[〈1,1〉]] w4 (set0ψ[ψ[〈1,1〉]] w5 (set0ψ[ψ[〈1,1〉]] w6 (

set1ψ[ψ[〈1,1〉]] w7 (consψ[ψ[〈1,1〉]] w7)))))))

Where set1ψ[ψ[〈1,1〉]] and set0ψ[ψ[〈1,1〉]] have the type (bool⇒ list)⇒ (bool⇒
bool⇒ list)⇒ bool⇒ bool⇒ list and each wi is a value representing the
number i in Cψ[〈1,1〉], as shown for w6 above. Note that S true 7→ w1, w2, w7 and
S false 7→ w3, w4, w5, w6.

Since 22m−1 − 1 ≥ 2m for all m ≥ 2, we can count up to arbitrarily high
bounds using this module. Thus, already with data order 1, we can simulate
Turing Machines in any class EXPKTIME.

Lemma 11. Every decision problem in ELEMENTARY is accepted by a cons-free
program with data order 1.

Proof. A decision problem is in ELEMENTARY if it is in some EXPKTIME which,
by Lemma 2, is certainly the case if for any a, b there is a Q-counting module
with Q ≥ λn. expK2 (a · nb). Such a module exists for data order 1 by Lemma 10.

22 C. Kop and J. Simonsen

6.2 Simulating cons-free programs using an algorithm

For the other part of obtaining a characterisation, we must see that the result
of every cons-free program can be obtained by an algorithm in ELEMENTARY—
so which runs in TIME

(
expK2 (a · nb)

)
for some a, b,K. For this, we can use

Algorithm 6 almost unmodified: the difference is in the definition of 〈|σ|〉B.

Definition 17. Let B be a set of data expressions closed under �. For ι ∈ S,
let JιKB = {d ∈ B |` d : ι}. Inductively, define Jσ × τKB = JσKB × JτKB and
Jσ ⇒ τKB = {Aσ⇒τ | A ⊆ JσKB × JτKB}. We call the elements of any JσKB
non-deterministic extensional values.

Where the elements of 〈|σ ⇒ τ |〉B are partial functions, Jσ ⇒ τKB contains
arbitrary relations: a value v is associated to a set of pairs (e, u) such that v e
might evaluate to u. The notions of extensional expression, e(u1, . . . , un) and w
immediately extend to non-deterministic extensional values. Thus we can define:

Algorithm 12 Let p be a fixed, deterministic cons-free program, with f1 : κ1 ⇒
. . .⇒ κM ⇒ κ ∈ F .

Input: data expressions d1 : κ1, . . . , dM : κM .
Output: The set of values b with JpK(d1, . . . , dM) 7→ b.
Execute Algorithm 6, but using JσKB in place of 〈|σ|〉B.

In Section 6.3, we will see that indeed JpK(d1, . . . , dM) 7→ b if and only if
Algorithm 12 returns a set containing b. But first we observe:

Lemma 13. Defining the arrow depth of a type by: depth(ι) = 0, depth(σ×τ) =
max(depth(σ), depth(τ)) and depth(σ ⇒ τ) = 1 + max(depth(σ), depth(τ)), then
if 1 ≤ Card(B) < N , depth(σ) ≤ K and σ has L sorts: Card(JσKB) < expK2 (NL).

For e, u ∈ 〈|σ|〉B, testing e w u requires at most expK2 (N (L+1)3) comparisons.

Proof (Sketch). A straightforward induction on the form of σ, like Lemma 8.

Thus, once more assuming correctness for now, we may conclude:

Lemma 14. Every decision problem accepted by a cons-free program p is in
ELEMENTARY.

Proof. We will see in Lemma 17 in Section 6.3 that JpK(d1, . . . , dM) 7→ b if and
only if Algorithm 12 returns a set containing b. For a program where, for all σ in
the set Σ (as defined in Lemma 7), depth(σ) ≤ K, Lemmas 13 and 7 together
give that Algorithm 12 is in EXPKTIME ⊆ ELEMENTARY.

Theorem 2. The class of deterministic cons-free programs with data order K
characterises ELEMENTARY for all K ∈ N \ {0}.
Proof. A combination of Lemmas 11 and 14.

6.3 Correctness proofs of Algorithms 6 and 12

Algorithms 6 and 12 are the same—merely parametrised with a different set of
extensional values which may be used in Algorithm 1b. Due to this similarity,
and because 〈|σ|〉B ⊆ JσKB, we can mostly prove their correctness together. The
proofs are somewhat intricate, however; details are provided in the appendix.

The Power of Non-Determinism in Higher-Order Implicit Complexity 23

We begin with soundness:

Lemma 15. If Algorithm 6 or 12 returns a set A∪{b}, then JpK(d1, . . . , dM) 7→ b.

Proof (Sketch). We define for every value v : σ and e ∈ JσKB: v⇓e iff:

– σ ∈ S and v = e;
– σ = σ1 × σ2 and v = (v1, v2) and e = (e1, e2) with v1⇓e1 and v2⇓e2;
– σ = σ1 ⇒ σ2 and e = Aσ with A ⊆ ϕ(v) := {(u1, u2) | u1 ∈ Jσ1KB ∧ u2 ∈

Jσ2KB∧ for all values w1 : σ1 with w1 ⇓u1 there is some value w2 : σ2 with
w2⇓u2 such that p′ `call v w1 → w2}

We now prove the following two statements together by induction on the core
algorithm, which is equipped with some unspecified subsets [σ] of JσKB:

1. Let: (a) f : σ1 ⇒ . . .⇒ σm ⇒ κ ∈ F be a defined symbol; (b) v1 : σ1, . . . , vn :
σn be values, for 1 ≤ n ≤ arityp(f); (c) e1 ∈ Jσ1KB, . . . , en ∈ JσnKB be such
that each vi ⇓ ei; (d) o ∈ Jσn+1 ⇒ . . . ⇒ σm ⇒ κKB. If ` f e1 · · · en ; o is
eventually confirmed, then p′ `call f v1 · · · vn → w for some w with w⇓o.

2. Let: (a) ρ : f ` = s be a clause in p′; (b) t : τ be a sub-expression of s; (c) η
be an ext-environment for ρ; (d) γ be an environment such that γ(x)⇓η(x)
for all x ∈ Var(f `); (e) o ∈ JτKB. If the statement η ` t ; o is eventually
confirmed, then p′, γ ` t→ w for some w with w⇓o.

Given the way p′ is defined from p, the lemma follows from the first statement.
The induction is not hard, but requires minor sub-steps such as transitivity of w.

The harder part, where the algorithms diverge, is completeness:

Lemma 16. If JpK(d1, . . . , dM) 7→ b, then Algorithm 12 returns a set A ∪ {b}.

Proof (Sketch). If JpK(d1, . . . , dM) 7→ b, then p′ `call start d1 · · · dM → b. We
label the nodes in the derivation trees with strings of numbers (a node with
label l has immediate subtrees of the form l · i), and let > denote lexicographic
comparison of these strings, and � lexicographic comparison without prefixes
(e.g., 1 · 2 > 1 but not 1 · 2 � 1). We define the following relation:

– ψ(v, l) = v if v ∈ B, and (ψ(v1, l), ψ(v2, l)) if v = (v1, v2);
– for f v1 · · · vn : τ = σn+1 ⇒ . . .⇒ σm ⇒ κ with m > n, let ψ(f v1 · · · vn, l) =
{(en+1, u) | ∃q � p > l [the subtree with index p has a root p′ `call
f v1 · · · vn+1 → w with ψ(w, q) = u and en+1 w′ ψ(vn+1, p)]}τ .

Here, w′ is defined the same as w, except that Aσ w′ Bσ iff A ⊇ B. Note that
clearly A w′ B implies A w B, and that w′ is transitive by transitivity of ⊇.
Then, using induction on the labels of the tree in reverse lexicographical order
(so going through the tree right-to-left, top-to-bottom), we can prove:

1. If the subtree labelled l has root p′ `call f v1 · · · vn → w, then for all e1, . . . , en
such that each ei w′ ψ(vi, l), and for all p � l there exists o w′ ψ(w, p) such
that ` f e1 · · · en ; o is eventually confirmed.

24 C. Kop and J. Simonsen

2. If the subtree labelled l has root p′, γ ` t→ w and η(x) w′ ψ(γ(x), l) for all
x ∈ Var(t), then for all p � l there exists o w′ ψ(w, p) such that η t; o is
eventually confirmed.

The case for the main tree—which has label 0 so there exists p � 0—gives that
` start d1 · · · dM ; b is eventually confirmed, so b is indeed returned.

We conclude:

Lemma 17. JpK(d1, . . . , dM) 7→ b iff Algorithm 12 returns a set containing b.

Proof. This is a combination of Lemmas 15 and 16.

The proof of the general case provides a basis for the deterministic case:

Lemma 18. If JpK(d1, . . . , dM) 7→ b and p is deterministic, then Algorithm 12
returns a set A ∪ {b}.

Proof. We define a consistency measure o on non-deterministic extensional values,
with, e.g., Aσ oBσ iff for all (e1, u1) ∈ A and (e2, u2) ∈ B: e1 o e2 implies u1 o u2.

In the proof of Lemma 16, we trace a derivation in the algorithm. In a deter-
ministic program, we can see that if both ` f e1 · · · en → o and ` f e′1 · · · e′n → o′

are confirmed, and each ei o e′n, then o o o′—and similar for statements η ` s⇒ o.
We use this to remove statements which are not necessary, ultimately leaving
only those which use extensional values. This gives a result using Algorithm 6.

Lemma 19. JpK(d1, . . . , dM) 7→ b iff Algorithm 6 returns a set containing b.

Proof. This is a combination of Lemmas 15 and 18.

7 Recovering the EXPTIME hierarchy

While interesting, Lemma 11 exposes a problem: non-determinism is unexpectedly
powerful in the higher-order setting. If we still want to use non-deterministic
programs towards characterising non-deterministic complexity classes, we must
surely start by considering restrictions which avoid this explosion of expressivity.

A possible direction is to consider arrow depth instead of data order: following
Lemma 13 and the counting module of Figure 8, we can see that the class of cons-
free programs with “data arrow depth K” characterises EXPKTIME. However,
this characterisation is not practical : it is hard for a human to take advantage of
the expressivity in programs with a high arrow depth but low data order, as it
relies so much on using non-deterministic choice.

Instead, we propose a very simple restriction: unary variables. This imposes
no conditions in the setting with data order 0, which gives us the first column in
the table from Section 6, and in general gives us the last line from Figure 1.

data order 0 data order 1 data order 2 data order 3
cons-free P = EXP =

EXP2TIME EXP3TIME
unary variables EXP0TIME EXP1TIME

The Power of Non-Determinism in Higher-Order Implicit Complexity 25

Definition 18. A program p has unary variables if clauses can be typed with an
assignment that maps each variable x to either a type κ, or σ ⇒ κ with o(κ) = 0.

Thus, in a program with unary variables, a variable of a type (list× list×
list)⇒ list is admitted, but list⇒ list⇒ list⇒ list is not. The crucial
difference is that the former must be applied to all its arguments at the same
time, while the latter may be partially applied. Since the type order and arrow
depth of a unary type are the same, the results in the table above follow easily:

Lemma 20. Every decision problem in EXPKTIME is accepted by a cons-free
program with data order K and unary variables.

Proof. Both the base program in Figure 7 and the counting modules of Lemmas 3
and 4 have unary variables. Note that the program is deterministic.

Lemma 21. Every decision problem accepted by a cons-free program with data
order K and unary variables is in EXPKTIME.

Proof. For programs with unary variables, the arrow depth of a type is exactly
its order. Thus, by Lemma 13, Algorithm 12 operates within EXPKTIME, and
by Lemma 17, it is correct.

Theorem 3. The class of cons-free programs with unary variables of data order
K characterises EXPKTIME.

Proof. Immediate by Lemmas 20 and 21.

8 Conclusion and future work

We have studied the effect of combining higher types and non-determinism for cons-
free programs. This has resulted in the—highly surprising—conclusion that naively
adding non-deterministic choice to a language that characterises the EXPKTIME
hierarchy for increasing data orders immediately increases the expressivity of the
language to ELEMENTARY. Recovering a more fine-grained complexity hierarchy
can be done, but at the cost of further syntactical restrictions.

The primary goal of future work is to use non-deterministic cons-free programs
to characterise hierarchies of non-deterministic complexity classes such as the
classes NEXPKTIME for K ∈ N. In addition, a full study must be made of
the ramifications of imposing restrictions on recursion, such as tail-recursion or
primitive recursion, in combination with non-determinism and higher types. We
intend to study functional complexity using (deterministic and non-deterministic)
cons-free programs, and characterisations of classes more restrictive than P, such
as LOGTIME and LOGSPACE.

Finally, given the surprising nature of the results in the paper, we urge
readers to investigate the effect of adding non-determinism to other programming
languages used in implicit complexity that manipulate higher-order data. We
conjecture that the effect on expressivity in these will essentially be the same as
those we have observed.

26 C. Kop and J. Simonsen

References

1. S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the
polytime functions. Computational Complexity, 2:97–110, 1992.

2. Stephen Bellantoni. PhD thesis, University of Toronto, 1993.
3. G. Bonfante. Some programming languages for logspace and ptime. In AMAST,

volume 4019 of LNCS, pages 66–80, 2006.
4. P. Clote. Computation models and function algebras. In Handbook of Computability

Theory, pages 589–681. Elsevier, 1999.
5. S.A. Cook. Characterizations of pushdown machines in terms of time-bounded

computers. ACM, 18(1):4–18, 1971.
6. Ugo Dal Lago. A Short Introduction to Implicit Computational Complexity, pages

89–109. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. URL: http://dx.
doi.org/10.1007/978-3-642-31485-8_3, doi:10.1007/978-3-642-31485-8_3.

7. D. de Carvalho and J. Simonsen. An implicit characterization of the polynomial-
time decidable sets by cons-free rewriting. In RTA-TLCA, volume 8560 of LNCS,
pages 179–193, 2014.

8. Andreas Goerdt. Characterizing complexity classes by general recursive definitions
in higher types. Inf. Comput., 101(2):202–218, 1992. URL: http://dx.doi.org/
10.1016/0890-5401(92)90062-K, doi:10.1016/0890-5401(92)90062-K.

9. Andreas Goerdt. Characterizing complexity classes by higher type primitive recur-
sive definitions. Theor. Comput. Sci., 100(1):45–66, 1992. URL: http://dx.doi.
org/10.1016/0304-3975(92)90363-K, doi:10.1016/0304-3975(92)90363-K.

10. Neil Immerman. Descriptive Complexity. Springer-Verlag, 1999.
11. N. Jones. Computability and Complexity from a Programming Perspective. MIT

Press, 1997.
12. N. Jones. The expressive power of higher-order types or, life without CONS. JFP,

11(1):55–94, 2001.
13. A. J. Kfoury, Jerzy Tiuryn, and Pawel Urzyczyn. An analysis of ML typability. J.

ACM, 41(2):368–398, 1994. URL: http://doi.acm.org/10.1145/174652.174659,
doi:10.1145/174652.174659.

14. Cynthia Kop and Jakob Grue Simonsen. Complexity hierarchies and higher-order
cons-free rewriting. In Delia Kesner and Brigitte Pientka, editors, 1st International
Conference on Formal Structures for Computation and Deduction, FSCD 2016,
June 22-26, 2016, Porto, Portugal, volume 52 of LIPIcs, pages 23:1–23:18. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. URL: http://dx.doi.org/10.
4230/LIPIcs.FSCD.2016.23, doi:10.4230/LIPIcs.FSCD.2016.23.

15. L. Kristiansen and K.-H. Niggl. Implicit computational complexity on the com-
putational complexity of imperative programming languages. Theoretical Com-
puter Science, 318(1):139 – 161, 2004. URL: http://www.sciencedirect.com/

science/article/pii/S0304397503005218, doi:http://dx.doi.org/10.1016/j.

tcs.2003.10.016.
16. Lars Kristiansen and Paul J. Voda. Programming languages capturing complexity

classes. Nord. J. Comput., 12(2):89–115, 2005.
17. Isabel Oitavem. A recursion-theoretic approach to NP. Ann. Pure Appl. Logic,

162(8):661–666, 2011. URL: http://dx.doi.org/10.1016/j.apal.2011.01.010,
doi:10.1016/j.apal.2011.01.010.

18. C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
19. M. Sipser. Introduction to the Theory of Computation. Thomson Course Technology,

2006.

http://dx.doi.org/10.1007/978-3-642-31485-8_3
http://dx.doi.org/10.1007/978-3-642-31485-8_3
http://dx.doi.org/10.1007/978-3-642-31485-8_3
http://dx.doi.org/10.1016/0890-5401(92)90062-K
http://dx.doi.org/10.1016/0890-5401(92)90062-K
http://dx.doi.org/10.1016/0890-5401(92)90062-K
http://dx.doi.org/10.1016/0304-3975(92)90363-K
http://dx.doi.org/10.1016/0304-3975(92)90363-K
http://dx.doi.org/10.1016/0304-3975(92)90363-K
http://doi.acm.org/10.1145/174652.174659
http://dx.doi.org/10.1145/174652.174659
http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.23
http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.23
http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.23
http://www.sciencedirect.com/science/article/pii/S0304397503005218
http://www.sciencedirect.com/science/article/pii/S0304397503005218
http://dx.doi.org/http://dx.doi.org/10.1016/j.tcs.2003.10.016
http://dx.doi.org/http://dx.doi.org/10.1016/j.tcs.2003.10.016
http://dx.doi.org/10.1016/j.apal.2011.01.010
http://dx.doi.org/10.1016/j.apal.2011.01.010

The Power of Non-Determinism in Higher-Order Implicit Complexity 27

This appendix contains full proofs of the results presented in the text.

A Properties of cons-free programs (Section 3)

Before recalling Lemma 1, we present a reformulation with extra information
that will be easier to use in later appendixes.

Lemma A1. Let p be a cons-free program, d1, . . . , dM be data expressions, and
let Value’ be given by the grammar:

v, w ∈ Value’ ::= d ∈ Bpd1,...,dM | (v, w) | f v1 · · · vn (n < arityp(f))
Let T be a derivation tree for JpK(d1, . . . , dM) 7→ b. Then for all subtrees T ′ of T :

– if T ′ has root p, γ ` s→ w, then both w and all γ(x) are in Value’;
– if T ′ has root p, γ `if d, s1, s2 → w, then d ∈ Bpd1,...,dM and both w and all
γ(x) are in Value’;

– if T ′ has a root p `call f v1 · · · vn → w with f ∈ D, then both w and all vi
are in Value’;

– if T ′ has a root p, γ ` c s1 · · · sm → c b1 · · · bm with c ∈ C, then each
siγ = bi ∈ Data and c b1 · · · bm ∈ Bpd1,...,dM .

Proof. Write B := Bpd1,...,dM .
In order to obtain the last bullet, we first prove: (*) if T ′ is a tree with root

p, γ ` s→ w, and if s is a pattern, then sγ = w. We prove this by induction on
the form of T ′. Note that the roots of [Function], [Choice] and [Conditional] have
the wrong shape. [Instance] immediately gives the required result, and the cases
for [Constructor] and [Pair] follow by the induction hypothesis. Finally, we can
prove by induction on n that [Appl] is not applicable: if n = 1, then [Appl] would
require a subtree p, γ ` c→ f with f ∈ D, for which there are no inference rules.
If n > 1, then [Appl] would require a subtree p, γ ` c s1 · · · sn−1 → f v1 · · · vi
which, by the induction hypothesis, must be obtained by an inference rule other
than [Appl]; again, there are no suitable inference rules.

Next we prove by induction on the depth of T ′ that: (**) the properties hold
for both T ′ and all its strict subtrees if root(T ′) has one of the following forms:

– p, γ ` s→ w with all γ(x) ∈ Value’, and tγ ∈ B for all sub-expressions t� s
such that t = c s1 · · · sm for some c ∈ C;

– p, γ `if d, s1, s2 → w with d ∈ B and all γ(x) ∈ Value’, and tγ ∈ B for all
sub-expressions t� s1 or t� s2 such that t = c s1 · · · sm for some c ∈ C;

– p `call f v1 · · · vn → w with all vi ∈ Value’.

Note that proving this suffices: the immediate subtree T ′ of T has a root p, γ `
f1 x1 · · ·xM → b, where each γ(xi) = di ∈ B, and f1 x1 · · ·xM has no sub-
expressions with a data constructor at the head. Thus, the lemma holds for both
T ′ and all its strict subtrees, which implies that it holds for T .

We prove (**). Assume that root(T ′) has one of the given forms, and consider
the rule used to obtain this root.

28 C. Kop and J. Simonsen

Instance Then T ′ has a root p, γ ` x→ γ(x); the requirement that all γ(y) ∈
Value’ is satisfied by the assumption, and this also gives that the right-hand
side γ(x) ∈ Value’.

Function Then T ′ has a root p, γ ` f→ v and a subtree p `call f→ v; by the
induction hypothesis, the properties hold for this subtree, which also implies
that v ∈ Value’ and therefore the properties hold for T ′ as well.

Constructor Then T ′ has a root p, γ ` c s1 · · · sm → c b1 · · · bm with c ∈ C,
and the immediate subtrees have the form p, γ ` si → bi; by the induction
hypothesis (and the assumption), the properties are satisfied for each such
subtree. Also by the assumption, (c s1 · · · sm)γ ∈ B, so necessarily each
siγ ∈ B ⊆ Data. By (*), each siγ = bi, and c b1 · · · bm = (c s1 · · · sm)γ ∈ B.

Pair Then T ′ has a root p, γ ` (s1, s2) → (w1, w2) and subtrees with roots
p, γ ` s1 → w1 and p, γ ` s2 → w2. The assumption and induction hypothesis
give that the properties are satisfied for both subtrees, and therefore both
w1 and w2 are in Value’, giving also (w1, w2) ∈ Value’.

Choice Then T ′ has a root p, γ ` choose s1 · · · sn → v and a subtree p, γ `
si → v for some i. By the induction hypothesis, the properties hold for the
subtree, and therefore v ∈ Value’.

Conditional Then T ′ has a root p, γ ` if s1 then s2 else s3 → w and subtrees
with roots p, γ ` s1 → d and p, γ `if d, s2, s3 → w. The requirement that all
γ(x) ∈ Value’ is satisfied by the assumption, and by both the assumption
and the induction hypothesis, the lemma is satisfied for the first subtrees.
Thus, d ∈ Value’; for typing reasons d ∈ B. We may apply the induction
hypothesis on the second subtree, which gives that the lemma is satisfied for
it, and that w ∈ Value’.

If-True or If-False Then root(T ′) has the form p, γ `if d, s1, s2 → w. The
requirement that d ∈ B and all γ(x) ∈ Value’ is satisfied by the assumption.
T ′ has one immediate subtree T ′′, whose root is either p, γ ` s2 → w or
p, γ ` s3 → w. Since the assumptions are satisfied, T ′′ satisfies the lemma by
the induction hypothesis, which also gives that w ∈ Value’.

Appl Then T ′ has a root p, γ ` s t→ w and subtrees p, γ ` s→ f v1 · · · vn and
p, γ ` t → vn+1 and p `call f v1 · · · vn+1 → w. The assumption gives that
all γ(x) ∈ Value’, and the assumption and induction hypothesis together
give that the lemma is satisfied for the first two subtrees. Since this implies
that all vi ∈ Value’, we may also apply the induction hypothesis on the last
subtree, which gives that w ∈ Value’.

Closure Then root(T ′) has the form p,`call f v1 · · · vn → w with f ∈ D. The
requirement that all vi are in Value’ is satisfied by the assumption, therefore
w = f v1 · · · vn ∈ Value’ as well, and there are no strict subtrees.

Call Then root(T ′) has the form p,`call f v1 · · · vk → w with f ∈ D, and
there exist a clause f `1 · · · `k = s and an environment γ with domain
Var(f `1 · · · `k) such that each vi = `iγ, and T ′ has one immediate subtree
T ′′ with root p, γ ` s→ w. Then, for 1 ≤ i ≤ n we observe that vi � γ(x) for
all x ∈ Var(`i), since (by definition of a pattern) `i � x for all such x. Since
all sub-expressions of a value in Value’ are themselves in Value’, we thus
have: each γ(x) ∈ Value’.

The Power of Non-Determinism in Higher-Order Implicit Complexity 29

Moreover, for s�t = c s1 · · · sm with c ∈ C, also `i�t for some i by definition
of a cons-free program. But then also `iγ = vi � tγ.
Thus, we can apply the induction hypothesis, and obtain that the lemma is
satisfied for T ′′. This implies that w ∈ Value’, so the last requirement on
the root of T ′ is also satisfied.

Now recall Lemma 1:

Lemma 1. Let p be a cons-free program, and suppose that JpK(d1, . . . , dM) 7→ b
is obtained by a derivation tree T . Then for all statements p, γ ` s → w or
p, γ `if b′, s1, s2 → w or p `call f v1 · · · vn → w, and all sub-expressions d such
that (a) w � d, (b) b′ � d, (c) γ(x) � d for some x or (d) vi � d for some i: if d
has the form c b1 · · · bm with c ∈ C, then d ∈ Bpd1,...,dM .

Proof. This is an immediate consequence of Lemma A1, since the only sub-
expressions of an element of Value’ whose head symbol is a data constructor,
are in Bpd1,...,dM .

B Counting modules (Section 5.1)

We discuss the counting modules from Section 5.1 in more detail.

Lemma 3. For any a, b ∈ N \ {0}, there is a (λn.a · (n+ 1)b)-counting module
C〈a,b〉 with data order 0.

Proof. Using pairing in a right-associative way—that is, (x, y, z) should be read
as (x, (y, z)), we let:

– α〈a,b〉 := listb+1; that is, list× · · · × list with b+ 1 occurrences of list
– An〈a,b〉 := {(d0, . . . , db) | all di are boolean lists, with |d0| < a and |di| ≤ n for

1 ≤ i ≤ b; here, we say |x1:: . . . ::xk::[]| = k

– 〈(d0, . . . , db)〉n〈a,b〉 :=
∑b
i=0 |di| · (n+ 1)b−i

– D〈a,b〉 = {seed〈a,b〉, pred〈a,b〉, zero〈a,b〉}
– let alist be a list of length a − 1, e.g., false:: . . . ::false::[] and let p〈a,b〉

consist of the following clauses:

seed〈a,b〉 cs = (alist, cs, . . . , cs)

pred〈a,b〉 cs (x0, . . . , xb−1, y::ys) = (x0, . . . , xb−1, xs)
pred〈a,b〉 cs (x0, . . . , xb−2, y::ys, []) = (x0, . . . , xb−2, ys, cs)
. . .
pred〈a,b〉 cs (y::ys, [], . . . , []) = (ys, cs, . . . , cs)
pred〈a,b〉 cs ([], [], . . . , []) = ([], [], . . . , [])

zero〈a,b〉 cs (x0, . . . , xb−1, y::ys) = false

zero〈a,b〉 cs (x0, . . . , xb−2, y::ys, []) = false

. . .
zero〈a,b〉 cs (y::ys, [], . . . , []) = false

zero〈a,b〉 cs ([], . . . , []) = true

30 C. Kop and J. Simonsen

It is easy to see that the requirements on evaluation are satisfied. For example,
p〈a,b〉 `call seed〈a,b〉 cs → (alist, cs, . . . , cs), which consists of b + 1 boolean
lists with the appropriate lengths, and 〈(alist, cs, . . . , cs)〉n〈a,b〉 = (a− 1) · (n+

1)b + n · (n+ 1)b−1 + · · ·+ n · (n+ 1)b−b = (a · (n+ 1)b − (n+ 1)b) + ((n+ 1)b −
(n+ 1)b−1) + · · ·+ ((n+ 1)1 − (n+ 1)0) = a · (n+ 1)b − 1; since the program is
deterministic, this is the only value. The evaluation requirements for pred〈a,b〉
and zero〈a,b〉 are similarly easy.

Lemma 4. If there is a P -counting module Cπ of data order K, then there is a
(λn.2P (n))-counting module Ce[π] of data order K + 1.

Proof. We let:

– αe[π] := απ ⇒ bool; then o
(
αe[π]

)
≤ K + 1;

– Ane[π] := {values F such that, (a) for all v ∈ Anπ: either pe[π] `call F v → true

or pe[π] `call F v → false (but not both), and (b) for all v, w ∈ Anπ: if
〈v〉nπ = 〈w〉nπ then pe[π] `call F v → b and pe[π] `call F w → d implies
b = d}; that is, Ane[π] is the set of functions from απ to bool such that F [i]

is uniquely defined for any representation [i] of i ∈ {0, . . . , P (n)− 1} in Cπ;

– 〈F 〉ne[π] =
∑P (n)−1
i=0 {2P (n)−1−i | ∃v ∈ Anπ[〈v〉nπ = i ∧ pe[π] `call F i→ true]};

that is, F is mapped to the number i with a bitstring b0 . . . bP (n)−1, where
bi = 1 if and only if F [i] has value true;

– De[π] = Dπ ∪ {not} ∪ {fe[π] | fe[π] used in pe[π] below}
– pe[π] consists of the following clauses, followed by the clauses in pπ:

seede[π] cs = alwaystruee[π]
alwaystruee[π] x = true

zeroe[π] cs F = zhelpe[π] cs F (seedπ cs)
zhelpe[π] cs F k = if F k then false

else if zeroπ cs k then true

else zhelpe[π] cs F (predπ cs k)

prede[π] cs F = phelpe[π] cs F (seedπ cs)
phelpe[π] cs F k = if F k then flipe[π] cs F k

else if zeroπ cs k then seede[π] cs
else phelpe[π] cs (flipe[π] cs F k) (predπ cs k)

flipe[π] cs F k i = if equalπ cs k i then not (F i) else F i
not b = if b then false else true

By standard bitvector arithmetic—in particular the observation that the predeces-
sor of b0 . . . bi10 . . . 0 is b0 . . . bi01 . . . 1—we see that the evaluation requirements
are satisfied.

C Algorithm complexity (Sections 5.2 and 6.2)

Recall the key lemma from Section 5.2:

The Power of Non-Determinism in Higher-Order Implicit Complexity 31

Lemma 13. Let p be a cons-free program, proper for data order K. Let Σ be
the set of all types σ with o(σ) ≤ K which occur as part of an argument type, or
as an output type of some f ∈ D.

Suppose that, given input of total size n, 〈|σ|〉B has cardinality at most F (n)
for all σ ∈ Σ, and testing whether e1 w e2 for e1, e2 ∈ JσKB takes at most F (n)
steps. Then Algorithm 6 runs in TIME

(
a · F (n)b

)
for some a, b.

Proof. We first observe that, for any e ∈ JσKB occurring in the algorithm, σ ∈ Σ.
This is due to the preparation step where p is replaced by p′.

Write a for the greatest number of arguments any defined symbol f or variable
x occurring in p′ may take, and write r for the greatest number of sub-expressions
of any right-hand side in p′ (which does not depend on the input!). We start by
observing that X contains at most a · |D| · F (n)a+1 statements f e1 · · · en ; o,
and at most |p′| · r · F (n)a+1 statements tη ; o.

We observe that step 1a does not depend on the input, so takes a constant
number of steps. Step 1b and 1c both take |X | steps. The exact time cost of
each step depends on implementation concerns, but is certainly limited by some
polynomial of F (n), by the assumption on w.. Thus, the preparation step is
polynomial in F (n); say its cost is P1(F (n)).

In every step of the iteration, at least one statement is flipped from un-
confirmed to confirmed, or the iteration ends. Thus, there are at most |X |+ 1
iterations. In each iteration, Step 2a has a cost limited by Card(O) · |X | · 〈cost
of checking u′ w u〉 ≤ F (n)3 · |X | · 〈 some implementation-dependent constant〉.
Step 2b has a cost limited by |p′| · 〈cost of matching〉 · |X | · 〈some implementation-
dependent constant〉. Both Steps 2c and 2e are limited by 2 · 〈some constant〉 · |X |
as well (the cost for looking up confirmation status of two given statements), and
Step 2d is certainly limited by r · 〈some constant〉 · |X |.

For each statement sη ; o in Steps 2f and 2g, we must check all suitable tuples
(e1, . . . , en′)—of which there are at most F (n)a—and test confirmation for each
siη ; ei. In Step 2f, we must additionally do w tests for all o′ ∈ η(x)(e1, . . . , en′)
for all tuples; even if we ignore that η(x) is a partial function, this takes at most
F (n)a · F (n)a · F (n) · 〈some constant〉 steps. In Step 2(g)i, a single lookup over
|X | statements must be done; in Step 2(g)ii this is combined with a lookup. Both
cases certainly stay below F (n)2·a+2 · 〈some constant〉 steps.

In total, the cost of iterating is thus limited by (|X |+1) · |X | · 〈some constant〉 ·
max(F (n)3 · |X |, |p′| · |X |, 2 · |X |, r · |X |, F (n)2·a+2). Since |X | is a polynomial in
F (n), this is certainly bounded by P2(F (n)) for some polynomial P2.

Finally, completion requires at most |X | tests. Overall, all steps together gives
a polynomial time complexity in F (n).

To derive the sizes of 〈|σ|〉B and JσKB, we first obtain a simple helper lemma:

Lemma C2. If X,Y ≥ 2, then expK2 (X) · expK2 (Y) for all K ∈ N.

Proof. For X,Y ≥ 2 always (**) X · Y ≥ X + Y :

– 2 · 2 = 4 = 2 + 2;

32 C. Kop and J. Simonsen

– if X ·Y ≥ X+Y , then X · (Y +1) = X ·Y +X ≥ (X+Y)+X ≥ X+(Y +1);
– if X · Y ≥ X + Y , then (X + 1) · Y ≥ Y +X + 1 in the same way.

By induction on K we also see: (***) if X ≥ 2 then expK2 (X) ≥ 2 for all K.
Now the lemma follows by another induction on K:

– for K = 0: expK2 (X) · expK2 (Y) = X · Y = expK2 (X · Y);

– forK ≥ 0: expK+1
2 (X)·expK+1

2 (Y) = 2exp
K
2 (X)·2expK2 (Y) = 2exp

K
2 (X)+expK2 (Y) ≤

2exp
K
2 (X)·expK2 (Y) by (**) and (***), ≤ 2exp

K
2 (X)·expK2 (Y) = expK+1

2 (X · Y) by
the induction hypothesis.

We can prove the result on w for Lemmas 8 and 13 together:

Lemma C3. Let [σ] be one of 〈|σ|〉B or JσKB, and suppose that we know that
for all subtypes of σ containing L sorts: Card([σ]) < expK2 (NL) for some fixed

K, and N ≥ 2. Then for any e, u ∈ [σ]: testing e w u requires < expK2 (N (L+1)3)
comparisons between elements of B.

Proof. We let Cσ be the maximum cost of either w tests or equality tests for
elements of [σ]. We first observe:

1. (X+Y +1)3 = X3 +Y 3 +3X2Y +3XY 2 +3X2 +3Y 2 +6XY +3X+3Y +1;
2. (X + 1)3 = X3 + 3X2 + 3X + 1;
3. (X + Y + 1)3 − (X + 1)3 − (Y + 1)3 = 3X2Y + 3XY 2 + 6XY − 1.

Now, Cι = 1 < N8 = expK2 (N23) for ι ∈ S. Writing L1 for the number of
sorts in σ1 and L2 for the number of sorts in σ2, we have:

Cσ1×σ2
= Cσ1

+ Cσ2

< expK2 (N (L1+1)3) + expK2 (N (L2+1)3) by the induction hypothesis

≤ expK2 (N (L1+1)3 ·N (L2+1)3) because both sides are at least 2

≤ expK2 (N (L1+1)3+(L2+1)3) by Lemma C2

≤ expK2 (N (L1+L2+1)3) by observation 3 above

= expK2 (N (L+1)3)

To compare Aσ1⇒σ2
and Bσ1⇒τ1 , we may for instance do the following:

– for all (u1, u2) ∈ B:
• for all (e1, e2) ∈ A, test e1 = u1 and either e2 = e2 or e2 w u2;
• conclude failure if we didn’t find a match

– in the case of w, conclude success if we haven’t concluded failure yet; in the
case of =, also do the test in the other direction

This gives, roughly:

Cσ⇒τ ≤ 2 · Card([σ1 × σ2]) · Card([σ1 × σ2]) · (Cσ1
+ Cσ2

)
≤ 2 · expK2 (NL) · expK2 (NL) · (Cσ1 + Cσ2)

< 2 · expK2 (NL) · expK2 (NL) · expK2 (N (L1+1)3+(L2+1)3) as above

≤ 2 · expK2 (N2·L+(L1+1)3+(L2+1)3) by Lemma C2

≤ expK2 (N2·L+(L1+1)3+(L2+1)3+1) because N ≥ 2

≤ expK2 (N (L1+L2+1)3) by observation 3 above
because (X + 6L1L2 − 1)− (2L1 + 2L2 + 1) ≥ 0 when L1, L2 ≥ 1

The Power of Non-Determinism in Higher-Order Implicit Complexity 33

Now we can derive the cardinalities of 〈|σ|〉B and JσKB as in the text:

Lemma 8. If 1 ≤ Card(B) < N , then for each σ with o(σ) ≤ K and containing
L sorts: Card(〈|σ|〉B) < expK2 (NL), where Card(X) denotes the cardinality of X.

For e, u ∈ 〈|σ|〉B, testing e w u requires at most expK2 (N (L+1)3) comparisons
between elements of B.

Proof. We prove the first part by induction on the form of σ.
For σ ∈ S, 〈|σ|〉B ⊆ B so Card(〈|σ|〉B) ≤ Card(B) < N .
For σ = σ1 × σ2 with σ1 having L1 sorts and σ2 having L2, we have

Card(〈|σ1 × σ2|〉B) = Card(〈|σ1|〉B) · Card(〈|σ2|〉B)
< expK2 (NL1) · expK2 (NL2)
≤ expK2 (NL1 ·NL2) by Lemma C2
= expK2 (NL1+L2) = expK2 (L)

For σ = σ1 ⇒ σ2 with σ1 having L1 sorts and σ2 having L2, each element of
〈|σ|〉B can be seen as a total function from 〈|σ1|〉B to 〈|σ2|〉B ∪ {⊥}. Therefore,

Card(〈|σ1 ⇒ σ2|〉B) = (Card(〈|σ2|〉B) + 1)Card(〈|σ1|〉B)

≤ expK2 (NL2)Card(〈|σ1|〉B)

< expK2 (NL2)ˆ(expK−12 (NL1))

= 2ˆ(expK−12 (NL2) · expK−12 (NL1))

≤ 2ˆ(expK−12 (NL)) by Lemma C2
= expK2 (NL)

The second part is given by Lemma C3.

Lemma 13. Defining the arrow depth of a type by: depth(ι) = 0, depth(σ×τ) =
max(depth(σ), depth(τ)) and depth(σ ⇒ τ) = 1 + max(depth(σ), depth(τ)), then
if 1 ≤ Card(B) < N , depth(σ) ≤ K and σ has L sorts: Card(JσKB) < expK2 (NL).

For e, u ∈ 〈|σ|〉B, testing e w u requires at most expK2 (N (L+1)3) comparisons
between elements of B.

Proof. We prove the first part by induction on the form of σ.
For σ ∈ S, JσKB ⊆ B so Card(JσKB) ≤ Card(B) < N .
For σ = σ1 × σ2, we obtain Card(JσKB) ≤ expK2 (NL) in exactly the same way

as in Lemma 8.
For σ = σ1 ⇒ σ2 with σ1 having L1 sorts and σ2 having L2, each element of

JσKB is a subset of Jσ1KB × Jσ2KB; therefore,

Card(〈|σ1 ⇒ σ2|〉B) = 2ˆ(Card(〈|σ1|〉B × 〈|σ2|〉B))

≤ 2ˆ(expK−12 (NL1) · expK−12 (NL2))

≤ 2ˆ(expK−12 (NL)) by Lemma C2
= expK2 (NL)

The second part is given by Lemma C3.

34 C. Kop and J. Simonsen

D Algorithm correctness (Section 6.3)

We prove that for both Algorithm 6 and Algorithm 12: JpK(d1, . . . , dM) 7→ b if
and only if b is in the set returned by the algorithm. We do this in four steps:

– we obtain some properties on (non-deterministic) extensional values and p′;
– we prove that for both algorithms: if b is returned by the algorithm, then

JpK(d1, . . . , dM) 7→ b;
– we prove that for Algorithm 12: if JpK(d1, . . . , dM) 7→ b, then b is returned by

the algorithm;
– we adapt this proof to the deterministic setting.

This is done in the sections D.1–D.4.

D.1 Properties of extensional values and p′

We begin by giving obtaining some properties relevant to both the soundness
and completeness proofs.

Lemma D4. Fix a set B of data expressions, closed under taking sub-expressions.
Let ⇓ be a relation, relating values v of type σ to (non-deterministic) extensional
values e ∈ JσKB, notation v⇓e, such that:

– v⇓e for v, e data if and only if v = e, and
– (v, w)⇓(e, u) if and only if both v⇓e and w⇓u.

Let v1 : σ1, . . . , vk : σk and e1 ∈ Jσ1KB, . . . , ek ∈ JσkKB be such that si ⇓ ei for
each i, and let ρ : f `1 · · · `k = s be a clause. Then there is an environment γ such
that each vi = `iγ if and only if there is an ext-environment η such that each
ei = `iη, and if both are satisfied then γ(x)⇓η(x) for all x ∈ Var(f `1 · · · `k).

Essentially, this lemma says that no matter how we associate values of a
higher type to extensional values, if data and pairing are handled as expected,
then matching functions in the natural way.

Proof. For ` a pattern of type σ, v : σ a value and e ∈ JσKB such that v⇓e, the
lemma follows easily once we prove the following by induction on `:

– If v = `γ for some γ, then there exists η on domain Var(`) such that e = `η
and γ(x)⇓η(x) for all x in the domain:
• If ` is a variable, then γ(`) = v, so choose η := [` := e].
• If ` is a pair (`1, `2), then v = (v1, v2) and therefore e = (e1, e2) with

both v1⇓e1 and v2⇓e2; by the induction hypothesis, we find η1 and η2 on
domains Var(`1) and Var(`2) respectively; we are done with η := η1 ∪ η2.

• If ` = c `1 · · · `m with c ∈ C, then v and e are both data expressions,
so v = e; since the argument types of constructors have order 0, all
x ∈ Var(`) have type order 0, so we can choose η(x) := γ(x) for such x.

The Power of Non-Determinism in Higher-Order Implicit Complexity 35

– If e = `η for some η, then there exists γ on domain Var(`) such that s = `γ
and γ(x)⇓η(x) for x in Var(`); this reasoning is parallel to the case above.

Lemma D5. w is transitive.

Proof. Let e w u w o with e, u, o ∈ JσKB; we prove that e w o by induction on
the form of σ.

– if σ ∈ S, then e = u = o;
– if σ = σ1 × σ2, then e = (e1, e2), v = (u1, u2) and o = (o1, o2) with both
e1 w u1 w o1 and e2 w u2 w o2; by the induction hypothesis indeed e1 w o1
and e2 w o2;

– if σ = σ1 ⇒ σ2, then we can write e = Aσ, u = Bσ and o = Cσ and:

• for all (o1, o2) ∈ C there exists u2 w o2 such that (o1, u2) ∈ B;
• for all (o1, u2) ∈ B there exists e2 w u2 such that (o1, e2) ∈ A.

As the induction hypothesis gives e2 w o2, also e w o.

Lemma D6. Let p′ be obtained from p following step 1a in Algorithm 6. Then
JpK(d1, . . . , dM) 7→ b if and only if p′ `call start d1 · · · dM → b.

Proof. First observe that p′ `call start d1 · · · dM → b if and only if p′, [x1 :=
d1, . . . , xM := dM] ` f1 x1 · · ·xM → b, and that by definition JpK(d1, . . . , dM) 7→ b
if and only if p, [x1 := d1, . . . , xM := dM] ` f1 x1 · · ·xM → b.

Second, let fix (s) be the result of replacing all sub-expressions of the form
(if b then s1 else s2) t1 · · · tn in s by if b then (s1 t1 · · · tn) else (s2 t1 · · · tn), and
expressions (choose s1 · · · sm) t1 · · · tn by choose (s1 t1 · · · tn) · · · (sm t1 · · · tn).
Then we see that:

– p `call f v1 · · · vn → w iff p′ `call f v1 · · · vn → w, and
– p, γ ` s→ w iff p, γ ` fix (s)→ w.

By induction on the size of the derivation tree; the case where s has one of the
fixable forms mostly requires the swapping of some subtrees.

D.2 Soundness of Algorithms 6 and 12

We turn to soundness. We will see that for every b in the output set of Algorithms 6
and 12 indeed JpK(d1, . . . , dM); since each 〈|σ|〉B ⊆ JσKB, it suffices to prove this
for the non-deterministic algorithm, as the deterministic case follows directly.

To achieve this end, we first give a definition to relate values and (non-
deterministic) extensional values, and obtain two further helper results:

Definition 19. For a value v : σ and a (non-deterministic) extensional value
e ∈ JσKB, we recursively define v⇓e if one of the following holds:

– σ ∈ S and v = e;
– σ = σ1 × σ2 and v = (v1, v2) and e = (e1, e2) with v1⇓e1 and v2⇓e2;

36 C. Kop and J. Simonsen

– σ = σ1 ⇒ σ2 and e = Aσ with A ⊆ ϕ(v) := {(u1, u2) | u1 ∈ Jσ1KB ∧ u2 ∈
Jσ2KB∧ for all values w1 : σ1 with w ⇓ u1 there is some value w2 : σ2 with
w2⇓u2 such that p′ `call v w1 → w2}.

It is easy to see that ⇓ satisfies the requirements of Lemma D4.

Lemma D7. Assume given an environment γ. Let s : σ1 ⇒ . . . ⇒ σn ⇒ τ ,
and e ∈ Jσ1 ⇒ . . . ⇒ σn ⇒ τKB be such that v ⇓ e for some value v with
p′, γ ` s → v. For 1 ≤ i ≤ n, let ti, vi : σi and ui ∈ JσiKB be such that
p′, γ ` ti → vi ⇓ui. Then for any o ∈ e(u1, . . . , un) there exists w : τ such that
w⇓o and p′, γ ` s t1 · · · tn → w.

Proof. By induction on n ≥ 0.
If n = 0, then o = e and p′, γ `call s→ v is given; we choose w := v.
If n ≥ 1, then there is some o′ := Aσn⇒τ ∈ e(u1, . . . , un−1) such that

(un, o) ∈ A. By the induction hypothesis, there exists a value w′ such that p′, γ `
s t1 · · · tn−1 → w′⇓o′. Since also vn⇓un, the definition of ⇓ provides a value w
such that p′ `call w′ vn → w⇓o. As w′ is a value of higher type, it must have a
form f w1 · · ·wi, so we can apply [Appl] to obtain p′, γ ` (s t1 · · · tn−1) tn → w.

The following property is closely related to transitivity of w:

Lemma D8. For any value v : σ and (non-deterministic) extensional values
e, u ∈ JσKB: if v⇓e w u then v⇓u.

Proof. By induction on the form of σ:

– if v is data, then v = e = u;
– if v = (v1, v2), then v ⇓ e w u implies e = (e1, e2) and u = (u1, u2) with
vi⇓ei w ui for i ∈ {1, 2}, so vi⇓ui by the induction hypothesis;

– if v is a functional value, then e = Aσ and u = Bσ, and for all (o1, o2) ∈ B
there exists o′2 w o2 such that (o1, o

′
2) ∈ A; thus, for all values w1 ⇓o1, the

property that v ⇓ e gives some w2 such that p′ `call v w1 → w2 ⇓ o′2 w o2,
which by the induction hypothesis implies w2⇓o2 as well. Thus, indeed v⇓u.

With these preparations, we are ready to tackle the soundness proof:

Lemma 15. If Algorithm 6 or 12 returns a set A∪{b}, then JpK(d1, . . . , dM) 7→ b.

Proof. We prove the lemma by obtaining the following results:

1. Let:
– f : σ1 ⇒ . . .⇒ σm ⇒ κ ∈ F be a defined symbol;
– v1 : σ1, . . . , vn : σn be values, for 1 ≤ n ≤ arityp(f);
– e1 ∈ Jσ1KB, . . . , en ∈ JσnKB be such that each vi⇓ei;
– o ∈ Jσn+1 ⇒ . . .⇒ σm ⇒ κKB.

If the statement ` f e1 · · · en ; o is eventually confirmed, then we can derive
p′ `call f v1 · · · vn → w for some w with w⇓o.

2. Let:

The Power of Non-Determinism in Higher-Order Implicit Complexity 37

– ρ : f ` = s be a clause in p′;
– t : τ be a sub-expression of s;
– η be an ext-environment for ρ;
– γ be an environment such that γ(x)⇓η(x) for all x ∈ Var(f `);
– o ∈ JτKB.

If the statement η ` t ; o is eventually confirmed, then we can derive
p′, γ ` t→ w for some w with w⇓o.

This proves the lemma: if the algorithm returns b, then start d1 · · · dM ; b is
confirmed, so p′ `call start d1 · · · dM 7→ b. By Lemma D6, JpK(d1, . . . , dM) 7→ b.

We prove both statements together by induction on the algorithm.

1. f e1 · · · en ; o can only be confirmed in two ways:
(2a) n < arityp(f), o = Oσn+1⇒...⇒σm⇒κ and for all (en+1, u) ∈ O there

is some u′ w u such that also f e1 · · · en+1 ; u′ is confirmed. By the
induction hypothesis, this implies that for all such en+1 and u′, and
for all vn+1 : σn+1 with vn+1 ⇓ en+1, there exists w′ with w′ ⇓ u′ such
that p′ `call f v1 · · · vn+1 → w′. By Lemma D8, also w′⇓u. Thus, O ⊆
ϕ(f v1 · · · vn), and (f v1 · · · vn)⇓o. We are done choosing w := f v1 · · · vn,
since p′ `call f v1 · · · vn → f v1 · · · vn by [Closure].

(2b) n = arityp(f) and, for ρ : f `1 · · · `k = s the first matching clause in p′

and η the matching ext-environment, η ` s; o is confirmed. Following
Lemma D4, there exists an environment γ on domain Var(f `1 · · · `k)
with each `jγ = vj and γ(x)⇓η(x) for each x in the mutual domain. By
the induction hypothesis, we can derive p′, γ ` s→ w for some w with
w⇓o; by [Call] therefore p′ `call f v1 · · · vn → w (necessarily n = k).

2. η ` t; o can be confirmed in seven ways:
(1(c)i) t ∈ V and η(t) w o; choosing w = γ(t), we have p′, γ ` t → w by

[Instance], and w⇓o by Lemma D8.
(1(c)ii) t = c t1 · · · tm with c ∈ C and tη = o; choosing w = tγ = o, we

clearly have w⇓o and p′, γ ` t→ w by [Constructor].
(2c) t = if t1 then t2 else t3 and either

(2(c)i) η ` t1 ; true and η ` t2 ; o are both confirmed; by the
induction hypothesis, p′, γ ` t1 → true and p′, γ ` t2 → w for some
w with w⇓o;

(2(c)ii) η ` t1 ; false and η ` t3 ; o are both confirmed; by the
induction hypothesis, p′, γ ` t1 → true and p′, γ ` t3 → w for some
w with w⇓o.

In either case we complete with [Conditional], using [Cond-True] in the
former and [Cond-False] in the latter case.

(2d) t = choose t1 · · · tn and η ` ti → o is confirmed for some i; by the
induction hypothesis, p′, γ ` ti → w for a suitable w, so p′, γ ` t→ w by
[Choice].

(2f) t = x t1 · · · tn with x ∈ V and n > 0, and there are e1, . . . , en such that
η ` ti ; ei is confirmed for all i, and η(x)(e1, . . . , en) 3 o′ w o for some o′;
by the induction hypothesis, there are v1, . . . , vn such that p′, γ ` ti → vi
for all i. Since also p′, γ ` x → γ(x) ⇓ η(x) by [Instance], Lemma D7

38 C. Kop and J. Simonsen

provides w such that p′, γ ` x t1 · · · tn → w ⇓ o′; by Lemma D8, also
w⇓o.

(2(g)i) t = f t1 · · · tn with f ∈ D and 0 ≤ n ≤ arityp(f), and there are
e1, . . . , en such that η ` ti ; ei is confirmed for all i, and ` f e1 · · · en ; o
is marked confirmed. By the second induction hypothesis, there are
v1, . . . , vn such that p′, γ ` ti → vi⇓ei for all i, and therefore by the first
induction hypothesis, there is w such that p′ `call f v1 · · · vn → w ⇓ o.
Combining this with [Function] and n [Appl]s, we have p′, γ ` f t1 · · · tn →
w as well.

(2(g)ii) t = f t1 · · · tn with f ∈ D and n > k := arityp(f), and there
are e1, . . . , en such that, just as in the previous two cases, p′, γ ` ti →
vi ⇓ ei for each i. Moreover, u(ek+1, . . . , en) 3 o′ w o for some u with
f e1 · · · ek ; u confirmed. As in the previous case, there exists v such that
p′, γ ` f t1 · · · tk → v⇓u. Lemma D7 provides w with p′, γ ` f t1 · · · tn →
w⇓o′; since o′ w o also w⇓o by Lemma D8.

D.3 Completeness of Algorithm 12

Now for completeness of the algorithms, we will use induction on positions in a
derivation. To conveniently speak of this, we we will need a form of labelling.

Definition 20. For a given derivation tree T , we label the nodes by strings of
numbers as follows: the root is labelled 0, and for a tree

T1 . . . Tn
π

if node π is labelled with l, then we label each Ti with l · i.
We say that l > p if l is larger than p in the lexicographic ordering (with

l · i > l), and l � p if l > p but p is not a prefix of l.

Thus, for nodes labelled l and p, we have l � p if l occurs to the right of p,
and l > p if l occurs to the right or above of p. We have 1 � l for all l in the tree.

In order to have a basis for the completeness proof that we can reuse for
Algorithm 6, we transform a given derivation tree into one which uses non-
deterministic extensional values. To this end, we define:

Definition 21. Let T be a derivation tree and L the set of its labels, which must
all have the form 0 · l. For any v ∈ Value’ (see Lemma A1) and l ∈ L ∪ {1}, let:

– ψ(v, l) = v if v ∈ B
– ψ(v, l) = (ψ(v1, l), ψ(v2, l)) if v = (v1, v2)
– for f v1 · · · vn : τ = σn+1 ⇒ . . .⇒ σm ⇒ κ with m > n, let ψ(f v1 · · · vn, l) =
{(en+1, u) | ∃q � p > l [the subtree with index p has a root p′ `call
f v1 · · · vn+1 → w with ψ(w, q) = u and en+1 w′ ψ(vn+1, p)]}τ . In this,
q is allowed to be 1 (but p is not).

Here, w′ is defined the same as w, except that Aσ w′ Bσ iff A ⊇ B. Note that
clearly e w′ u implies e w u, and that w′ is transitive by transitivity of ⊇.

The Power of Non-Determinism in Higher-Order Implicit Complexity 39

Thus, ψ(v, l) ∈ JσKB for v : σ, but not ψ(v, l) ∈ 〈|σ|〉B. Note that ψ(v, l) w′
ψ(v, p) if p > l by transitivity of >. Note also that, in the derivation tree for
p′ `call start d1 · · · dM → b, all values are in Value’ as all di are in B.

The special label 1 is used because we will make statements of the form “for
all p � l there exists o w′ ψ(w, p) with property P”: if we did not include 1 in
this quantification, it would give no information about, e.g., the root of the tree.

Before proving completeness, we will use ψ to build an alternative derivation
tree using the rules in Figure 9. Derivations using these rules are closely connected
to Algorithm 6, and will make the completeness result straightforward to prove.

[Constructor]
p′, η c s1 · · · sm ⇒ c (s1η) · · · (smη)

p′, η s⇒ o1 p′, η t⇒ o2
[Pair]

p′, η (s, t)⇒ (o1, o2)

p′, η si ⇒ o
[Choice] for 1 ≤ i ≤ n

p′, η choose s1 · · · sn ⇒ o

p′, η ` s1 ⇒ true p′, η s2 ⇒ o
[Cond-True]

p′, η if s1 then s2 else s3 ⇒ o

p′, η ` s1 ⇒ false p′, η s3 ⇒ o
[Cond-False]

p′, η if s1 then s2 else s3 ⇒ o

p′, η si ⇒ ei for 1 ≤ i ≤ n
[Variable] ∃o′ ∈ η(x)(e1, . . . , en)[o′ w o]

p′, η x s1 · · · sn ⇒ o

p′, η si ⇒ ei for 1 ≤ i ≤ n p′ call f e1 · · · en ⇒ o
[Func]

for f ∈ D,
n ≤ arityp(f)p′, η f s1 · · · sn ⇒ o

p′, η si ⇒ e1 for 1 ≤ i ≤ n p′ call f e1 · · · ek ⇒ u
[Applied]

for f ∈ D,
n > arityp(f),

o′ ∈ u(ek+1, . . . , en),
o′ w o

p′, η f s1 · · · sn ⇒ o

p′ call f e1 · · · en+1 ⇒ u′ w u for all (en+1, u) ∈ O
[Value] if n < arityp(f)

p′ call f e1 · · · en ⇒ Oσ

p′, η s⇒ o
[Call]

if f `1 · · · `k = s is the first clause in p′ which
matches f e1 · · · ek, and η is the matching
ext-environmentp′ call f e1 · · · ek ⇒ o

Fig. 9. Alternative semantics using (non-deterministic) extensional values

We prove:

Lemma D9. If JpK(d1, . . . , dM) 7→ b, then p′ call start d1 · · · dM ⇒ b.

40 C. Kop and J. Simonsen

Proof. Given JpK(d1, . . . , dM) 7→ b, Lemma D6 allows us to assume that p′ `call
start d1 · · · dM → b. Let T be the derivation tree with this root (with root label
0) and L the set of its labels. We prove, by induction on l with greater labels
handled first (which is well-founded because T has only finitely many subtrees):

1. If the subtree with label l has root p′ `call f v1 · · · vn → w, then for all
e1, . . . , en such that each ei w′ ψ(vi, l), and for all p � l there exists o w′
ψ(w, p) such that p′ call f e1 · · · en ⇒ o.

2. If the subtree with label l has root p′, γ ` t → w and η(x) w′ ψ(γ(x), l)
for all x ∈ Var(t), then for all p � l there exists o w′ ψ(w, p) such that
p′, η t⇒ o.

Here, for p � l we allow p ∈ L ∪ {1}. Therefore, in both cases, there must exist a
suitable o w′ ψ(w, 1) if w is a data expression; this o can only be w itself. The
first item gives the desired result for l = 0, as o w′ ψ(b, 1) implies o = b.

We prove both items together by induction on l, with greater labels handled
first. Consider the first item. There are two cases:

– If p′ `call f v1 · · · vn → w by [Closure], then n < arityp(f) and w =
f v1 · · · vn. Given p � l, let o := ψ(w, l); then clearly o w′ ψ(w, p). We must
see that p′ call f e1 · · · en ⇒ o; by [Value], this is the case if for all (en+1, u)
in the set underlying o we can derive p′ call f e1 · · · en+1 ⇒ u′ for some
u′ w′ u. So let (en+1, u) be in this underlying set.
By definition of ψ, we can find q � p′ > l and vn+1, w

′ such that the subtree
with label p′ has a root p′ `call f v1 · · · vn+1 → w′ and en+1 w′ ψ(vn+1, p

′)
and u = ψ(w′, q). Since p′ > l, also ei w′ ψ(vi, p

′) for 1 ≤ i ≤ n; thus, the
induction hypothesis provides u′ w′ ψ(w′, q) = u with p′ `call f e1 · · · en+1 ⇒
u′ as required.

– If p′ `call f v1 · · · vn → w by [Call], then n = arityp(f) and we can find a
clause, say ρ : f `1 · · · `n = s and an environment γ such that
1. ρ is the first clause in p′ whose right-hand side is instantiated by f v1 · · · vn;
2. each vi = `iγ;
3. p′, γ ` s→ w.

By Lemma D4, using v ⇓ V iff V w′ ψ(v, l), also ρ is the first clause
which matches f e1 · · · en, and for the matching ext-environment η, each
η(x) w′ ψ(γ(x), l) w′ ψ(γ(x), l · 1). Thus using the induction hypothesis for
observation 3, we find o w′ ψ(w, p) for all p � l · 1. As this includes every
label p with p � l, we are done.

Now for the second claim, assume that p′, γ ` t → w (with label l) and that
η(x) w′ ψ(γ(x), l) for all x ∈ Var(t); let p � l which (**) implies p � l · i for any
string i as well. Consider the form of t (taking into account that, following the
transformation of p to p′, we do not need to consider applications whose head is
an if then else or choose statement).

– t = (t1, t2); then we can write w = (w1, w2) and the trees with labels l · 1
and l · 2 have roots p′, γ ` t1 → w1 and p′, γ ` t2 → w2 respectively. Using
observation (**), the induction hypothesis provides o1, o2 such that each
p′, η si ⇒ oi w′ ψ(wi, p); we are done choosing o := (o1, o2).

The Power of Non-Determinism in Higher-Order Implicit Complexity 41

– t = c t1 · · · tm with c ∈ C; then by Lemma A1, each siγ = bi ∈ B; this implies
that all γ(x) ∈ B, so η(x) = γ(x), and p′, η ` t⇒ o := tη by [Constructor].

– t = choose t1 · · · tn; then the immediate subtree is p′, γ ` ti → w for some i.
By observation (**), the induction hypothesis provides a suitable o, which
suffices by rule [Choice] from .

– t = if t1 then t2 else t3; then, as the immediate subtree can only be obtained
by [If-True] or [If-False], we have either p′, γ ` s1 → true and p′, γ ` s2 → w,
or p′, γ ` s1 → false and p′, γ ` s3 → w. Using the induction hypothesis for
p = 1, we have p′, η ⇒ true in the first case and p′, η ⇒ false in the second.
Using (**) and the induction hypothesis as before, we obtain a suitable o
using the inference rule [Cond-True] or [Cond-False] of .

– t ∈ V , so the tree is obtained by [Instance]; choosing o := η(t) w′ ψ(γ(t), l) w′
ψ(γ(t), p) by (**), we have o w′ ψ(w, p) by transitivity of w′, and p′, η t⇒ o
by [Variable] (as o ∈ {o} = o()).

– t = x t1 · · · tn with n > 0; then there are w0, . . . , wn such that the root is
obtained using:
• p′, γ ` x→ γ(x) =: w0 by [Instance] with label l · 1n;
• n subtrees of the form p′, γ ` ti → vi with label l · 1n−i · 2 for 1 ≤ i ≤ n;
• n subtrees of the form p′ `call wi−1 vi → wi with label l · 1n−i · 3 for

1 ≤ i ≤ n;
• n uses of [Appl], each with conclusion wi and label l · 1n−i for 1 ≤ i ≤ n.

Note that here wn = w. For 1 ≤ i ≤ n we define ei and oi−1 as follows:
• observing that l · 1n−i · 3 � l · 1n−i · 2, the induction hypothesis provides
ei such that p′, η ` ti ⇒ ei w′ ψ(vi, l · 1n−i · 3)

• o0 := ψ(γ(x), l) w′ ψ(wi, l · 1n−1 · 2);
• for 1 < i ≤ n, let oi−1 := ψ(wi−1, l · 1n−i · 2).

We also define on := ψ(wn, p). Then by definition of ψ, because l · 1n−i · 3 >
l · 1n−i · 2 and the former is the label of p′ `call wi−1 vi → wi, there is an
element (ei, ψ(wi, q)) in the set underlying oi−1 for any q � l · 1n−i · 3. In
particular, this means (ei, oi) is in this set, whether i < n or i = n. Thus, by a
quick induction on i we have oi ∈ η(x)(e1, . . . , ei), so p′, η s⇒ on = ψ(w, p)
by [Variable].

– t = f t1 · · · tn with n ≤ arityp(f); then there are subtrees p′, γ ` ti → vi
labelled l · 1n−i · 2 and p′ ` f v1 · · · vn → w labelled l · 3. By the induction
hypothesis, there are e1, . . . , en such that p′, η ti ⇒ ei w′ ψ(vi, l · 3) for
1 ≤ i ≤ n. Therefore, by the `call part of the induction hypothesis and (**),
there is o w′ ψ(w, p) such that p′, η f e1 · · · en ⇒ o. But then p′, η t⇒ o
by [Func].

– t = (f s1 · · · sk) t1 · · · t0 with k = arityp(f) and n > 0; then there are
subtrees:
• p′, γ ` f s1 · · · sk → w0 by [Function] or [Appl], with label l · 1n;
• p′, γ ` ti → vi with label l · 1n−i · 2 for 1 ≤ i ≤ n;
• p′ `call wi−1 vi → wi with label l · 1n−i · 3 for 1 ≤ i ≤ n.

For some w0, . . . , wn with wn = w. In the same way as the previous case,
there exists o0 w′ ψ(w0, l · 1n−1 · 2) such that p′, η f s1 · · · sk ⇒ o0 (as
l · 1n−1 · 2). The remainder of this case follows the case with t = x t1 · · · tn.

42 C. Kop and J. Simonsen

Now we may forget ψ and w′, and show how derivations using are connected
with the algorithm.

Lemma D10. If p′ call start d1 · · · dM ⇒ b, then Algorithm 12 returns a set
containing b. If p′ call start d1 · · · dM ⇒ b has a derivation tree which only
uses deterministic extensional values, then so does Algorithm 6.

Proof. Starting with B = Bpd1,...,dM , we show that:

1. If p′ call f e1 · · · en ⇒ o, then ` f e1 · · · en ; o is eventually confirmed.
2. If p′, η s⇒ o, then η ` s; o is eventually confirmed.

Both statements hold regardless of which algorithm is used, provided that all
extensional values in the derivation tree are among those considered by the
algorithm. We prove the statements together by induction on the derivation tree.
For the first, there are two inference rules that might have been used:

Value o = Oσ and for all (en+1, u) ∈ O there exists u′ w u such that p′ call

f e1 · · · en+1 ⇒ u′ is an immediate subtree. By the induction hypothesis, each
such statement f e1 · · · en+1 ; u′ is confirmed, so the current statement is
confirmed by step 2a.

Call Immediate by the induction hypothesis and step 2b.

For the second, suppose p′, η s ⇒ o, and consider the inference rule used to
derive this.

Constructor Immediate by step 1(c)ii.
Pair Immediate by the induction hypothesis and step 2e.
Choice Immediate by the induction hypothesis and step 2d.
Cond-True Immediate by the induction hypothesis and step 2(c)i.
Variable If n = 0, then η(x) w o, so the statement is confirmed in step 1(c)i.

Otherwise, by the induction hypothesis η ` si ; ei is confirmed for each
i and o′ w o for some o′ ∈ η(x)(e1, . . . , en); the statement is confirmed in
step 2f.

Func Immediate by the induction hypothesis and step 2(g)i.
Applied Immediate by the induction hypothesis and step 2(g)ii.

At this point, we have all the components for Lemma 16.

Lemma 16. If JpK(d1, . . . , dM) 7→ b, then Algorithm 12 returns a set A ∪ {b}.

Proof. Immediate by a combination of Lemmas D9 and D10.

D.4 Completeness of Algorithm 6

Now we turn to the deterministic case. By Lemma D10, it suffices if we can
find a derivation of p′ call start d1 · · · dM ⇒ b which uses only deterministic
extensional values (elements of some 〈|σ|〉B). While the tree that we built in
Lemma D9 does not have this property, we will use it to build a tree which does.

To start, we will see that the conclusions in any derivation tree are consistent,
where consistency of two (non-deterministic) extensional values is defined as
follows:

The Power of Non-Determinism in Higher-Order Implicit Complexity 43

– d o b iff d1 = d2 for B 3 d1, d2 : ι;
– (e1, u1) o (e2, u2) iff both e1 o e2 and u1 o u2;
– Aσ oBσ iff for all (e1, u1) ∈ A and (e2, u2) ∈ B: if e1 o e2 then u1 o u2.

Consistency is preserved under taking “smaller” extensional values:

Lemma D11. If e′1 w e1, e′2 w e2 and e′1 o e′2, then also e1 o e2.

Proof. By induction on the form of e1. If e1 ∈ B, then e′1 = e1 = e2 = e′2. If e1
is a pair, then so is e′1 and we use the induction hypothesis. Finally, suppose
e1 = B1

σ, e2 = B2
σ, e
′
1 = A1

σ and e′2 = A2
σ. Then for all (u1, o1) ∈ B1 and

(u2, o2) ∈ B2, there are o′1 w o1 and o′2 w o2 such that (u1, o
′
1) ∈ A1 and

(u2, o
′
2) ∈ A2. Now suppose u1 o u2. By consistency of e1 and e2, we then have

o′1 o o′2, so by the induction hypothesis, also o1 o o2. This gives B1
σ oB2

σ, so e1 o e2.

Thus we see that conclusions between derivation trees are consistent:

Lemma D12. Let T1, T2 be derivation trees for , and let root(T1), root(T2)
denote their roots. Suppose given o, o′ such that one of the following holds:

1. There are f, e1, . . . , en, e
′
1, . . . , e

′
n such that:

– root(T1) = f e1 · · · en ⇒ o;
– root(T2) = f e′1 · · · e′n ⇒ o′;
– e1 o e′1,. . . ,en o e′n.

2. There are η, η′ on the same domain and s such that:

– root(T1) = p′, η s⇒ o;
– root(T2) = p′, η′ s⇒ o′;
– η(x) o η′(x) for all x occurring in s.

Moreover, s has no sub-expressions of the form (if b then s1 else s2) t1 · · · tn
with n > 0.

If choose does not occur in s or any clause of p′, then o o o′.

Proof. Both statements are proved together by induction on the form of T1. For
the first, consider n. Since root(T1) could be derived, necessarily n ≤ arityp(f).
There are two cases:

– n < arityp(f); both trees were derived by [Value]. Thus, we can write o = Aσ
and o′ = A′σ and have:

• for all (en+1, u1) ∈ A there is some u2 w u1 such that T1 has an immediate
subtree p′ f e1 · · · en en+1 ⇒ u2;

• for all (e′n+1, u
′
1) ∈ A′ there is some u′2 w u′1 such that T2 has an

immediate subtree p′ f e′1 · · · e′n e′n+1 ⇒ u′2.

Now let (en+1, u1) ∈ A and (en+1, u
′
1) ∈ B be such that en+1 o e′n+1. Consid-

ering the two relevant subtrees, the induction hypothesis gives that u2 o u′2.
By Lemma D11 we then obtain the required property that u1 o u′1.

44 C. Kop and J. Simonsen

– n = arityp(f); both trees were derived by [Call]. Given that extensional
values of the form Aσ can only instantiate variables (not pairs or patterns
with a constructor at the head), a reasoning much like the one in Lemma D4
gives us that both conclusions are obtained by the same clause f `1 · · · `k = s,
the first with ext-environment η and the second with η′ such that each
η(x) o η′(x). Then the immediate subtrees have roots p′, η s⇒ o for T1 and
p′, η′ s⇒ o′ for T2, and we are done by the induction hypothesis.

For the second statement, let T1 have a root η s⇒ o and T2 a root η′ ⇒ o′,
and assume that s does not contain any choose operators or if-statements at the
head of an application. In addition, let η(x) o η′(x) for all (relevant) x. Then s
may have one of six forms:

– s = c s1 · · · sm: then o = sη and o′ = sη′; as, in this case, necessarily all
variables have a type of order 0, o = o′ which guarantees consistency.

– s = (s1, s2): then o = (o1, o2) and o′ = (o′1, o
′
2), and by the induction

hypothesis both o1 o o′1 and o2 o o′2; thus indeed o o o′.
– s = if s1 then s2 else s3: since not true o false, either both conclusions are

derived by [Cond-True] or by [Cond-False]; consistency of o and o′ follows
immediately by the induction hypothesis on the second subtree.

– s = x s1 · · · sn; the induction hypothesis provides e1, . . . , en and e′1, . . . , e
′
n

such that each ei oe′i and there are u w o, u′ w o′ such that u ∈ η(x)(e1, . . . , en)
and u′ ∈ η′(x)(e′1, . . . , e

′
n). By Lemma D11, it suffices if u and u′ are consistent.

We prove this by induction on n:

• if n = 0 then u = η(x) and u′ = η′(x) and consistency is assumed;
• if n > 0 then there are Aσ ∈ η(x)(e1, . . . , en−1) and Bσ ∈ η′(x)(e′1, . . . ,
e′n−1) such that (en, u) ∈ A and (e′n, u

′) ∈ B. By the induction hypothesis,
Aσ oBσ. Since also en o e′n, this implies u o u′.

– s = f s1 · · · sn with n ≤ arityp(f); then both conclusions follow by [Func].
The immediate subtrees provide e1, . . . , en and e′1, . . . , e

′
n such that, by the

induction hypothesis, each eioe′i, as well as a conclusion p′ call f e1 · · · en ⇒ o
in T1 and p′ call f e′1 · · · e′n ⇒ o′ in T2; we can use the first part of the
induction hypothesis to conclude o o o′.

– s = f s1 · · · sn with n > arityp(f); then both conclusions follow by [Applied].
There are e1, . . . , en, e

′
1, . . . , e

′
n such that, by the induction hypothesis, each

ei o e′i. Moreover, there are u, u′ such that T1 has a subtree with root p′ call

f e1 · · · ek ⇒ u and T2 has a subtree with root p′ call f e′1 · · · e′k ⇒ u′, where
k = arityp(f); by the induction hypothesis, clearly u o u′, and since there
are o2, o

′
2 such that u(ek+1, . . . , en) 3 o2 w o and u′(e′k+1, . . . , e

′
n) 3 o′2 w o′,

the induction argument in the variable case provides o2 o o′2, so o o o′ by
Lemma D11.

This result implies that all (non-deterministic) extensional values in the deriva-
tion tree are internally consistent : ooo. We can derive a functional counterpart—an
element of some 〈|σ|〉B—for any internally consistent extensional value. For an
easier inductive definition, we consider multiple consistent values together.

The Power of Non-Determinism in Higher-Order Implicit Complexity 45

Definition 22. Given a non-empty, consistent set X—so ∅ 6= X ⊆ JσKB with
e o u for all e, u ∈ X—let tX ∈ 〈|σ|〉B be defined as follows:

– if σ ∈ S, then by consistency X can only have one element; we let t{d} = d;
– if σ = σ1 × σ2, then tX = (t{e | (e, u) ∈ X},t{u | (e, u) ∈ X})

(this is well-defined because (e1, u1) o (e2, u2) implies both e1 o e2 and u1 o u2,
so indeed the two sub-sets are consistent)

– if σ = σ1 ⇒ τ , then tX = {(e,tYe) | e ∈ 〈|σ|〉B ∧ Ye =
⋃
Aσ∈X{o | (u, o) ∈

A ∧ e w t{u}} ∧ Ye 6= ∅}σ1⇒σ2

(this is well-defined because for every e there is only one Ye, and Ye is indeed

consistent: if o1, o2 ∈ Y , then there are A
(1)
σ , A

(2)
σ ∈ X and there exist u1, u2

such that (u1, p1) ∈ A(1), (u2, o2) ∈ A(2) and both e w u1 and e w u2; by
Lemma D11—using that e o e because e ∈ 〈|σ|〉B—the latter implies that

u1 o u2, so by consistency of A
(1)
σ and A

(2)
σ indeed o1 o o2)

We make a number of observations regarding t.

Lemma D13. Let e ∈ 〈|σ|〉B and X = X(1) ∪ · · · ∪X(n) ⊆ JτKB be such that X
is consistent, n > 0 and for all 1 ≤ i ≤ n: X(i) is non-empty and e w tX(i).
Then e w tX.

Proof. If σ ∈ S, then each tX(i) = e; thus, X(1) = · · · = X(n) = X = {e} and
tX = e as well.

If σ = σ1 × σ2, then e = (e1, e2) and tX = (tY1,tY2), where Yj = {uj |
(u1, u2) ∈ X} for j ∈ {1, 2}. Let Y

(i)
j = {uj | (u1, u2) ∈ X(i)}. Then clearly

each Yj = Y
(1)
j ∪ · · · ∪ Y (n)

j , and e w tX(i) implies that each ej w tY (i)
j . The

induction hypothesis gives ej w Yj for both j.
If σ = σ1 ⇒ σ2, then write e = Aσ. Now,

– for u ∈ 〈|σ1|〉B, denote Y
(i)
u =

⋃
Bσ∈X(i){o | (u′, o) ∈ B ∧ u w t{u′}};

– for (u,tYu) ∈ tX, we can write Y = Y
(1)
u ∪ · · · ∪ Y (N)

u ;

– for (u,tYu) ∈ tX, some Y
(i)
u must be non-empty;

– as (u,tY (i)
u) ∈ tX(i), there exists (u, o′) ∈ A with o′ w tY (i)

u ;

– as there is only one o′ with (u, o′) ∈ A, we obtain o′ w tY (j)
u for all non-empty

Y
(j)
u ;

– by the induction hypothesis, o′ w t(Y
(1)
u ∪ · · · ∪ Y (N)

u) = tYu.

Thus, Aσ w tX as required.

Lemma D14. Let X,Y ⊆ JσKB be non-empty consistent sets, and suppose that
for every e ∈ Y there is some e′ ∈ X such that e′ w e. Then tX w tY .

Proof. By induction on the form of σ.
If σ ∈ S there is little to prove: X and Y contain the same single element.
If σ = σ1 × σ2, then tX = (t{u | (u, o) ∈ X},t{o | (u, o) ∈ X}) and

tY = (t{u | (u, o) ∈ Y },t{o | (u, o) ∈ Y }). Since, for every u in {u | (u, o) ∈ Y }

46 C. Kop and J. Simonsen

there is some (u′, o′) ∈ X with u′ w u (by definition of w for pairs), the contain-
ment property also holds for the first sub-set; it is as easily obtained for the
second. Thus we complete by the induction hypothesis and the definition of w.

Otherwise σ = σ1 ⇒ σ2; denote tX = Aσ and tY = Bσ. Now, all elements of
B can be written as (u,tYu) where Yu =

⋃
Dσ∈Y {o | (u

′, o) ∈ D∧u w t{u′}}, and
all elements of A as (u,tXu), where Xu =

⋃
Cσ∈X{o | (u

′, o) ∈ C ∧ u w t{u′}}.
Let (u,tYu) ∈ B; we claim that (1) Xu is non-empty, (2) (u,tXu) ∈ A and (3)
tXu w tYu, which suffices to conclude tX w tY .

1. (u,tYu) ∈ B gives that Yu is non-empty, so it has at least one element o with
(u′, o) ∈ D for some Dσ ∈ Y ; by assumption, there is Cσ ∈ X with Cσ w Dσ,
which implies that (u′, o′) ∈ Cσ for some o′ w o; as u w u′ we have o′ ∈ Xu;

2. follows from (1);
3. for all o ∈ Yu, there are u′ with u w u′ and Dσ ∈ Y such that (u′, o) ∈ D,

and by assumption Cσ ∈ X and (u′, o′) ∈ C with o′ w o; as u w u′, we have
o′ ∈ Xu. The induction hypothesis therefore gives tXu w tYu.

We will regularly use the following simpler variation of Lemma D14:

Lemma D15. Let X,Y ⊆ JσKB be non-empty sets of consistent extensional
values. If X ⊇ Y then tX w tY .

Proof. Since w is reflexive, this follows immediately from Lemma D14.

Lemma D16. Let n ≥ 0 and suppose that:

– 〈|σ1 ⇒ . . .⇒ σn ⇒ τ |〉B 3 e w t{e(1), . . . , e(m)};
– 〈|σi|〉B 3 ui = t{u(1)i , . . . , u

(m)
i } for 1 ≤ i ≤ n;

– e(j)(u
(j)
1 , . . . , u

(j)
n) 3 c(j) w o(j) for 1 ≤ j ≤ m;

– o = t{o(1), . . . , o(m)}.

Then there exists c ∈ 〈|τ |〉B such that e(u1, . . . , un) 3 c w o.

Proof. By induction on n. First suppose that n = 0, so each e(j) = c(j) w o(j).
Then e w t{e(1), . . . , e(m)} w t{o(1), . . . , o(m)} = o by Lemma D14, so e() 3 e w
o by transitivity of w.

Now let n > 0. For 1 ≤ j ≤ m the third observation gives A(j) such that

e(j)(u
(j)
1 , . . . , u

(j)
n−1) 3 A(j)

σn⇒τ and (u
(j)
n , c(j)) ∈ A(j). Then by the induction hy-

pothesis, there existsAσ⇒τ ∈ e(u1, . . . , un−1) such thatAσn⇒τ w t{A(1), . . . , A(m)}.
That is, omitting the subscript n:

– 〈|σ ⇒ τ |〉B 3 Aσ⇒τ w t{A(1)
σ⇒τ , . . . , A

(m)
σ⇒τ};

– 〈|σ|〉B 3 u = t{u(1), . . . , u(m)};
– for 1 ≤ j ≤ m: (u(j), c(j)) ∈ A(j) for some c(j) w o(j);
– o = t{o(1), . . . , o(m)}.

Moreover, for every c such that (u, c) ∈ A also c ∈ e(u1, . . . , un); thus, we are
done if we can identify such c w o.

Let B
(j)
u := {o′ | (u′, o′) ∈ A(j) ∧ u w t{u′}} and let Bu := B

(1)
u ∪ · · · ∪B(m)

u .
Then we have:

The Power of Non-Determinism in Higher-Order Implicit Complexity 47

– c(j) ∈ Bu for 1 ≤ j ≤ m: since (u(j), c(j)) ∈ A(j), and u = t{u(1), . . . , u(m)} w
t{u(j)} by Lemma D15, we have c(j) ∈ B(j)

u ⊆ Bu;
– since therefore Bu 6= ∅, the pair (u,tBu) occurs in the set underlying
t{A(1), . . . , A(m)};

– since Aσ⇒τ w t{A(1)
σ⇒τ , . . . , A

(m)
σ⇒τ}, there exists c w tBu such that (u, c) ∈

A;
– since Aσ⇒τ ∈ 〈|σn ⇒ τ |〉B, there is only one choice for c;
– c w tBu w t{c(j)} w t{o(j)} for all 1 ≤ j ≤ m by Lemmas D15 and D14;
– therefore c w o by Lemma D13.

All preparations done, we now turn to the proof that in a deterministic setting,
it suffices to consider deterministic extensional values.

Lemma D17. If p is deterministic and p′ `call start d1 · · · dM ⇒ b, then this
can be derived using a functional tree: a derivation tree where all extensional
values are in some 〈|σ|〉B.

Proof. Let p′ be deterministic (so also p′ is). We prove the following statements:

1. Suppose T1, . . . , TN are derivation trees, and there are fixed f, n such that

each tree Tj has a root p′ f e
(j)
1 · · · e

(j)
n ⇒ o(j), where e

(j)
i o e

(k)
i for all

1 ≤ j, k ≤ N and 1 ≤ i ≤ n. Let e1, . . . , en be deterministic extensional

values such that ei w t{e(j)i | 1 ≤ j ≤ N} for 1 ≤ i ≤ n. We can derive
p′ call f e1 · · · en ⇒ o := t{o(j) | 1 ≤ j ≤ N} by a functional tree.

2. Suppose T1, . . . , TN are derivation trees, and there is some fixed s such that
each tree Tj has a root p′, η(j) s⇒ o(j), where η(j)(x) o η(k)(x) for all 1 ≤
j, k ≤ N and variables x in the shared domain. Let η be an ext-environment
on the same domain mapping to functional extensional values such that
η(x) w t{η(j)(x) | 1 ≤ j ≤ N} for all x. Writing o := t{o(j) | 1 ≤ j ≤ N},
we can derive p′, η s ⇒ o by a functional tree. (We assume that no
sub-expression of s has an if-then-else at the head of an application.)

The first of these claims proves the lemma for N = 1: clearly data expressions
are self-consistent, and the only o w b = t{b} is b itself, so the claim says that
the root can be derived using a functional tree.

We prove the claims together by a shared induction on the maximum depth
of any Tj . We start with the first claim. There are two cases:

– n = arityp(f): then for each Tj there is a clause ρj : f `1 · · · `n = s which

imposes η(j) such that the immediate subtree of Tj is p′, η(j) o(j).
Now, let ` : σ be a linear pattern, η an ext-environment and e, u ∈ JσKB be
such that e o u and `η = e. By a simple induction on the form of ` we find an
ext-environment η′ on domain Var(`) such that `η′ = u and η(x) o η′(x).
Thus, the first matching clause ρj is necessarily the same for all Tj , and we
have η(j)(x) o η(k)(x) for all j, k, x. For all 1 ≤ i ≤ n and 1 ≤ j ≤ N , we have

e
(j)
i = `iη

(j). Another simple induction on `i proves that we can find η with
each η(x) w t{η(j)(x) | 1 ≤ j ≤ N} such that ei = `iη.
The induction hypothesis gives p′, η ⇒ o, so f e1 · · · en ⇒ o by [Call].

48 C. Kop and J. Simonsen

– n < arityp(f): each of the trees Tj is derived by [Value]. Write o = Oσ

and o(j) = O
(j)
σ for 1 ≤ j ≤ N . We are done by [Value] if p′ call

f e1 · · · en en+1 ⇒ o′ for all (en+1, o
′) ∈ O.

Since o = t{o(1), . . . , o(N)}, we can write o′ = tYen+1
and identify a non-

empty set Pairsen+1
= {(e, u) ∈ O(1) ∪ · · · ∪O(N) | en+1 w t{e}} such that

Yen+1
= {u | (e, u) ∈ Pairsen+1

}.
For each element (e, u) of PairsC , some Tj has a subtree with root p′ call

f e
(j)
1 · · · e

(j)
n e ⇒ u. Let Treesen+1

be the corresponding set of trees, and
note that all trees in Treesen+1

have a strictly smaller depth than the Tj they
originate from, so certainly smaller than the maximum depth.
Now, for 1 ≤ i ≤ n + 1, let Argsi := { argument i of the root of T | T ∈
Treesen+1

}. We observe that:

• for 1 ≤ i ≤ n: ei w tArgsi: we have Argsi ⊆ {e
(1)
i , . . . , e

(N)
i }, so by

Lemma D15, ei w t{e(j)i | 1 ≤ j ≤ N} w tArgsi, which suffices by
transitivity (Lemma D5);

• en+1 w tArgsj+1: en+1 w {e} for all e ∈ Argsj+1, so this is given by
Lemma D13.

• o′ = tYen+1 = t{right-hand sides of the roots of Treesen+1}.
Therefore p′ call f e1 · · · en en+1 ⇒ o′ by the induction hypothesis as
required.

For the second case, consider the form of s.

– s = c s1 · · · sm with c ∈ C: then each o(i) = sη(i) ∈ B, so o = o(1) = · · · = o(N)

and—since the variables in s all have order 0—we have η(x) = η(1)(x) = · · · =
η(N)(x) for all relevant x. Thus also o = sη and we complete by [Constructor].

– s = (s1, s2); each tree Tj has two immediate subtrees: one with root p′, η(j)

s1 ⇒ o
(j)
1 and one with root p′, η(j) s2 ⇒ o

(j)
2 , where o(j) = (o

(j)
1 , o

(j)
2).

We can write o = (o1, o2) where o1 = t{o(j)1 | 1 ≤ j ≤ N} and o2 =

t{o(j)2 | 1 ≤ j ≤ N}, and as the induction hypothesis for both subtrees gives
p′, η s1 ⇒ o1 and p′, η s2 ⇒ o2 respectively, we conclude p′, η s ⇒ o
by [Pair].

– s = if s1 then s2 else s3: for each tree Tj , the first subtree has the form
p′, η(j) s1 ⇒ true or p′, η(j) s1 ⇒ false; by consistency of derivation
trees (Lemma D12), either true or false is chosen for all these subtrees.
We assume the former; the latter case is symmetric.
By the induction hypothesis for this first subtree, p′, η s1 ⇒ true =
t{true, . . . , true} as well.
The second immediate subtree of all trees Tj has a root of the form p′, η(j)
s2 ⇒ o(j). By the induction hypothesis for this second subtree, p′, η s2 ⇒ o.
Thus we conclude p′, η s⇒ o by [Cond-True].

– s = x s1 · · · sn with x ∈ V: each of the trees Tj has n subtrees of the form

p′, η(j) s1 ⇒ e
(j)
i (for 1 ≤ i ≤ n); by the induction hypothesis, we have

p′, η si ⇒ ei, where ei = t{e(j)i | 1 ≤ j ≤ N}. But then:
• 〈|σ1 ⇒ . . .⇒ σn ⇒ τ |〉B 3 η(x) w t{η(1)(x), . . . , η(N)(x)};

The Power of Non-Determinism in Higher-Order Implicit Complexity 49

• 〈|σi|〉B 3 ei = t{e(1)i , . . . , e
(N)
i } for 1 ≤ i ≤ n;

• there are u(j) such that η(j)(e
(j)
1 , . . . , e

(j)
n) 3 u(j) w o(j) for 1 ≤ j ≤ N ;

• o = t{o(1), . . . , o(N)}.
By Lemma D16, there exists u ∈ o(e1, . . . , en) such that u w o. We conclude
p′, η s⇒ o by [Variable].

– s = f s1 · · · sn with n ≤ arityp(f): then necessarily each p′, η(j) s⇒ o(j)

follows by [Func]. Thus, for 1 ≤ j ≤ N there are e
(j)
1 , . . . , e

(j)
n such that:

• p′, η(j) si ⇒ e
(j)
i for 1 ≤ i ≤ n and

• p′ call f e
(j)
1 · · · e

(j)
n ⇒ o(j).

Now, clearly each set {e(j)i | 1 ≤ j ≤ N} is consistent by the simple fact that
there are derivation trees for them: this is the result of Lemma D12. Defining

ei := t{e(1)i , . . . , e
(N)
i } for 1 ≤ j ≤ N , the induction hypothesis gives that

p′, η si ⇒ ei, and that p′ call f e1 · · · en ⇒ o, all by functional trees. We
complete with [Func].

– s = f s1 · · · sn with n > k := arityp(f): then there are e
(j)
1 , . . . , e

(j)
n , u(j), c(j)

such that for all 1 ≤ j ≤ N :

• tree Tj has subtrees p′, η(j) si ⇒ e
(j)
i for 1 ≤ i ≤ n;

• tree Tj has a subtree call f e
(j)
1 · · · e

(j)
k ⇒ u(j);

• u(j)(e(j)k+1, . . . , e
(j)
n) 3 c(j) w o(i).

Therefore, by the induction hypothesis and Lemma D16, we can identify
e1, . . . , en, u, c such that:

• ei = t{e(1)i , . . . , e
(N)
i } and p′, η si ⇒ ei for 1 ≤ i ≤ n;

• p′ call f e1 · · · ek ⇒ u = t{u(1), . . . , u(N)};
• u(ek+1, . . . , en) 3 c w o.

Therefore p′, η s⇒ o by [Apply].

With this, the one remaining lemma—completeness of Algorithm 6—is trivial.

Lemma D18. If JpK(d1, . . . , dM) 7→ b and p is deterministic, then Algorithm 12
returns a set A ∪ {b}.

Proof. Suppose JpK(d1, . . . , dM) 7→ b for a deterministic program p. By Lemma D9,
we can derive call start d1 · · · dM ⇒ b. By Lemma D17, there is one which
only uses deterministic extensional values. By Lemma D10, Algorithm 6 therefore
returns a set containing b.

	The Power of Non-Determinism in Higher-Order Implicit Complexity
	Introduction
	Overview and contributions
	Related work

	A purely functional, non-deterministic, call-by-value programming language
	Syntax
	Typing
	Semantics

	Cons-free programs
	Turing Machines, decision problems and complexity
	(Deterministic) Turing Machines
	Decision problems
	Complexity and the EXPTIME hierarchy
	Decision problems and programs

	Deterministic characterisations
	Simulating Turing Machines using deterministic cons-free programs
	Simulating deterministic cons-free programs using an algorithm

	Non-deterministic characterisations
	Simulating Turing Machines using (non-deterministic) cons-free programs
	Simulating cons-free programs using an algorithm
	Correctness proofs of Algorithms 6 and 12

	Recovering the EXPTIME hierarchy
	Conclusion and future work
	Properties of cons-free programs (Section 3)
	Counting modules (Section 5.1)
	Algorithm complexity (Sections 5.2 and 6.2)
	Algorithm correctness (Section 6.3)
	Properties of extensional values and p'
	Soundness of Algorithms 6 and 12
	Completeness of Algorithm 12
	Completeness of Algorithm 6

