
A static higher-order dependency pair
framework (extended version)

Carsten Fuhs1 and Cynthia Kop2

1 Dept. of Comp. Sci. and Inf. Sys., Birkbeck, University of London, UK
2 Dept. of Software Science, Radboud University Nijmegen, The Netherlands

Abstract We revisit the static dependency pair method for proving
termination of higher-order term rewriting and extend it in a number
of ways: (1) We introduce a new rewrite formalism designed for general
applicability in termination proving of higher-order rewriting, Algebraic
Functional Systems with Meta-variables. (2) We provide a syntactically
checkable soundness criterion to make the method applicable to a large
class of rewrite systems. (3) We propose a modular dependency pair
framework for this higher-order setting. (4) We introduce a fine-grained
notion of formative and computable chains to render the framework more
powerful. (5) We formulate several existing and new termination proving
techniques in the form of processors within our framework.

The framework has been implemented in the (fully automatic) higher-
order termination tool WANDA.

1 Introduction

Term rewriting [3,48] is an important area of logic, with applications in many
different areas of computer science [4,11,18,23,25,36,41]. Higher-order term rewrit-
ing – which extends the traditional first-order term rewriting with higher-order
types and binders as in the λ-calculus – offers a formal foundation of functional
programming and a tool for equational reasoning in higher-order logic. A key ques-
tion in the analysis of both first- and higher-order term rewriting is termination;
both for its own sake, and as part of confluence and equivalence analysis.

In first-order term rewriting, a hugely effective method for proving termination
(both manually and automatically) is the dependency pair (DP) approach [2].
This approach has been extended to the DP framework [20,22], a highly modular
methodology which new techniques for proving termination and non-termination
can easily be plugged into in the form of processors.

In higher-order rewriting, two DP approaches with distinct costs and benefits
are used: dynamic [45,31] and static [6,44,34,46,32,33] DPs. Dynamic DPs are
more broadly applicable, yet static DPs often enable more powerful analysis
techniques. Still, neither approach has the modularity and extendability of the
DP framework, nor can they be used to prove non-termination. Also, these
approaches consider different styles of higher-order rewriting, which means that
for all results certain language features are not available.

2 Carsten Fuhs and Cynthia Kop

In this paper, we address these issues for the static DP approach by extending
it to a full higher-order dependency pair framework for both termination and
non-termination analysis. For broad applicability, we introduce a new rewriting
formalism, AFSMs, to capture several flavours of higher-order rewriting, including
AFSs [26] (used in the annual Termination Competition [50]) and pattern HRSs
[39,37] (used in the annual Confluence Competition [10]). To show the versatility
and power of this methodology, we define various processors in the framework –
both adaptations of existing processors from the literature and entirely new ones.

Detailed contributions. We reformulate the results of [6,44,34,46,32] into a DP
framework for AFSMs. In doing so, we instantiate the applicability restriction of
[32] by a very liberal syntactic condition, and add two new flags to track properties
of DP problems: one completely new, one from an earlier work by the authors
for the first-order DP framework [16]. We give eight processors for reasoning in
our framework: four translations of techniques from static DP approaches, three
techniques from first-order or dynamic DPs, and one completely new.

This is a foundational paper, focused on defining a general theoretical frame-
work for higher-order termination analysis using dependency pairs rather than
questions of implementation. We have, however, implemented most of these
results in the fully automatic termination analysis tool WANDA [28].

Related Work. There is a vast body of work in the first-order setting regarding
the DP approach [2] and framework [20,22,24]. We have drawn from the ideas in
these works for the core structure of the higher-order framework, but have added
some new features of our own and adapted results to the higher-order setting.

There is no true higher-order DP framework yet: both static and dynamic
approaches actually lie halfway between the original “DP approach” of first-
order rewriting and a full DP framework as in [20,22]. Most of these works
[30,31,32,34,46] prove “non-loopingness” or “chain-freeness” of a set P of DPs
through a number of theorems. Yet, there is no concept of DP problems, and the
set R of rules cannot be altered. They also fix assumptions on dependency chains
– such as minimality [34] or being “tagged” [31] – which frustrate extendability
and are more naturally dealt with in a DP framework using flags.

The static DP approach for higher-order term rewriting is discussed in, e.g.,
[34,44,46]. The approach is limited to plain function passing (PFP) systems.
The definition of PFP has been made more liberal in later papers, but always
concerns the position of higher-order variables in the left-hand sides of rules. These
works include non-pattern HRSs [34,46], which we do not consider, but do not
employ formative rules or meta-variable conditions, or consider non-termination,
which we do. Importantly, they do not consider strictly positive inductive types,
which could be used to significantly broaden the PFP restriction. Such types
are considered in an early paper which defines a variation of static higher-order
dependency pairs [6] based on a computability closure [8,7]. However, this work
carries different restrictions (e.g., DPs must be type-preserving and not introduce
fresh variables) and considers only one analysis technique (reduction pairs).

Definitions of DP approaches for functional programming also exist [32,33],
which consider applicative systems with ML-style polymorphism. These works

A static higher-order dependency pair framework (extended version) 3

also employ a much broader, semantic definition than PFP, which is actually
more general than the syntactic restriction we propose here. However, like the
static approaches for term rewriting, they do not truly exploit the computability
[47] properties inherent in this restriction: it is only used for the initial generation
of dependency pairs. In the present work, we will take advantage of our exact
computability notion by introducing a computable flag that can be used by the
computable subterm criterion processor (Thm. 63) to handle benchmark systems
that would otherwise be beyond the reach of static DPs. Also in these works,
formative rules, meta-variable conditions and non-termination are not considered.

Regarding dynamic DP approaches, a precursor of the present work is [31],
which provides a halfway framework (methodology to prove “chain-freeness”) for
dynamic DPs, introduces a notion of formative rules, and briefly translates a basic
form of static DPs to the same setting. Our formative reductions consider the
shape of reductions rather than the rules they use, and they can be used as a flag
in the framework to gain additional power in other processors. The adaptation
of static DPs in [31] was very limited, and did not for instance consider strictly
positive inductive types or rules of functional type.

For a more elaborate discussion of both static and dynamic DP approaches
in the literature, we refer to [31] and the second author’s PhD thesis [29].

Organisation of the paper. § 2 introduces higher-order rewriting using AFSMs
and recapitulates computability. In § 3 we impose restrictions on the input AFSMs
for which our framework is soundly applicable. In § 4 we define static DPs for
AFSMs, and derive the key results on them. § 5 formulates the DP framework and
a number of DP processors for existing and new termination proving techniques.
§ 6 concludes. Detailed proofs for all results in this paper (extending [17]) and an
experimental evaluation are available in the appendix. In addition, many of the
results have been informally published in the second author’s PhD thesis [29].

2 Preliminaries

In this section, we first define our notation by introducing the AFSM formalism.
Although not one of the standards of higher-order rewriting, AFSMs combine
features from various forms of higher-order rewriting and can be seen as a
form of IDTSs [5] which includes application. We will finish with a definition of
computability, a technique often used for higher-order termination methods.

2.1 Higher-order term rewriting using AFSMs

Unlike first-order term rewriting, there is no single, unified approach to higher-
order term rewriting, but rather a number of similar but not fully compatible
systems aiming to combine term rewriting and typed λ-calculi. For generality,
we will use Algebraic Functional Systems with Meta-variables : a formalism which
admits translations from the main formats of higher-order term rewriting.

Definition 1 (Simple types). We fix a set S of sorts. All sorts are simple
types, and if σ, τ are simple types, then so is σ → τ .

4 Carsten Fuhs and Cynthia Kop

We let→ be right-associative. Note that all types have a unique representation
in the form σ1 → . . .→ σm → ι with ι ∈ S.

Definition 2 (Terms and meta-terms). We fix disjoint sets F of function
symbols, V of variables and M of meta-variables, each symbol equipped with
a type. Each meta-variable is additionally equipped with a natural number. We
assume that both V and M contain infinitely many symbols of all types. The set
T (F ,V) of terms over F ,V consists of expressions s where s : σ can be derived
for some type σ by the following clauses:

(V) x : σ if x : σ ∈ V (@) s t : τ if s : σ → τ and t : σ
(F) f : σ if f : σ ∈ F (Λ) λx.s : σ → τ if x : σ ∈ V and s : τ

Meta-terms are expressions whose type can be derived by those clauses and:
(M) Z〈s1, . . . , sk〉 : σk+1 → . . .→ σm → ι

if Z : (σ1 → . . .→ σk → . . .→ σm → ι, k) ∈M and s1 : σ1, . . . , sk : σk
The λ binds variables as in the λ-calculus; unbound variables are called free, and
FV (s) is the set of free variables in s. Meta-variables cannot be bound; we write
FMV (s) for the set of meta-variables occurring in s. A meta-term s is called
closed if FV (s) = ∅ (even if FMV (s) 6= ∅). Meta-terms are considered modulo
α-conversion. Application (@) is left-associative; abstractions (Λ) extend as far
to the right as possible. A meta-term s has type σ if s : σ; it has base type if
σ ∈ S. We define head(s) = head(s1) if s = s1 s2, and head(s) = s otherwise.

A (meta-)term s has a sub-(meta-)term t, notation s� t, if either s = t or
s � t, where s � t if (a) s = λx.s′ and s′ � t, (b) s = s1 s2 and s2 � t or (c)
s = s1 s2 and s1 � t. A (meta-)term s has a fully applied sub-(meta-)term t,
notation s I t, if either s = t or s I t, where s I t if (a) s = λx.s′ and s′ I t,
(b) s = s1 s2 and s2 I t or (c) s = s1 s2 and s1 I t (so if s = x s1 s2, then x
and x s1 are not fully applied subterms, but s and both s1 and s2 are).

For Z : (σ, k) ∈M, we call k the arity of Z, notation arity(Z).

Clearly, all fully applied subterms are subterms, but not all subterms are fully
applied. Every term s has a form t s1 · · · sn with n ≥ 0 and t = head(s) a variable,
function symbol, or abstraction; in meta-terms t may also be a meta-variable
application F 〈s1, . . . , sk〉. Terms are the objects that we will rewrite; meta-terms
are used to define rewrite rules. Note that all our terms (and meta-terms) are,
by definition, well-typed. For rewriting, we will employ patterns:

Definition 3 (Patterns). A meta-term is a pattern if it has one of the forms
Z〈x1, . . . , xk〉 with all xi distinct variables; λx.` with x ∈ V and ` a pattern; or
a `1 · · · `n with a ∈ F ∪ V and all `i patterns (n ≥ 0).

In rewrite rules, we will use meta-variables for matching and variables only
with binders. In terms, variables can occur both free and bound, and meta-
variables cannot occur. Meta-variables originate in very early forms of higher-
order rewriting (e.g., [1,27]), but have also been used in later formalisms (e.g., [8]).
They strike a balance between matching modulo β and syntactic matching. By
using meta-variables, we obtain the same expressive power as with Miller pat-
terns [37], but do so without including a reversed β-reduction as part of matching.

A static higher-order dependency pair framework (extended version) 5

Notational conventions: We will use x, y, z for variables, X,Y, Z for meta-
variables, b for symbols that could be variables or meta-variables, f, g, h or more
suggestive notation for function symbols, and s, t, u, v, q, w for (meta-)terms.
Types are denoted σ, τ , and ι, κ are sorts. We will regularly overload notation
and write x ∈ V , f ∈ F or Z ∈M without stating a type (or minimal arity). For
meta-terms Z〈〉 we will usually omit the brackets, writing just Z.

Definition 4 (Substitution). A meta-substitution is a type-preserving func-
tion γ from variables and meta-variables to meta-terms. Let the domain of
γ be given by: dom(γ) = {(x : σ) ∈ V | γ(x) 6= x} ∪ {(Z : (σ, k)) ∈ M |
γ(Z) 6= λy1 . . . yk.Z〈y1, . . . , yk〉}; this domain is allowed to be infinite. We let
[b1 := s1, . . . , bn := sn] denote the meta-substitution γ with γ(bi) = si and
γ(z) = z for (z : σ) ∈ V \ {b1, . . . , bn}, and γ(Z) = λy1 . . . yk.Z〈y1, . . . , yk〉 for
(Z : (σ, k)) ∈M \ {b1, . . . , bn}. We assume there are infinitely many variables x
of all types such that (a) x /∈ dom(γ) and (b) for all b ∈ dom(γ): x /∈ FV (γ(b)).

A substitution is a meta-substitution mapping everything in its domain to
terms. The result sγ of applying a meta-substitution γ to a term s is obtained by:
xγ = γ(x) if x ∈ V (s t)γ = (sγ) (tγ)
fγ = f if f ∈ F (λx.s)γ = λx.(sγ) if γ(x) = x ∧ x /∈

⋃
y∈dom(γ) FV (γ(y))

For meta-terms, the result sγ is obtained by the clauses above and:
Z〈s1, . . . , sk〉γ = γ(Z)〈s1γ, . . . , skγ〉 if Z /∈ dom(γ)
Z〈s1, . . . , sk〉γ = γ(Z)〈〈s1γ, . . . , skγ〉〉 if Z ∈ dom(γ)

(λx1 . . . xk.s)〈〈t1, . . . , tk〉〉 = s[x1 := t1, . . . , xk := tk]
(λx1 . . . xn.s)〈〈t1, . . . , tk〉〉 = s[x1 := t1, . . . , xn := tn] tn+1 · · · tk if n < k

and s is not an abstraction

Note that for fixed k, any term has exactly one of the two forms above
(λx1 . . . xn.s with n < k and s not an abstraction, or λx1 . . . xk.s).

Essentially, applying a meta-substitution that has meta-variables in its domain
combines a substitution with (possibly several) β-steps. For example, we have that:
deriv (λx.sin (F 〈x〉))[F := λy.plus y x] equals deriv (λz.sin (plus z x)). We
also have: X〈0, nil〉[X := λx.map (λy.x)] equals map (λy.0) nil.

Definition 5 (Rules and rewriting). Let F ,V,M be fixed sets of function
symbols, variables and meta-variables respectively. A rule is a pair `⇒ r of closed
meta-terms of the same type such that ` is a pattern of the form f `1 · · · `n with
f ∈ F and FMV (r) ⊆ FMV (`). A set of rules R defines a rewrite relation ⇒R
as the smallest monotonic relation on terms which includes:
(Rule) `δ ⇒R rδ if `⇒ r ∈ R and dom(δ) = FMV (`)
(Beta) (λx.s) t ⇒R s[x := t]

We say s⇒β t if s⇒R t is derived using a (Beta) step. A term s is terminating
under ⇒R if there is no infinite reduction s = s0 ⇒R s1 ⇒R . . . , is in normal
form if there is no t such that s ⇒R t, and is β-normal if there is no t with
s⇒β t. Note that we are allowed to reduce at any position of a term, even below
a λ. The relation ⇒R is terminating if all terms over F ,V are terminating. The
set D ⊆ F of defined symbols consists of those (f : σ) ∈ F such that a rule
f `1 · · · `n ⇒ r exists; all other symbols are called constructors.

6 Carsten Fuhs and Cynthia Kop

Note that R is allowed to be infinite, which is useful for instance to model
polymorphic systems. Also, right-hand sides of rules do not have to be in β-normal
form. While this is rarely used in practical examples, non-β-normal rules may
arise through transformations, and we lose nothing by allowing them.

Example 6. Let F ⊇ {0 : nat, s : nat→ nat, nil : list, cons : nat→ list→
list, map : (nat→ nat)→ list→ list} and consider the following rules R:

map (λx.Z〈x〉) nil⇒ nil

map (λx.Z〈x〉) (cons H T)⇒ cons Z〈H〉 (map (λx.Z〈x〉) T)

Then map (λy.0) (cons (s 0) nil)⇒R cons 0 (map (λy.0) nil)⇒R cons 0 nil.
Note that the bound variable y does not need to occur in the body of λy.0 to
match λx.Z〈x〉. However, a term like map s (cons 0 nil) cannot be reduced,
because s does not instantiate λx.Z〈x〉. We could alternatively consider the rules:

map Z nil⇒ nil

map Z (cons H T)⇒ cons (Z H) (map Z T)

Where the system before had (Z : (nat → nat, 1)) ∈ M, here we assume
(Z : (nat→ nat, 0)) ∈M. Thus, rather than meta-variable application Z〈H〉 we
use explicit application Z H. Then map s (cons 0 nil)⇒R cons (s 0) (map s nil).
However, we will often need explicit β-reductions; e.g., map (λy.0) (cons (s 0) nil)
⇒R cons ((λy.0) (s 0)) (map (λy.0) nil)⇒β cons 0 (map (λy.0) nil).

Definition 7 (AFSM). An AFSM is a tuple (F ,V,M,R) of a signature and
a set of rules built from meta-terms over F ,V,M; as types of relevant variables
and meta-variables can always be derived from context, we will typically just refer
to the AFSM (F ,R). An AFSM implicitly defines the abstract reduction system
(T (F ,V),⇒R): a set of terms and a rewrite relation on this set. An AFSM is
terminating if ⇒R is terminating (on all terms in T (F ,V)).

Discussion: The two most common formalisms in termination analysis of
higher-order rewriting are algebraic functional systems [26] (AFSs) and higher-
order rewriting systems [39,37] (HRSs). AFSs are very similar to our AFSMs, but
use variables for matching rather than meta-variables; this is trivially translated
to the AFSM format, giving rules where all meta-variables have arity 0, like the
“alternative” rules in Ex. 6. HRSs use matching modulo β/η, but the common
restriction of pattern HRSs can be directly translated into AFSMs, provided terms
are β-normalised after every reduction step. Even without this β-normalisation
step, termination of the obtained AFSM implies termination of the original HRS;
for second-order systems, termination is equivalent. AFSMs can also naturally
encode CRSs [27] and several applicative systems (cf. [29, Chapter 3]).

Example 8 (Ordinal recursion). A running example is the AFSM (F ,R) with
F ⊇ {0 : ord, s : ord → ord, lim : (nat → ord) → ord, rec : ord → nat →
(ord → nat → nat) → ((nat → ord) → (nat → nat) → nat) → nat} and R
given below. As all meta-variables have arity 0, this can be seen as an AFS.

rec 0 K F G⇒ K
rec (s X) K F G⇒ F X (rec X K F G)

rec (lim H) K F G⇒ G H (λm.rec (H m) K F G)

A static higher-order dependency pair framework (extended version) 7

Observant readers may notice that by the given constructors, the type nat

in Ex. 8 is not inhabited. However, as the given symbols are only a subset of F ,
additional symbols (such as constructors for the nat type) may be included. The
presence of additional function symbols does not affect termination of AFSMs:

Theorem 9 (Invariance of termination under signature extensions).
For an AFSM (F ,R) with F at most countably infinite, let funs(R) ⊆ F
be the set of function symbols occurring in some rule of R. Then (T (F ,V),⇒R)
is terminating if and only if (T (funs(R),V),⇒R) is terminating.

Proof. Trivial by replacing all function symbols in F \ funs(R) by corresponding
variables of the same type. ut

Therefore, we will typically only state the types of symbols occurring in the
rules, but may safely assume that infinitely many symbols of all types are present
(which for instance allows us to select unused constructors in some proofs).

2.2 Computability

A common technique in higher-order termination is Tait and Girard’s comput-
ability notion [47]. There are several ways to define computability predicates;
here we follow, e.g., [5,8,9,7] in considering accessible meta-terms using strictly
positive inductive types. The definition presented below is adapted from these
works, both to account for the altered formalism and to introduce (and obtain
termination of) a relation VC that we will use in the “computable subterm
criterion processor” of Thm. 63 (a termination criterion that allows us to handle
systems that would otherwise be beyond the reach of static DPs). This allows
for a minimal presentation that avoids the use of ordinals that would otherwise
be needed to obtain VC (see, e.g., [9,7]).

To define computability, we use the notion of an RC-set :

Definition 10. A set of reducibility candidates, or RC-set, for a rewrite relation
⇒R of an AFSM is a set I of base-type terms s such that: every term in I is
terminating under ⇒R; I is closed under ⇒R (so if s ∈ I and s ⇒R t then
t ∈ I); if s = x s1 · · · sn with x ∈ V or s = (λx.u) s0 · · · sn with n ≥ 0, and for
all t with s⇒R t we have t ∈ I, then s ∈ I (for any u, s0, . . . , sn ∈ T (F ,V)).

We define I-computability for an RC-set I by induction on types. For s ∈
T (F ,V), we say that s is I-computable if either s is of base type and s ∈ I; or
s : σ → τ and for all t : σ that are I-computable, s t is I-computable.

The traditional notion of computability is obtained by taking for I the set of
all terminating base-type terms. Then, a term s is computable if and only if (a)
s has base type and is terminating; or (b) s : σ → τ and for all computable t : σ
the term s t is computable. This choice is simple but, for reasoning, not ideal:
we do not have a property like: “if f s1 · · · sn is computable then so is each si”.
Such a property would be valuable to have for generalising termination proofs
from first-order to higher-order rewriting, as it allows us to use computability

8 Carsten Fuhs and Cynthia Kop

where the first-order proof uses termination. While it is not possible to define a
computability notion with this property alongside case (b) (as such a notion would
not be well-founded), we can come close to this property by choosing a different
set for I. To define this set, we will use the notion of accessible arguments, which
is used for the same purpose also in the General Schema [8], the Computability
Path Ordering [9], and the Computability Closure [7].

Definition 11 (Accessible arguments). We fix a quasi-ordering �S on S
with well-founded strict part �S := �S \ �S .3 For a type σ ≡ σ1→ . . .→σm→κ
(with κ ∈ S) and sort ι, let ι �S+ σ if ι �S κ and ι �S− σi for all i, and let ι �S− σ
if ι �S κ and ι �S+ σi for all i.4

For f : σ1 → . . . → σm → ι ∈ F , let Acc(f) = {i | 1 ≤ i ≤ m ∧ ι �S+ σi}.
For x : σ1 → . . . → σm → ι ∈ V, let Acc(x) = {i | 1 ≤ i ≤ m ∧ σi has the form
τ1 → . . .→ τn → κ with ι �S κ}. We write s�acc t if either s = t, or s = λx.s′

and s′ �acc t, or s = a s1 · · · sn with a ∈ F ∪ V and si �acc t for some i ∈ Acc(a)
with a /∈ FV (si).

With this definition, we will be able to define a set C such that, roughly, s
is C-computable if and only if (a) s : σ → τ and s t is C-computable for all
C-computable t, or (b) s has base type, is terminating, and if s = f s1 · · · sm
then si is C-computable for all accessible i (see Thm. 13 below). The reason that
Acc(x) for x ∈ V is different is proof-technical: computability of λx.x s1 · · · sm
implies the computability of more arguments si than computability of f s1 · · · sm
does, since x can be instantiated by anything.

Example 12. Consider a quasi-ordering �S such that ord �S nat. In Ex. 8, we
then have ord �S+ nat→ ord. Thus, 1 ∈ Acc(lim), which gives lim H �acc H.

Theorem 13. Let (F ,R) be an AFSM. Let f s1 · · · sm VI si t1 · · · tn if both
sides have base type, i ∈ Acc(f), and all tj are I-computable. There is an RC-set
C such that C = {s ∈ T (F ,V) | s has base type ∧ s is terminating under
⇒R ∪VC ∧ if s⇒∗R f s1 · · · sm then si is C-computable for all i ∈ Acc(f)}.

Proof (sketch). Note that we cannot define C as this set, as the set relies on
the notion of C-computability. However, we can define C as the fixpoint of a
monotone function operating on RC-sets. This follows the proof in, e.g., [8,9]. ut

The full proof (for the definitions in this paper) is available in Appendix A.

3 Restrictions

The termination methodology in this paper is restricted to AFSMs that satisfy
certain limitations: they must be properly applied (a restriction on the number
of terms each function symbol is applied to) and accessible function passing (a
restriction on the positions of variables of a functional type in the left-hand sides
of rules). Both are syntactic restrictions that are easily checked by a computer
(mostly; the latter requires a search for a sort ordering, but this is typically easy).

3 Well-foundedness is immediate if S is finite, but we have not imposed that requirement.
4 Here ι �S

+ σ corresponds to “ι occurs only positively in σ” in [5,8,9].

A static higher-order dependency pair framework (extended version) 9

3.1 Properly applied AFSMs

In properly applied AFSMs, function symbols are assigned a certain, minimal
number of arguments that they must always be applied to.

Definition 14. An AFSM (F ,R) is properly applied if for every f ∈ D there
exists an integer k such that for all rules `⇒ r ∈ R: (1) if ` = f `1 · · · `n then
n = k; and (2) if r I f r1 · · · rn then n ≥ k. We denote minar(f) = k.

That is, every occurrence of a function symbol in the right-hand side of a rule
has at least as many arguments as the occurrences in the left-hand sides of rules.
This means that partially applied functions are often not allowed: an AFSM with
rules such as double X ⇒ plus X X and doublelist L⇒ map double L is not
properly applied, because double is applied to one argument in the left-hand
side of some rule, and to zero in the right-hand side of another.

This restriction is not as severe as it may initially seem since partial applica-
tions can be replaced by λ-abstractions; e.g., the rules above can be made properly
applied by replacing the second rule by: doublelist L⇒ map (λx.double x) L.
By using η-expansion, we can transform any AFSM to satisfy this restriction:

Definition 15 (R↑). Given a set of rules R, let their η-expansion be given by
R↑ = {(` Z1 · · ·Zm)↑η ⇒ (r Z1 · · ·Zm)↑η| `⇒ r ∈ R with r : σ1 → . . .→ σm →
ι, ι ∈ S, and Z1, . . . , Zm fresh meta-variables}, where

– s↑η= λx1 . . . xm.s (x1↑η) · · · (xm↑η) if s is an application or element of V ∪F ,
and s↑η= s otherwise;

– f = f for f ∈ F and x = x for x ∈ V, while Z〈s1, . . . , sk〉 = Z〈s1, . . . , sk〉
and (λx.s) = λx.(s↑η) and s1 s2 = s1 (s2↑η).

Note that `↑η is a pattern if ` is. By [29, Thm. 2.16], a relation ⇒R is
terminating if ⇒R↑ is terminating, which allows us to transpose any methods to
prove termination of properly applied AFSMs to all AFSMs.

However, there is a caveat: this transformation can introduce non-termination
in some special cases, e.g., the terminating rule f X ⇒ g f with f : o→ o and
g : (o → o) → o, whose η-expansion f X ⇒ g (λx.(f x)) is non-terminating.
Thus, for a properly applied AFSM the methods in this paper apply directly.
For an AFSM that is not properly applied, we can use the methods to prove
termination (but not non-termination) by first η-expanding the rules. Of course,
if this analysis leads to a counterexample for termination, we may still be able to
verify whether this counterexample applies in the original, untransformed AFSM.

Example 16. Both AFSMs in Ex. 6 and the AFSM in Ex. 8 are properly applied.

Example 17. Consider an AFSM (F ,R) with F ⊇ {sin, cos : real → real,
times : real → real → real, deriv : (real → real) → real → real}
and R = {deriv (λx.sin F 〈x〉) ⇒ λy.times (deriv (λx.F 〈x〉) y) (cos F 〈y〉)}.
Although the one rule has a functional output type (real→ real), this AFSM is
properly applied, with deriv having always at least 1 argument. Therefore, we do

10 Carsten Fuhs and Cynthia Kop

not need to use R↑. However, if R were to additionally include some rules that did
not satisfy the restriction (such as the double and doublelist rules above), then
η-expanding all rules, including this one, would be necessary. We have: R↑ =
{deriv (λx.sin F 〈x〉) Y ⇒ (λy.times (deriv (λx.F 〈x〉) y) (cos F 〈y〉)) Y }.
Note that the right-hand side of the η-expanded deriv rule is not β-normal.

3.2 Accessible Function Passing AFSMs

In accessible function passing AFSMs, variables of functional type may not occur
at arbitrary places in the left-hand sides of rules: their positions are restricted
using the sort ordering �S and accessibility relation �acc from Def. 11.

Definition 18 (Accessible function passing). An AFSM (F ,R) is access-
ible function passing (AFP) if there exists a sort ordering �S following Def. 11
such that: for all f `1 · · · `n ⇒ r ∈ R and all Z ∈ FMV (r): there are variables
x1, . . . , xk and some i such that `i �acc Z〈x1, . . . , xk〉.

The key idea of this definition is that computability of each `i implies com-
putability of all meta-variables in r. This excludes cases like Example 20 below.
Many common examples satisfy this restriction, including those we saw before:

Example 19. Both systems from Ex. 6 are AFP: choosing the sort ordering �S
that equates nat and list, we indeed have cons H T�accH and cons H T�accT
(as Acc(cons) = {1, 2}) and both λx.Z〈x〉�acc Z〈x〉 and Z �acc Z. The AFSM
from Ex. 8 is AFP because we can choose ord �S nat and have lim H �acc H
following Ex. 12 (and also s X �acc X and K �acc K, F �acc F, G �acc G).
The AFSM from Ex. 17 is AFP, because λx.sin F 〈x〉 �acc F 〈x〉 for any �S :
λx.sin F 〈x〉�acc F 〈x〉 because sin F 〈x〉�acc F 〈x〉 because 1 ∈ Acc(sin).

In fact, all first-order AFSMs (where all fully applied sub-meta-terms of the
left-hand side of a rule have base type) are AFP via the sort ordering �S that
equates all sorts. Also (with the same sort ordering), an AFSM (F ,R) is AFP if,
for all rules f `1 · · · `k ⇒ r ∈ R and all 1 ≤ i ≤ k, we can write: `i = λx1 . . . xni .`

′

where ni ≥ 0 and all fully applied sub-meta-terms of `′ have base type.
This covers many practical systems, although for Ex. 8 we need a non-trivial

sort ordering. Also, there are AFSMs that cannot be handled with any �S .

Example 20 (Encoding the untyped λ-calculus). Consider an AFSM with F ⊇
{ap : o→ o→ o, lm : (o→ o)→ o} and R = {ap (lm F)⇒ F} (note that the
only rule has type o→ o). This AFSM is not accessible function passing, because
lm F �acc F cannot hold for any �S (as this would require o �S o).

Note that this example is also not terminating. With t = lm (λx.ap x x), we
get this self-loop as evidence: ap t t ⇒R (λx.ap x x) t⇒β ap t t.

Intuitively: in an accessible function passing AFSM, meta-variables of a higher
type may occur only in “safe” places in the left-hand sides of rules. Rules like the
ones in Ex. 20, where a higher-order meta-variable is lifted out of a base-type
term, are not admitted (unless the base type is greater than the higher type).

A static higher-order dependency pair framework (extended version) 11

In the remainder of this paper, we will refer to a properly applied, accessible
function passing AFSM as a PA-AFP AFSM.

Discussion: This definition is strictly more liberal than the notions of “plain
function passing” in both [34] and [46] as adapted to AFSMs. The notion in
[46] largely corresponds to AFP if �S equates all sorts, and the HRS formalism
guarantees that rules are properly applied (in fact, all fully applied sub-meta-
terms of both left- and right-hand sides of rules have base type). The notion in
[34] is more restrictive. The current restriction of PA-AFP AFSMs lets us handle
examples like ordinal recursion (Ex. 8) which are not covered by [34,46]. However,
note that [34,46] consider a different formalism, which does take rules whose left-
hand side is not a pattern into account (which we do not consider). Our restriction
also quite resembles the “admissible” rules in [6] which are defined using a pattern
computability closure [5], but that work carries additional restrictions.

In later work [32,33], K. Kusakari extends the static DP approach to forms of
polymorphic functional programming, with a very liberal restriction: the definition
is parametrised with an arbitrary RC-set and corresponding accessibility (“safety”)
notion. Our AFP restriction is actually an instance of this condition (although
a more liberal one than the example RC-set used in [32,33]). We have chosen a
specific instance because it allows us to use dedicated techniques for the RC-set;
for example, our computable subterm criterion processor (Thm. 63).

4 Static higher-order dependency pairs

To obtain sufficient criteria for both termination and non-termination of AFSMs,
we will now transpose the definition of static dependency pairs [6,34,46,33] to
AFSMs. In addition, we will add the new features of meta-variable conditions,
formative reductions, and computable chains. Complete versions of all proof
sketches in this section are available in Appendix B.

Although we retain the first-order terminology of dependency pairs, the setting
with meta-variables makes it more suitable to define DPs as triples.

Definition 21 ((Static) Dependency Pair). A dependency pair (DP) is a
triple `V p (A), where ` is a closed pattern f `1 · · · `k, p is a closed meta-term
g p1 · · · pn, and A is a set of meta-variable conditions: pairs Z : i indicating that
Z regards its ith argument. A DP is conservative if FMV (p) ⊆ FMV (`).

A substitution γ respects a set of meta-variable conditions A if for all Z : i in
A we have γ(Z) = λx1 . . . xj .t with either i > j, or i ≤ j and xi ∈ FV (t). DPs
will be used only with substitutions that respect their meta-variable conditions.

For `V p (∅) (so a DP whose set of meta-variable conditions is empty), we
often omit the third component and just write `V p.

Like the first-order setting, the static DP approach employs marked function
symbols to obtain meta-terms whose instances cannot be reduced at the root.

Definition 22 (Marked symbols). Let (F ,R) be an AFSM. Define F] :=
F] {f] : σ | f : σ ∈ D}. For a meta-term s = f s1 · · · sk with f ∈ D and
k = minar(f), we let s] = f] s1 · · · sk; for s of other forms s] is not defined.

12 Carsten Fuhs and Cynthia Kop

Moreover, we will consider candidates. In the first-order setting, candidate
terms are subterms of the right-hand sides of rules whose root symbol is a defined
symbol. Intuitively, these subterms correspond to function calls. In the current
setting, we have to consider also meta-variables as well as rules whose right-hand
side is not β-normal (which might arise for instance due to η-expansion).

Definition 23 (β-reduced-sub-meta-term, �β, �A). A meta-term s has a
fully applied β-reduced-sub-meta-term t (shortly, BRSMT), notation s�β t, if
there exists a set of meta-variable conditions A with s�A t. Here s�A t holds if:

– s = t, or
– s = λx.u and u�A t, or
– s = (λx.u) s0 · · · sn and some si �A t, or u[x := s0] s1 · · · sn �A t, or
– s = a s1 · · · sn with a ∈ F ∪ V and some si �A t, or
– s = Z〈t1, . . . , tk〉 s1 · · · sn and some si �A t, or
– s = Z〈t1, . . . , tk〉 s1 · · · sn and ti�A t for some i ∈ {1, . . . , k} with (Z : i) ∈ A.

Essentially, s �A t means that t can be reached from s by taking β-reductions
at the root and “subterm”-steps, where Z : i is in A whenever we pass into
argument i of a meta-variable Z. BRSMTs are used to generate candidates:

Definition 24 (Candidates). For a meta-term s, the set cand(s) of candidates
of s consists of those pairs t (A) such that (a) t has the form f s1 · · · sk with
f ∈ D and k = minar(f), and (b) there are sk+1, . . . , sn (with n ≥ k) such that
s�A t sk+1 · · · sn, and (c) A is minimal: there is no subset A′ (A with s�A′ t.

Example 25. In AFSMs where all meta-variables have arity 0 and the right-hand
sides of rules are β-normal, the set cand(s) for a meta-term s consists exactly of the
pairs t (∅) where t has the form f s1 · · · sminar(f) and t occurs as part of s. In Ex. 8,
we thus have cand(G H (λm.rec (H m) K F G)) = { rec (H m) K F G (∅) }.

If some of the meta-variables do take arguments, then the meta-variable
conditions matter: candidates of s are pairs t (A) where A contains exactly those
pairs Z : i for which we pass through the ith argument of Z to reach t in s.

Example 26. Consider an AFSM with the signature from Ex. 8 but a rule using
meta-variables with larger arities:

rec (lim (λn.H〈n〉)) K (λx.λn.F 〈x, n〉) (λf.λg.G〈f, g〉) ⇒
G〈λn.H〈n〉, λm.rec H〈m〉 K (λx.λn.F 〈x, n〉) (λf.λg.G〈f, g〉)〉

The right-hand side has one candidate:

rec H〈m〉 K (λx.λn.F 〈x, n〉) (λf.λg.G〈f, g〉) ({G : 2})

The original static approaches define DPs as pairs `] V p] where `⇒ r is a
rule and p a subterm of r of the form f r1 · · · rm – as their rules are built using
terms, not meta-terms. This can set variables bound in r free in p. In the current
setting, we use candidates with their meta-variable conditions and implicit β-steps
rather than subterms, and we replace such variables by meta-variables.

A static higher-order dependency pair framework (extended version) 13

Definition 27 (SDP). Let s be a meta-term and (F ,R) be an AFSM. Let
metafy(s) denote s with all free variables replaced by corresponding meta-variables.
Now SDP(R) = {`] V metafy(p]) (A) | `⇒ r ∈ R ∧ p (A) ∈ cand(r)}.

Although static DPs always have a pleasant form f] `1 · · · `k V g] p1 · · · pn (A)
(as opposed to the dynamic DPs of, e.g., [31], whose right-hand sides can have a
meta-variable at the head, which complicates various techniques in the framework),
they have two important complications not present in first-order DPs: the right-
hand side p of a DP `V p (A) may contain meta-variables that do not occur in
the left-hand side ` – traditional analysis techniques are not really equipped for
this – and the left- and right-hand sides may have different types. In § 5 we will
explore some methods to deal with these features.

Example 28. For the non-η-expanded rules of Ex. 17, the set SDP(R) has one
element: deriv] (λx.sin F 〈x〉) V deriv] (λx.F 〈x〉). (As times and cos are not
defined symbols, they do not generate dependency pairs.) The set SDP(R↑) for
the η-expanded rules is {deriv] (λx.sin F 〈x〉) Y V deriv] (λx.F 〈x〉) Y }. To
obtain the relevant candidate, we used the β-reduction step of BRSMTs.

Example 29. The AFSM from Ex. 8 is AFP following Ex. 19; here SDP(R) is:

rec] (s X) K F GV rec] X K F G (∅)
rec] (lim H) K F GV rec] (H M) K F G (∅)

Note that the right-hand side of the second DP contains a meta-variable that is
not on the left. As we will see in Ex. 64, that is not problematic here.

Termination analysis using dependency pairs importantly considers the notion
of a dependency chain. This notion is fairly similar to the first-order setting:

Definition 30 (Dependency chain). Let P be a set of DPs and R a set of
rules. A (finite or infinite) (P,R)-dependency chain (or just (P,R)-chain) is
a sequence [(`0 V p0 (A0), s0, t0), (`1 V p1 (A1), s1, t1), . . .] where each `i V
pi (Ai) ∈ P and all si, ti are terms, such that for all i:

1. there exists a substitution γ on domain FMV (`i) ∪ FMV (pi) such that si =
`iγ, ti = piγ and for all Z ∈ dom(γ): γ(Z) respects Ai;

2. we can write ti = f u1 · · ·un and si+1 = f w1 · · ·wn and each uj ⇒∗R wj.

Example 31. In the (first) AFSM from Ex. 6, we have SDP(R) = {map] (λx.Z〈x〉)
(cons H T) V map] (λx.Z〈x〉) T}. An example of a finite dependency chain is
[(ρ, s1, t1), (ρ, s2, t2)] where ρ is the one DP, s1 = map] (λx.s x) (cons 0 (cons (s 0)
(map (λx.x) nil))) and t1 = map] (λx.s x) (cons (s 0) (map (λx.x) nil)) and
s2 = map] (λx.s x) (cons (s 0) nil) and t2 = map] (λx.s x) nil.

Note that here t1 reduces to s2 in a single step (map (λx.x) nil⇒R nil).

We have the following key result:

Theorem 32. Let (F ,R) be a PA-AFP AFSM. If (F ,R) is non-terminating,
then there is an infinite (SDP(R),R)-dependency chain.

14 Carsten Fuhs and Cynthia Kop

Proof (sketch). The proof is an adaptation of the one in [34], altered for the more
permissive definition of accessible function passing over plain function passing as
well as the meta-variable conditions; it also follows from Thm. 37 below. ut

By this result we can use dependency pairs to prove termination of a given
properly applied and AFP AFSM: if we can prove that there is no infinite
(SDP(R),R)-chain, then termination follows immediately. Note, however, that
the reverse result does not hold: it is possible to have an infinite (SDP(R),R)-
dependency chain even for a terminating PA-AFP AFSM.

Example 33. Let F ⊇ {0, 1 : nat, f : nat → nat, g : (nat → nat) → nat} and
R = {f 0 ⇒ g (λx.f x), g (λx.F 〈x〉) ⇒ F 〈1〉}. This AFSM is PA-AFP, with
SDP(R) = {f] 0 V g] (λx.f x), f] 0 V f] X}; the second rule does not cause the
addition of any dependency pairs. Although⇒R is terminating, there is an infinite
(SDP(R),R)-chain [(f] 0 V f] X, f] 0, f] 0), (f] 0 V f] X, f] 0, f] 0), . . .].

The problem in Ex. 33 is the non-conservative DP f] 0 V f] X, with X on the
right but not on the left. Such DPs arise from abstractions in the right-hand sides
of rules. Unfortunately, abstractions are introduced by the restricted η-expansion
(Def. 15) that we may need to make an AFSM properly applied. Even so, often
all DPs are conservative, like Ex. 6 and 17. There, we do have the inverse result:

Theorem 34. For any AFSM (F ,R): if there is an infinite (SDP(R),R)-chain
[(ρ0, s0, t0), (ρ1, s1, t1), . . .] with all ρi conservative, then ⇒R is non-terminating.

Proof (sketch). If FMV (pi) ⊆ FMV (`i), then we can see that si ⇒R · ⇒∗β t′i for
some term t′i of which ti is a subterm. Since also each ti ⇒∗R si+1, the infinite
chain induces an infinite reduction s0 ⇒+

R t′0 ⇒∗R s′1 ⇒+
R t′′1 ⇒∗R ut

The core of the dependency pair framework is to systematically simplify a set
of pairs (P,R) to prove either absence or presence of an infinite (P,R)-chain,
thus showing termination or non-termination as appropriate. By Theorems 32
and 34 we can do so, although with some conditions on the non-termination
result. We can do better by tracking certain properties of dependency chains.

Definition 35 (Minimal and Computable chains). Let (F ,U) be an AFSM
and CU an RC-set satisfying the properties of Thm. 13 for (F ,U). Let F contain,
for every type σ, at least countably many symbols f : σ not used in U .

A (P,R)-chain [(ρ0, s0, t0), (ρ1, s1, t1), . . .] is U-computable if: ⇒U ⊇ ⇒R,
and for all i ∈ N there exists a substitution γi such that ρi = `i V pi (Ai) with
si = `iγi and ti = piγi, and (λx1 . . . xn.v)γi is CU -computable for all v and B
such that pi �B v, γi respects B, and FV (v) = {x1, . . . , xn}.

A chain is minimal if the strict subterms of all ti are terminating under ⇒R.

In the first-order DP framework, minimal chains give access to several powerful
techniques to prove absence of infinite chains, such as the subterm criterion [24]
and usable rules [22,24]. Computable chains go a step further, by building on
the computability inherent in the proof of Thm. 32 and the notion of accessible

A static higher-order dependency pair framework (extended version) 15

function passing AFSMs. In computable chains, we can require that (some of) the
subterms of all ti are computable rather than merely terminating. This property
will be essential in the computable subterm criterion processor (Thm. 63).

Another property of dependency chains is the use of formative rules, which
has proven very useful for dynamic DPs [31]. Here we go further and consider
formative reductions, which were introduced for the first-order DP framework in
[16]. This property will be essential in the formative rules processor (Thm. 58).

Definition 36 (Formative chain, formative reduction). A (P,R)-chain
[(`0 V p0 (A0), s0, t0), (`1 V p1 (A1), s1, t1), . . .] is formative if for all i, the
reduction ti ⇒∗R si+1 is `i+1-formative. Here, for a pattern `, substitution γ and
term s, a reduction s⇒∗R `γ is `-formative if one of the following holds:

– ` is not a fully extended linear pattern; that is: some meta-variable occurs
more than once in ` or ` has a sub-meta-term λx.C[Z〈s〉] with x /∈ {s}

– ` is a meta-variable application Z〈x1, . . . , xk〉 and s = `γ
– s = a s1 · · · sn and ` = a `1 · · · `n with a ∈ F] ∪ V and each si ⇒∗R `iγ by an
`i-formative reduction

– s = λx.s′ and ` = λx.`′ and s′ ⇒∗R `′γ by an `′-formative reduction
– s = (λx.u) v w1 · · ·wn and u[x := v] w1 · · ·wn ⇒∗R `γ by an `-formative

reduction
– ` is not a meta-variable application, and there are `′ ⇒ r′ ∈ R, meta-variables
Z1 . . . Zn (n ≥ 0) and δ such that s⇒∗R (`′ Z1 · · ·Zn)δ by an (`′ Z1 · · ·Zn)-
formative reduction, and (r′ Z1 · · ·Zn)δ ⇒∗R `γ by an `-formative reduction.

The idea of a formative reduction is to avoid redundant steps: if s⇒∗R `γ by
an `-formative reduction, then this reduction takes only the steps needed to obtain
an instance of `. Suppose that we have rules plus 0 Y ⇒ Y, plus (s X) Y ⇒
s (plusX Y). Let ` := g 0X and t := plus 0 0. Then the reduction g t t⇒R g 0 t
is `-formative: we must reduce the first argument to get an instance of `. The
reduction g t t⇒R g t 0⇒R g 0 0 is not `-formative, because the reduction in the
second argument does not contribute to the non-meta-variable positions of `. This
matters when we consider ` as the left-hand side of a rule, say g 0 X ⇒ 0: if we
reduce g t t⇒R g t 0⇒R g 0 0⇒R 0, then the first step was redundant: removing
this step gives a shorter reduction to the same result: g t t⇒R g 0 t⇒R 0. In
an infinite reduction, redundant steps may also be postponed indefinitely.

We can now strengthen the result of Thm. 32 with two new properties.

Theorem 37. Let (F ,R) be a properly applied, accessible function passing
AFSM. If (F ,R) is non-terminating, then there is an infinite R-computable
formative (SDP(R),R)-dependency chain.

Proof (sketch). We select a minimal non-computable (MNC) term s := f s1 · · · sk
(where all si are CR-computable) and an infinite reduction starting in s. Then we
stepwise build an infinite dependency chain, as follows. Since s is non-computable
but each si terminates (as computability implies termination), there exist a

16 Carsten Fuhs and Cynthia Kop

rule f `1 · · · `k ⇒ r and substitution γ such that each si ⇒∗R `iγ and rγ is non-
computable. We can then identify a candidate t (A) of r such that γ respects A
and tγ is a MNC subterm of rγ; we continue the process with tγ (or a term at its
head). For the formative property, we note that if s⇒∗R `γ and u is terminating,
then u ⇒∗R `δ by an `-formative reduction for substitution δ such that each
δ(Z)⇒∗R γ(Z). This follows by postponing those reduction steps not needed to
obtain an instance of `. The resulting infinite chain is R-computable because we
can show, by induction on the definition of �acc, that if `⇒ r is an AFP rule
and `γ is a MNC term, then γ(Z) is CR-computable for all Z ∈ FMV (r). ut

As it is easily seen that all CU -computable terms are ⇒U -terminating and
therefore ⇒R-terminating, every U -computable (P,R)-dependency chain is also
minimal. The notions of R-computable and formative chains still do not suffice
to obtain a true inverse result, however (i.e., to prove that termination implies
the absence of an infinite R-computable chain over SDP(R)): the infinite chain
in Ex. 33 is R-computable.

To see why the two restrictions that the AFSM must be properly applied and
accessible function passing are necessary, consider the following examples.

Example 38. Consider F ⊇ {fix : ((o → o) → o → o) → o → o} and R =
{fix F X ⇒ F (fix F) X}. This AFSM is not properly applied; it is also not
terminating, as can be seen by instantiating F with λy.y. However, it does not
have any static DPs, since fix F is not a candidate. Even if we altered the
definition of static DPs to admit a dependency pair fix] F X V fix] F , this
pair could not be used to build an infinite dependency chain.

Note that the problem does not arise if we study the η-expanded rules R↑ =
{fix F X ⇒ F (λz.fix F z) X}, as the dependency pair fix] F X V fix] F Z
does admit an infinite chain. Unfortunately, as the one dependency pair does not
satisfy the conditions of Thm. 34, we cannot use this to prove non-termination.

Example 39. The AFSM from Ex. 20 is not accessible function passing, since
Acc(lm) = ∅. This is good because the set SDP(R) is empty, which would lead
us to falsely conclude termination without the restriction.

Discussion: Thm. 37 transposes the work of [34,46] to AFSMs and extends it
by using a more liberal restriction, by limiting interest to formative, R-computable
chains, and by including meta-variable conditions. Both of these new properties
of chains will support new termination techniques within the DP framework.

The relationship with the works for functional programming [32,33] is less
clear: they define a different form of chains suited well to polymorphic systems,
but which requires more intricate reasoning for non-polymorphic systems, as
DPs can be used for reductions at the head of a term. It is not clear whether
there are non-polymorphic systems that can be handled with one and not the
other. The notions of formative and R-computable chains are not considered
there; meta-variable conditions are not relevant to their λ-free formalism.

A static higher-order dependency pair framework (extended version) 17

5 The static higher-order DP framework

In first-order term rewriting, the DP framework [20] is an extendable framework
to prove termination and non-termination. As observed in the introduction, DP
analyses in higher-order rewriting typically go beyond the initial DP approach
[2], but fall short of the full framework. Here, we define the latter for static DPs.
Complete versions of all proof sketches in this section are available in Appendix C.

We have now reduced the problem of termination to non-existence of certain
chains. In the DP framework, we formalise this in the notion of a DP problem:

Definition 40 (DP problem). A DP problem is a tuple (P,R,m, f) with P
a set of DPs, R a set of rules, m ∈ {minimal, arbitrary} ∪ {computableU |
any set of rules U}, and f ∈ {formative, all}.5

A DP problem (P,R,m, f) is finite if there exists no infinite (P,R)-chain
that is U-computable if m = computableU , is minimal if m = minimal, and is
formative if f = formative. It is infinite if R is non-terminating, or if there
exists an infinite (P,R)-chain where all DPs used in the chain are conservative.

To capture the levels of permissiveness in the m flag, we use a transitive-
reflexive relation � generated by computableU � minimal � arbitrary.

Thus, the combination of Theorems 37 and 34 can be rephrased as: an
AFSM (F ,R) is terminating if (SDP(R),R, computableR, formative) is fi-
nite, and is non-terminating if (SDP(R),R,m, f) is infinite for some m ∈
{computableU , minimal, arbitrary} and f ∈ {formative, all}.6

The core idea of the DP framework is to iteratively simplify a set of DP
problems via processors until nothing remains to be proved:

Definition 41 (Processor). A dependency pair processor (or just processor) is
a function that takes a DP problem and returns either NO or a set of DP problems.
A processor Proc is sound if a DP problem M is finite whenever Proc(M) 6= NO

and all elements of Proc(M) are finite. A processor Proc is complete if a DP
problem M is infinite whenever Proc(M) = NO or contains an infinite element.

To prove finiteness of a DP problem M with the DP framework, we proceed
analogously to the first-order DP framework [22]: we repeatedly apply sound DP
processors starting from M until none remain. That is, we execute the following
rough procedure: (1) let A := {M}; (2) while A 6= ∅: select a problem Q ∈ A and
a sound processor Proc with Proc(Q) 6= NO, and let A := (A \ {Q})∪Proc(Q). If
this procedure terminates, then M is a finite DP problem.

5 Our framework is implicitly parametrised by the signature F] used for term formation.
As none of the processors we present modify this component (as indeed there is no
need to by Thm. 9), we leave it implicit.

6 The processors in this paper do not alter the flag m, but some require minimality or
computability. We include the minimal option and the subscript U for the sake of
future generalisations, and for reuse of processors in the dynamic approach of [31].

18 Carsten Fuhs and Cynthia Kop

To prove termination of an AFSM (F ,R), we would use as initial DP problem
(SDP(R),R, computableR, formative), provided that R is properly applied and
accessible function passing (where η-expansion following Def. 15 may be applied
first). If the procedure terminates – so finiteness of M is proved by the definition
of soundness – then Thm. 37 provides termination of ⇒R.

Similarly, we can use the DP framework to prove infiniteness: (1) let A := {M};
(2) while A 6= NO: select a problem Q ∈ A and a complete processor Proc, and
let A := NO if Proc(Q) = NO, or A := (A \ {Q}) ∪ Proc(Q) otherwise. For
non-termination of (F ,R), the initial DP problem should be (SDP(R),R,m, f),
where m, f can be any flag (see Thm. 34). Note that the algorithms coincide while
processors are used that are both sound and complete. In a tool, automation (or
the user) must resolve the non-determinism and select suitable processors.

Below, we will present a number of processors within the framework. We will
typically present processors by writing “for a DP problem M satisfying X, Y , Z,
Proc(M) = . . . ”. In these cases, we let Proc(M) = {M} for any problem M not
satisfying the given properties. Many more processors are possible, but we have
chosen to present a selection which touches on all aspects of the DP framework:

– processors which map a DP problem to NO (Thm. 65), a singleton set (most
processors) and a non-singleton set (Thm. 42);

– changing the set R (Thm. 58, 54) and various flags (Thm. 54);
– using specific values of the f (Thm. 58) and m flags (Thm. 61, 54, 63);
– using term orderings (Thm. 49, 52), a key part of many termination proofs.

5.1 The dependency graph

We can leverage reachability information to decompose DP problems. In first-
order rewriting, a graph structure is used to track which DPs can possibly follow
one another in a chain [2]. Here, we define this dependency graph as follows.

Definition 42 (Dependency graph). A DP problem (P,R,m, f) induces a
graph structure DG, called its dependency graph, whose nodes are the elements
of P. There is a (directed) edge from ρ1 to ρ2 in DG iff there exist s1, t1, s2, t2
such that [(ρ1, s1, t1), (ρ2, s2, t2)] is a (P,R)-chain with the properties for m, f .

Example 43. Consider an AFSM with F ⊇ {f : (nat→ nat)→ nat→ nat} and
R = {f (λx.F 〈x〉) (s Y)⇒ F 〈f (λx.0) (f (λx.F 〈x〉) Y)〉}. Let P := SDP(R) ={

(1) f] (λx.F 〈x〉) (s Y) V f] (λx.0) (f (λx.F 〈x〉) Y) ({F : 1})
(2) f] (λx.F 〈x〉) (s Y) V f] (λx.F 〈x〉) Y ({F : 1})

}
The dependency graph of (P,R, minimal, formative) is:

(1) (2)

There is no edge from (1) to itself or (2) because there is no substitution γ such
that (λx.0)γ can be reduced to a term (λx.F 〈x〉)δ where δ(F) regards its first
argument (as ⇒∗R cannot introduce new variables).

A static higher-order dependency pair framework (extended version) 19

In general, the dependency graph for a given DP problem is undecidable,
which is why we consider approximations.

Definition 44 (Dependency graph approximation [31]). A finite graph
Gθ approximates DG if θ is a function that maps the nodes of DG to the nodes
of Gθ such that, whenever DG has an edge from ρ1 to ρ2, Gθ has an edge from
θ(ρ1) to θ(ρ2). (Gθ may have edges that have no corresponding edge in DG.)

Note that this definition allows for an infinite graph to be approximated
by a finite one; infinite graphs may occur if R is infinite (e.g., the union of all
simply-typed instances of polymorphic rules).

If P is finite, we can take a graph approximation Gid with the same nodes as
DG . A simple approximation may have an edge from `1 V p1 (A1) to `2 V p2 (A2)
whenever both p1 and `2 have the form f] s1 · · · sk for the same f and k. However,
one can also take the meta-variable conditions into account, as we did in Ex. 43.

Theorem 45 (Dependency graph processor). The processor ProcGθ that
maps a DP problem M = (P,R,m, f) to {({ρ ∈ P | θ(ρ) ∈ Ci},R,m, f) | 1 ≤
i ≤ n} if Gθ is an approximation of the dependency graph of M and C1, . . . , Cn
are the (nodes of the) non-trivial strongly connected components (SCCs) of Gθ,
is both sound and complete.

Proof (sketch). In an infinite (P,R)-chain [(ρ0, s0, t0), (ρ1, s1, t1), . . .], there is
always a path from ρi to ρi+1 in DG. Since Gθ is finite, every infinite path in
DG eventually remains in a cycle in Gθ. This cycle is part of an SCC. ut

Example 46. LetR be the set of rules from Ex. 43 and G be the graph given there.
Then ProcG(SDP(R),R, computableR, formative) = {({f] (λx.F 〈x〉) (s Y) V
f] (λx.F 〈x〉) Y ({F : 1})},R, computableR, formative)}.

Example 47. Let R consist of the rules for map from Ex. 6 along with f L ⇒
map (λx.g x) L and g X ⇒ X. Then SDP(R) = {(1) map] (λx.Z〈x〉) (cons H T)
V map] (λx.Z〈x〉) T, (2) f] L V map] (λx.g x) L, (3) f] L V g] X}. DP (3)
is not conservative, but it is not on any cycle in the graph approximation Gid

obtained by considering head symbols as described above:

(3) (2) (1)

As (1) is the only DP on a cycle, ProcSDPGid
(SDP(R),R, computableR,

formative) = { ({(1)},R, computableR, formative) }.

Discussion: The dependency graph is a powerful tool for simplifying DP
problems, used since early versions of the DP approach [2]. Our notion of a
dependency graph approximation, taken from [31], strictly generalises the original
notion in [2], which uses a graph on the same node set as DG with possibly
further edges. One can get this notion here by using a graph Gid. The advantage
of our definition is that it ensures soundness of the dependency graph processor
also for infinite sets of DPs. This overcomes a restriction in the literature [34,
Corollary 5.13] to dependency graphs without non-cyclic infinite paths.

20 Carsten Fuhs and Cynthia Kop

5.2 Processors based on reduction triples

At the heart of most DP-based approaches to termination proving lie well-founded
orderings to delete DPs (or rules). For this, we use reduction triples [24,31].

Definition 48 (Reduction triple). A reduction triple (%,<,�) consists of
two quasi-orderings % and < and a well-founded strict ordering � on meta-terms
such that % is monotonic, all of %,<,� are meta-stable (that is, ` % r implies
`γ % rγ if ` is a closed pattern and γ a substitution on domain FMV (`)∪FMV (r),
and the same for < and �), ⇒β ⊆ %, and both % ◦ � ⊆ � and < ◦ � ⊆ �.

In the first-order DP framework, the reduction pair processor [20] seeks to
orient all rules with % and all DPs with either % or �; if this succeeds, those
pairs oriented with � may be removed. Using reduction triples rather than pairs,
we obtain the following extension to the higher-order setting:

Theorem 49 (Basic reduction triple processor). Let M = (P1]P2,R,m,
f) be a DP problem. If (%,<,�) is a reduction triple such that

1. for all `⇒ r ∈ R, we have ` % r;
2. for all `V p (A) ∈ P1, we have ` � p;
3. for all `V p (A) ∈ P2, we have ` < p;

then the processor that maps M to {(P2,R,m, f)} is both sound and complete.

Proof (sketch). For an infinite (P1] P2,R)-chain [(ρ0, s0, t0), (ρ1, s1, t1), . . .] the
requirements provide that, for all i: (a) si � ti if ρi ∈ P1; (b) si < ti if ρi ∈ P2;
and (c) ti % si+1. Since � is well-founded, only finitely many DPs can be in P1,
so a tail of the chain is actually an infinite (P2,R,m, f)-chain. ut
Example 50. Let (F ,R) be the (non-η-expanded) rules from Ex. 17, and SDP(R)
the DPs from Ex. 28. From Thm. 49, we get the following ordering requirements:

deriv (λx.sin F 〈x〉) % λy.times (deriv (λx.F 〈x〉) y) (cos F 〈y〉)
deriv] (λx.sin F 〈x〉) � deriv] (λx.F 〈x〉)

We can handle both requirements by using a polynomial interpretation J to N
[43,15], by choosing Jsin(n) = n+1, Jcos(n) = 0, Jtimes(n1, n2) = n1, Jderiv(f) =
Jderiv](f) = λn.f(n). Then the requirements are evaluated to: λn.f(n) + 1 ≥
λn.f(n) and λn.f(n) + 1 > λn.f(n), which holds on N.

Thm. 49 is not ideal since, by definition, the left- and right-hand side of a DP
may have different types. Such DPs are hard to handle with traditional techniques
such as HORPO [26] or polynomial interpretations [43,15], as these methods
compare only (meta-)terms of the same type (modulo renaming of sorts).

Example 51. Consider the toy AFSM with R = {f (s X) Y ⇒ g X Y, g X ⇒
λz.f X z} and SDP(R) = {f] (s X) Y V g] X, g] X V f] X Z}. If f and g

both have a type nat→ nat→ nat, then in the first DP, the left-hand side has
type nat while the right-hand side has type nat→ nat. In the second DP, the
left-hand side has type nat→ nat and the right-hand side has type nat.

To be able to handle examples like the one above, we adapt [31, Thm. 5.21]
by altering the ordering requirements to have base type.

A static higher-order dependency pair framework (extended version) 21

Theorem 52 (Reduction triple processor). Let Bot be a set {⊥σ : σ |
σ a type} ⊆ F] of unused constructors, M = (P1] P2,R,m, f) a DP problem
and (%,<,�) a reduction triple such that: (a) for all ` ⇒ r ∈ R, we have
` % r; and (b) for all ` V p (A) ∈ P1] P2 with ` : σ1 → . . . → σm → ι and
p : τ1 → . . .→ τn → κ we have, for fresh meta-variables Z1 : σ1, . . . , Zm : σm:

– ` Z1 · · ·Zm � p ⊥τ1 · · · ⊥τn if `V p (A) ∈ P1

– ` Z1 · · ·Zm < p ⊥τ1 · · · ⊥τn if `V p (A) ∈ P2

Then the processor that maps M to {(P2,R,m, f)} is both sound and complete.

Proof (sketch). If (%,<,�) is such a triple, then for R ∈ {<,�} define R′

as follows: for s : σ1 → . . . → σm → ι and t : τ1 → . . . → τn → κ, let
s R′ t if for all u1 : σ1, . . . , um : σm there exist w1 : τ1, . . . , wn : τn such that
s u1 · · ·um R t w1 · · ·wn. Now apply Thm. 49 with the triple (%,<′,�′). ut

Here, the elements of Bot take the role of minimal terms for the ordering. We
use them to flatten the type of the right-hand sides of ordering requirements,
which makes it easier to use traditional methods to generate a reduction triple.

While � and < may still have to orient meta-terms of distinct types, these
are always base types, which we could collapse to a single sort. The only relation
required to be monotonic, %, regards pairs of meta-terms of the same type. This
makes it feasible to apply orderings like HORPO or polynomial interpretations.

Both the basic and non-basic reduction triple processor are difficult to use for
non-conservative DPs, which generate ordering requirements whose right-hand
side contains a meta-variable not occurring on the left. This is typically difficult
for traditional techniques, although possible to overcome, by choosing triples
that do not regard such meta-variables (e.g., via an argument filtering [35,46]):

Example 53. We apply Thm. 52 on the DP problem (SDP(R),R, computableR,
formative) of Ex. 51. This gives for instance the following ordering requirements:

f (s X) Y % g X Y f] (s X) Y � g] X ⊥nat

g X % λz.f X z g] X Y < f] X Z

The right-hand side of the last DP uses a meta-variable Z that does not occur on
the left. As neither � nor < are required to be monotonic (only % is), function
symbols do not have to regard all their arguments. Thus, we can use a polynomial
interpretation J to N with J⊥nat

= 0, Js(n) = n + 1 and Jh(n1, n2) = n1 for
h ∈ {f, f], g, g]}. The ordering requirements then translate to X + 1 ≥ X and
λy.X ≥ λz.X for the rules, and X + 1 > X and X ≥ X for the DPs. All
these inequalities on N are clearly satisfied, so we can remove the first DP. The
remaining problem is quickly dispersed with the dependency graph processor.

5.3 Rule removal without search for orderings

While processors often simplify only P, they can also simplify R. One of the
most powerful techniques in first-order DP approaches that can do this are usable
rules. The idea is that for a given set P of DPs, we only need to consider a subset
UR(P,R) of R. Combined with the dependency graph processor, this makes it
possible to split a large term rewriting system into a number of small problems.

22 Carsten Fuhs and Cynthia Kop

In the higher-order setting, simple versions of usable rules have also been
defined [46,31]. We can easily extend these definitions to AFSMs:

Theorem 54. Given a DP problem M = (P,R,m, f) with m � minimal and
R finite, let UR(P,R) be the smallest subset of R such that:

– if a symbol f occurs in the right-hand side of an element of P or UR(P,R),
and there is a rule f `1 · · · `k ⇒ r, then this rule is also in UR(P,R);

– if there exists `⇒ r ∈ R or `V r (A) ∈ P such that r�F 〈s1, . . . , sk〉 t1 · · · tn
with s1, . . . , sk not all distinct variables or with n > 0, then UR(P,R) = R.

Then the processor that maps M to {(P,UR(P,R), arbitrary, all)} is sound.

For the proof we refer to the very similar proofs in [46,31].

Example 55. For the set SDP(R) of the ordinal recursion example (Ex. 8 and
29), all rules are usable due to the occurrence of H M in the second DP. For the
set SDP(R) of the map example (Ex. 6 and 31), there are no usable rules, since
the one DP contains no defined function symbols or applied meta-variables.

This higher-order processor is much less powerful than its first-order version: if
any DP or usable rule has a sub-meta-term of the form F s or F 〈s1, . . . , sk〉 with
s1, . . . , sk not all distinct variables, then all rules are usable. Since applying a
higher-order meta-variable to some argument is extremely common in higher-order
rewriting, the technique is usually not applicable. Also, this processor imposes a
heavy price on the flags: minimality (at least) is required, but is lost; the formative
flag is also lost. Thus, usable rules are often combined with reduction triples to
temporarily disregard rules, rather than as a way to permanently remove rules.

To address these weaknesses, we consider a processor that uses similar ideas
to usable rules, but operates from the left-hand sides of rules and DPs rather than
the right. This adapts the technique from [31] that relies on the new formative
flag. As in the first-order case [16], we use a semantic characterisation of formative
rules. In practice, we then work with over-approximations of this characterisation,
analogous to the use of dependency graph approximations in Thm. 45.

Definition 56. A function FR that maps a pattern ` and a set of rules R to
a set FR(`,R) ⊆ R is a formative rules approximation if for all s and γ: if
s⇒∗R `γ by an `-formative reduction, then this reduction can be done using only
rules in FR(`,R).

We let FR(P,R) =
⋃
{FR(`i,R) | f `1 · · · `n V p (A) ∈ P ∧ 1 ≤ i ≤ n}.

Thus, a formative rules approximation is a subset of R that is sufficient for a
formative reduction: if s⇒∗R `γ, then s⇒∗FR(`,R) `γ. It is allowed for there to
exist other formative reductions that do use additional rules.

Example 57. We define a simple formative rules approximation: (1) FR(Z,R) = ∅
if Z is a meta-variable; (2) FR(f `1 · · · `m,R) = FR(`1,R) ∪ · · · ∪ FR(`m,R) if
f : σ1 → . . . → σm → ι and no rules have type ι; (3) FR(s,R) = R otherwise.
This is a formative rules approximation: if s⇒∗R Zγ by a Z-formative reduction,
then s = Zγ, and if s⇒∗R f `1 · · · `m and no rules have the same output type as
s, then s = f s1 · · · sm and each si ⇒∗R `iγ (by an `i-formative reduction).

A static higher-order dependency pair framework (extended version) 23

The following result follows directly from the definition of formative rules.

Theorem 58 (Formative rules processor). For a formative rules approxim-
ation FR, the processor ProcFR that maps a DP problem (P,R,m, formative)
to {(P,FR(P,R),m, formative)} is both sound and complete.

Proof (sketch). A processor that only removes rules (or DPs) is always complete.
For soundness, if the chain is formative then each step ti ⇒∗R si+1 can be replaced
by ti ⇒∗FR(P,R) si+1. Thus, the chain can be seen as a (P,FR(P,R))-chain. ut

Example 59. For our ordinal recursion example (Ex. 8 and 29), none of the
rules are included when we use the approximation of Ex. 57 since all rules have
output type ord. Thus, ProcFR maps (SDP(R),R, computableR, formative) to
(SDP(R), ∅, computableR, formative). Note: this example can also be completed
without formative rules (see Ex. 64). Here we illustrate that, even with a simple
formative rules approximation, we can often delete all rules of a given type.

Formative rules are introduced in [31], and the definitions can be adapted to
a more powerful formative rules approximation than the one sketched in Ex. 59.
Several examples and deeper intuition for the first-order setting are given in [16].

5.4 Subterm criterion processors

Reduction triple processors are powerful, but they exert a computational price:
we must orient all rules in R. The subterm criterion processor allows us to remove
DPs without considering R at all. It is based on a projection function [24], whose
higher-order counterpart [34,46,31] is the following:

Definition 60. For P a set of DPs, let heads(P) be the set of all symbols f that
occur as the head of a left- or right-hand side of a DP in P. A projection function
for P is a function ν : heads(P)→ N such that for all DPs `V p (A) ∈ P, the
function ν with ν(f s1 · · · sn) = sν(f) is well-defined both for ` and for p.

Theorem 61 (Subterm criterion processor). The processor Procsubcrit that
maps a DP problem (P1] P2,R,m, f) with m � minimal to {(P2,R,m, f)} if
a projection function ν exists such that ν(`) � ν(p) for all `V p (A) ∈ P1 and
ν(`) = ν(p) for all `V p (A) ∈ P2, is sound and complete.

Proof (sketch). If the conditions are satisfied, every infinite (P,R)-chain induces
an infinite � · ⇒∗R sequence that starts in a strict subterm of t1, contradicting
minimality unless all but finitely many steps are equality. Since every occurrence
of a pair in P1 results in a strict � step, a tail of the chain lies in P2. ut

Example 62. Using ν(map]) = 2, Procsubcrit maps the DP problem ({(1)},R,
computableR, formative) from Ex. 47 to {(∅,R, computableR, formative)}.

The subterm criterion can be strengthened, following [34,46], to also handle
DPs like the one in Ex. 28. Here, we focus on a new idea. For computable chains,
we can build on the idea of the subterm criterion to get something more.

24 Carsten Fuhs and Cynthia Kop

Theorem 63 (Computable subterm criterion processor). The processor
Procstatcrit that maps a DP problem (P1] P2,R, computableU , f) to {(P2,R,
computableU , f)} if a projection function ν exists such that ν(`) = ν(p) for all
`V p (A) ∈ P1 and ν(`) = ν(p) for all `V p (A) ∈ P2, is sound and complete.
Here, = is the relation on base-type terms with s = t if s 6= t and (a) s�acc t or (b)
a meta-variable Z exists with s�acc Z〈x1, . . . , xk〉 and t = Z〈t1, . . . , tk〉 s1 · · · sn.

Proof (sketch). By the conditions, every infinite (P,R)-chain induces an infinite
(VCU ∪ ⇒β)∗· ⇒∗R sequence (where CU is defined following Thm. 13). This
contradicts computability unless there are only finitely many inequality steps. As
pairs in P1 give rise to a strict decrease, they may occur only finitely often. ut
Example 64. Following Ex. 8 and 29, consider the projection function ν with
ν(rec]) = 1. As s X�accX and lim H�accH, both s X = X and lim H = H M
hold. Thus Procstatc(P,R, computableR, formative) = {(∅,R, computableR,
formative)}. By the dependency graph processor, the AFSM is terminating.

The computable subterm criterion processor fundamentally relies on the new
computableU flag, so it has no counterpart in the literature so far.

5.5 Non-termination

While (most of) the processors presented so far are complete, none of them can
actually return NO. We have not yet implemented such a processor; however, we
can already provide a general specification of a non-termination processor.

Theorem 65 (Non-termination processor). Let M = (P,R,m, f) be a DP
problem. The processor that maps M to NO if it determines that a sufficient
criterion for non-termination of ⇒R or for existence of an infinite conservative
(P,R)-chain according to the flags m and f holds is sound and complete.

Proof. Obvious. ut
This is a very general processor, which does not tell us how to determine such

a sufficient criterion. However, it allows us to conclude non-termination as part
of the framework by identifying a suitable infinite chain.

Example 66. If we can find a finite (P,R)-chain [(ρ0, s0, t0), . . . , (ρn, sn, tn)] with
tn = s0γ for some substitution γ which uses only conservative DPs, is formative if
f = formative and is U -computable if m = computableU , such a chain is clearly
a sufficient criterion: there is an infinite chain [(ρ0, s0, t0), . . . , (ρ0, s0γ, t0γ), . . . ,
(ρ0, s0γγ, t0γγ), . . .]. If m = minimal and we find such a chain that is however
not minimal, then note that ⇒R is non-terminating, which also suffices.

For example, for a DP problem (P,R, minimal, all) with P = {f] F X V
g] (F X), g] X V f] h X}, there is a finite dependency chain: [(f] F X V
g] (F X), f] h x, g] (h x)), (g] X V f] h X, g] (h x), f] h (h x))]. As f] h (h x)
is an instance of f] h x, the processor maps this DP problem to NO.

To instantiate Thm. 65, we can borrow non-termination criteria from first-
order rewriting [21,42,13], with minor adaptions to the typed setting. Of course, it
is worthwhile to also investigate dedicated higher-order non-termination criteria.

A static higher-order dependency pair framework (extended version) 25

6 Conclusions and Future Work

We have built on the static dependency pair approach [6,34,46,33] and formu-
lated it in the language of the DP framework from first-order rewriting [20,22].
Our formulation is based on AFSMs, a dedicated formalism designed to make
termination proofs transferrable to various higher-order rewriting formalisms.

This framework has two important additions over existing higher-order DP
approaches in the literature. First, we consider not only arbitrary and minimally
non-terminating dependency chains, but also minimally non-computable chains;
this is tracked by the computableU flag. Using the flag, a dedicated processor
allows us to efficiently handle rules like Ex. 8. This flag has no counterpart in
the first-order setting. Second, we have generalised the idea of formative rules in
[31] to a notion of formative chains, tracked by a formative flag. This makes it
possible to define a corresponding processor that permanently removes rules.

Implementation and experiments. To provide a strong formal groundwork, we
have presented several processors in a general way, using semantic definitions
of, e.g., the dependency graph approximation and formative rules rather than
syntactic definitions using functions like TCap [21]. Even so, most parts of the
DP framework for AFSMs have been implemented in the open-source termination
prover WANDA [28], alongside a dynamic DP framework [31] and a mechanism to
delegate some ordering constraints to a first-order tool [14]. For reduction triples,
polynomial interpretations [15] and a version of HORPO [29, Ch. 5] are used.
To solve the constraints arising in the search for these orderings, and also to
determine sort orderings (for the accessibility relation) and projection functions
(for the subterm criteria), WANDA employs an external SAT-solver. WANDA has
won the higher-order category of the International Termination Competition [50]
four times. In the International Confluence Competition [10], the tools ACPH [40]
and CSIˆho [38] use WANDA as their “oracle” for termination proofs on HRSs.

We have tested WANDA on the Termination Problems Data Base [49], using
AProVE [19] and MiniSat [12] as back-ends. When no additional features are
enabled, WANDA proves termination of 124 (out of 198) benchmarks with static
DPs, versus 92 with only a search for reduction orderings; a 34% increase. When
all features except static DPs are enabled, WANDA succeeds on 153 benchmarks,
versus 166 with also static DPs; an 8% increase, or alternatively, a 29% decrease
in failure rate. The full evaluation is available in Appendix D.

Future work. While the static and the dynamic DP approaches each have
their own strengths, there has thus far been little progress on a unified approach,
which could take advantage of the syntactic benefits of both styles. We plan to
combine the present work with the ideas of [31] into such a unified DP framework.

In addition, we plan to extend the higher-order DP framework to rewriting
with strategies, such as implicit β-normalisation or strategies inspired by functional
programming languages like OCaml and Haskell. Other natural directions are
dedicated automation to detect non-termination, and reducing the number of
term constraints solved by the reduction triple processor via a tighter integration
with usable and formative rules with respect to argument filterings.

26 Carsten Fuhs and Cynthia Kop

References

1. P. Aczel. A general Church-Rosser theorem. Unpublished Manuscript, University
of Manchester, 1978.

2. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs.
Theoretical Computer Science, 236(1-2):133–178, 2000.

3. F. Baader and F. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

4. L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with
selection and simplification. Journal of Logic and Computation, 4(3):217–247, 1994.

5. F. Blanqui. Termination and confluence of higher-order rewrite systems. In Proc.
RTA ’00, 2000.

6. F. Blanqui. Higher-order dependency pairs. In Proc. WST ’06, 2006.

7. F. Blanqui. Termination of rewrite relations on λ-terms based on Girard’s notion
of reducibility. Theoretical Computer Science, 611:50–86, 2016.

8. F. Blanqui, J. Jouannaud, and M. Okada. Inductive-data-type systems. Theoretical
Computer Science, 272(1-2):41–68, 2002.

9. F. Blanqui, J. Jouannaud, and A. Rubio. The computability path ordering. Logical
Methods in Computer Science, 11(4), 2015.

10. Community. The international Confluence Competition (CoCo). http://

project-coco.uibk.ac.at/, 2018.

11. N. Dershowitz and S. Kaplan. Rewrite, rewrite, rewrite, rewrite, rewrite. In Proc.
POPL ’89, 1989.

12. N. Eén and N. Sörensson. An extensible SAT-solver. In Proc. SAT ’03, pages
502–518, 2004. See also http://minisat.se/.

13. F. Emmes, T. Enger, and J. Giesl. Proving non-looping non-termination automat-
ically. In Proc. IJCAR ’12, 2012.

14. C. Fuhs and C. Kop. Harnessing first order termination provers using higher order
dependency pairs. In Proc. FroCoS ’11, 2011.

15. C. Fuhs and C. Kop. Polynomial interpretations for higher-order rewriting. In Proc.
RTA ’12, 2012.

16. C. Fuhs and C. Kop. First-order formative rules. In Proc. RTA-TLCA ’14, 2014.

17. C. Fuhs and C. Kop. A static higher-order dependency pair framework. In
Proc. ESOP’19, 2019. To appear.

18. C. Fuhs, C. Kop, and N. Nishida. Verifying procedural programs via constrained
rewriting induction. ACM Transactions on Computational Logic, 18(2):14:1–14:50,
2017.

19. J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, J. Hensel,
C. Otto, M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swiderski, and R. Thiemann.
Analyzing program termination and complexity automatically with AProVE. Journal
of Automated Reasoning, 58(1):3–31, 2017.

20. J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework:
Combining techniques for automated termination proofs. In Proc. LPAR ’04, 2005.

21. J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving termination
of higher-order functions. In Proc. FroCoS ’05, 2005.

22. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and improving
dependency pairs. Journal of Automated Reasoning, 37(3):155–203, 2006.

23. F. Haftmann and T. Nipkow. Code generation via higher-order rewrite systems. In
Proc. FLOPS ’10, 2010.

A static higher-order dependency pair framework (extended version) 27

24. N. Hirokawa and A. Middeldorp. Tyrolean termination tool: Techniques and features.
Information and Computation, 205(4):474–511, 2007.

25. J. C. Hoe and Arvind. Hardware synthesis from term rewriting systems. In Proc.
VLSI ’99, 1999.

26. J. Jouannaud and A. Rubio. The higher-order recursive path ordering. In Proc.
LICS ’99, 1999.

27. J. Klop, V. v. Oostrom, and F. v. Raamsdonk. Combinatory reduction systems:
introduction and survey. Theoretical Computer Science, 121(1-2):279–308, 1993.

28. C. Kop. WANDA – a higher-order termination tool. http://wandahot.

sourceforge.net/.
29. C. Kop. Higher Order Termination. PhD thesis, VU Amsterdam, 2012.
30. C. Kop and F. v. Raamsdonk. Higher order dependency pairs for algebraic functional

systems. In Proc. RTA ’11, 2011.
31. C. Kop and F. v. Raamsdonk. Dynamic dependency pairs for algebraic functional

systems. Logical Methods in Computer Science, 8(2):10:1–10:51, 2012.
32. K. Kusakari. Static dependency pair method in rewriting systems for functional

programs with product, algebraic data, and ML-polymorphic types. IEICE Trans-
actions, 96-D(3):472–480, 2013.

33. K. Kusakari. Static dependency pair method in functional programs. IEICE
Transactions on Information and Systems, E101.D(6):1491–1502, 2018.

34. K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static dependency pair method
based on strong computability for higher-order rewrite systems. IEICE Transactions
on Information and Systems, 92(10):2007–2015, 2009.

35. K. Kusakari, M. Nakamura, and Y. Toyama. Argument filtering transformation. In
Proc. PPDP ’99, 1999.

36. C. A. Meadows. Applying formal methods to the analysis of a key management
protocol. Journal of Computer Security, 1(1):5–36, 1992.

37. D. Miller. A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. Journal of Logic and Computation, 1(4):497–536,
1991.

38. J. Nagele. CoCo 2018 participant: CSIˆho 0.2. http://project-coco.uibk.ac.

at/2018/papers/csiho.pdf, 2018.
39. T. Nipkow. Higher-order critical pairs. In Proc. LICS ’91, 1991.
40. K. Onozawa, K. Kikuchi, T. Aoto, and Y. Toyama. ACPH: System description for

CoCo 2017. http://project-coco.uibk.ac.at/2017/papers/acph.pdf, 2017.
41. C. Otto, M. Brockschmidt, C. v. Essen, and J. Giesl. Automated termination

analysis of Java Bytecode by term rewriting. In Proc. RTA ’10, 2010.
42. É. Payet. Loop detection in term rewriting using the eliminating unfoldings.

Theoretical Computer Science, 403(2-3):307–327, 2008.
43. J. v. d. Pol. Termination of Higher-order Rewrite Systems. PhD thesis, University

of Utrecht, 1996.
44. M. Sakai and K. Kusakari. On dependency pair method for proving termination of

higher-order rewrite systems. IEICE Transactions on Information and Systems,
E88-D(3):583–593, 2005.

45. M. Sakai, Y. Watanabe, and T. Sakabe. An extension of the dependency pair method
for proving termination of higher-order rewrite systems. IEICE Transactions on
Information and Systems, E84-D(8):1025–1032, 2001.

46. S. Suzuki, K. Kusakari, and F. Blanqui. Argument filterings and usable rules in
higher-order rewrite systems. IPSJ Transactions on Programming, 4(2):1–12, 2011.

47. W. Tait. Intensional interpretation of functionals of finite type. Journal of Symbolic
Logic, 32(2):187–199, 1967.

28 Carsten Fuhs and Cynthia Kop

48. Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2003.

49. Wiki. Termination Problems DataBase (tpdb). http://termination-portal.org/
wiki/TPDB.

50. Wiki. The International Termination Competition (TermComp). http://

termination-portal.org/wiki/Termination_Competition, 2018.

A static higher-order dependency pair framework (extended version) 29

– APPENDIX –
This appendix contains detailed proofs for all results in the paper. Proofs in

higher-order rewriting are typically intricate and subject to errors in the small
details, so we have strived to be very precise. However, aside from Appendix A
(which is simply an adaptation of an existing technique to the present setting),
the main idea of all proofs is captured by the proof sketches in the paper.

In addition, Appendix D presents an experimental evaluation that considers
the power of the techniques in this paper on the termination problem database [49].

A Computability: the set C

In this appendix, we prove Thm. 13: the existence of an RC-set C that provides
an accessibility relation �acc that preserves computability, and a base-type
accessibility step VC that preserves both computability and termination.

As we have said before, V and F contain infinitely many symbols of all types.
We will use this to select variables or constructor symbol of any given type
without further explanation.

These proofs do not require that computability is considered with respect to
a rewrite relation: other relations (such as recursive path orderings) may be used
as well. To make this explicit, we will use an alternative relation symbol, =.

The proofs here consider a computability notion over the set T (F ,V) of
terms without restrictions. However, they could easily be extended to subsets
of a different set of terms T , provided T is closed under ⇒R. This could for
instance be used to obtain a computability result for terms that satisfy certain
arity restrictions. To make this generality clear, each quantification over terms is
explicitly marked with T (F ,V).

Note: a more extensive discussion of computability can be found in [7]. Our
notion of accessibility largely corresponds to membership of the computability
closure defined there (although not completely).

A.1 Definitions and main computability result

Definition 67. In Appendix A, = is assumed to be a given relation on terms of
the same type, with respect to which we consider computability. We require that:

– = is monotonic (that is, s = t implies that s u = t u and u s = u t and
λx.s = λx.t);

– for all variables x: x s1 · · · sn = t implies that t has the form x s1 · · · s′i · · · sn
with si = s′i;

– if s⇒∗headβ u and s = t, then there exists v such that u =∗ v and t⇒∗headβ v;
here, ⇒headβ is the relation generated by the step (λx.u) v w1 · · ·wn ⇒headβ

u[x := v] w1 · · ·wn;
– if t is the headβ-normal form of s, then s =∗ t.

We call a term neutral if it has the form x s1 · · · sn or (λx.u) s0 · · · sn.

30 Carsten Fuhs and Cynthia Kop

The generality obtained by imposing only the minimal requirements on =

is not needed in the current paper (where we only consider computability with
respect to a rewrite relation), but could be used to extend the method to other
domains. First note:

Lemma 68. A rewrite relation ⇒R satisfies the requirements of = stated in
Def. 67.

Proof. Clearly ⇒R is monotonic, applications with a variable at the head cannot
be reduced at the head, and moreover ⇒R includes ⇒headβ .

The third property we prove by induction on s with ⇒β , using ⇒∗R instead
of ⇒R for a stronger induction hypothesis. If s = u, then we are done choosing
v := t. Otherwise we can write s = (λx.q) w0 w1 · · ·wn and s⇒headβ s

′ := q[x :=
w0] w1 · · ·wn, and s′ ⇒∗headβ u. If the reduction s⇒∗R t does not take any head
steps, then

t = (λx.q′) w′0 w
′
1 · · ·w′n ⇒∗headβ q′[x := w′0] w′1 · · ·w′n =: v

and indeed u⇒∗R v by monotonicity. Otherwise, by the same argument we can
safely assume that the head step is done first, so s′ ⇒∗R t; we complete by the
induction hypothesis. ut

Recall Def. 10 from the text.

Definition 10 (with = rather than ⇒R). A set of reducibility candidates,
or RC-set, for a relation = as in Def. 67 is a set I of base-type terms s ∈ T (F ,V)
such that:

– every term in I is terminating under =

– I is closed under = (so if s ∈ I and s = t then t ∈ I)
– if s ∈ T (F ,V) is neutral, and for all t with s = t we have t ∈ I, then s ∈ I

We define I-computability for an RC-set I by induction on types; for s ∈ T (F ,V)
we say s is I-computable if:

– s : ι for some ι ∈ S and s ∈ I (ι ∈ S)
– s : σ → τ and for all terms t : σ ∈ T (F ,V) that are I-computable, s t is
I-computable

For ι a sort and I an RC-set, we will write I(ι) = {s ∈ I | s : ι}.
Let us illustrate Def. 10 with two examples:

Lemma 69. The set SN of all terminating base-type terms in T (F ,V) is an
RC-set. The set MIN of all terminating base-type terms in T (F ,V) whose headβ-
normal form can be written x s1 · · · sm with x ∈ V is also an RC-set.

Proof. It is easy to verify that the requirements hold for SN. For MIN, clearly
termination holds. If s ∈ MIN, then s⇒∗headβ x s1 · · · sm =: s′, so for any t with
s =∗ t the assumptions on = provide that t ⇒∗headβ v for some =∗-reduct of

A static higher-order dependency pair framework (extended version) 31

s′, which can only have the form x t1 · · · tm. Finally, we prove that a neutral
term s ∈ T (F ,V) is in MIN if all its =+-reducts are, by induction on s with
⇒β (this suffices because we have already seen that MIN is closed under =). If
s = x s1 · · · sm then it is included in MIN if it is terminating, which is the case if
all its reducts are terminating, which is certainly the case if they are in MIN. If
s = (λx.u) v w1 · · ·wm then it is included if (a) all its reducts are terminating
(which is satisfied if they are in MIN), and (b) the headβ-normal form s′ of s has
the right form, which holds because s =+ s′ (as ⇒headβ is included in =) and
therefore s′ ∈ MIN by assumption. ut

In fact, we have that MIN ⊆ I ⊆ SN for all RC-sets I. The latter inclusion is
obvious by the termination requirement in the definition of RC-sets. The former
inclusion follows easily:

Lemma 70. For all RC-sets I, MIN ⊆ I.

Proof. We prove by induction on = that all elements of MIN are also in I. It is
easy to see that if s ∈ MIN then s is neutral. Therefore, s ∈ I if t ∈ I whenever
s = t. But since MIN is closed by Lemma 69, each such t is in MIN, so also in I
by the induction hypothesis. ut

Aside from minimality of MIN, Lemma 70 actually provides I-computability
of all variables, regardless of I. We prove this alongside termination of all I-
computable terms.

Lemma 71. Let I be an RC-set. The following statements hold for all types σ:

1. all variables x : σ are I-computable

2. all I-computable terms s : σ are terminating (w.r.t. =)

Proof. By a mutual induction on the form of σ, which we may safely write
σ1 → . . .→ σm → ι (with m ≥ 0 and ι ∈ S).

(1) By definition of I-computability, x : σ is computable if and only if
x s1 · · · sm ∈ I for all I-computable terms s1 : σ1, . . . , sm : σm in T (F ,V).
However, as all σi are smaller types, we know that such terms si are terminating,
so Lemma 70 gives the required result.

(2) Let x1 : σ1, . . . , xm : σm be variables; by the induction hypothesis they
are computable, and therefore s x1 · · ·xm is in I and therefore terminating. Then
the head, s, cannot itself be non-terminating (by monotonicity of =). ut

While SN is indisputably the easiest RC-set to define and work with, it will
be beneficial for the strength of the method to consider a set strictly between
MIN and SN. To this end, we assume given an ordering on types, and a function
mapping each function symbol f to a set Acc(f) of arguments positions. Here,
we deviate from the text by not fixing Acc; again, this generality is not needed
for the current paper, but is done with an eye on future extensions.

32 Carsten Fuhs and Cynthia Kop

Definition 72 (Generalisation of Def. 11). Assume given a quasi-ordering
�S on S whose strict part �S := �S \ �S is well-founded. Let ≈S denote the
corresponding equivalence relation ≈S := �S ∩ �S .

For a type σ ≡ σ1 → . . . → σm → κ (with κ ∈ S) and sort ι, we write
ι �S+ σ if ι �S κ and ι �S− σi for each i, and we write ι �S− σ if ι �S κ and
ι �S+ σi for each i.

For f : σ1 → . . . → σm → ι we assume given a set Acc(f) ⊆ {i | 1 ≤ i ≤
m ∧ ι �S+ σi}. For x : σ1 → . . . → σm → ι ∈ V, we write Acc(x) = {i | 1 ≤ i ≤
m ∧ σi = τ1 → . . . → τn → κ ∧ ι �S κ}. We write s �acc t if either s = t, or
s = λx.s′ and s′ �acc t, or s = a s1 · · · sn with a ∈ F ∪ V and si �acc t for some
i ∈ Acc(a) with a /∈ FV (si).

Remark: This definition of the accessibility relations deviates from, e.g., [9] by
using a pair of relations (�S+ and �S−) rather than positive and negative positions.
This is not an important difference, but simply a matter of personal preference;
using a pair of relations avoids the need to discuss type positions in the text,
allowing for a shorter presentation. It is also not common to allow a choice in
Acc(f), but rather to fix Acc(f) = {σi | 1 ≤ i ≤ m ∧ ι �S+ σ} for some symbols
(for instance constructors) and Acc(f) = ∅ for the rest. We elected to leave the
choice open for greater generality.

The interplay of the positive and negative relations �S+ and �S− leads to an
important result on RC-sets.

Lemma 73. Fix a sort ι ∈ S. Suppose I, J are RC-sets such that I(κ) = J(κ)
for all κ with ι �S κ and I(κ) ⊆ J(κ) if ι ≈S κ. Let s : σ. Then we have:

– If ι �S+ σ, then if s is I-computable also s is J-computable.
– If ι �S− σ, then if s is J-computable also s is I-computable.

Proof. We prove both statements together by a shared induction on the form of
σ. We can always write σ ≡ σ1 → . . .→ σm → κ with κ ∈ S.

First suppose ι �S+ σ; then ι �S κ – so I(κ) ⊆ J(κ) – and each ι �S− σi.
Assume that s is I-computable; we must show that it is J-computable, so that for
all J-computable t1 : σ1, . . . , tm : σm we have: s t1 · · · tm ∈ J . However, by the
induction hypothesis each ti is also I-computable, so s t1 · · · tm ∈ I(κ) ⊆ J(κ)
by the assumption.

For the second statement, suppose ι �S− σ; then ι �S κ, so I(κ) = J(κ).
Assume that s is J-computable; I-computability follows if s t1 · · · tm ∈ I(κ) =
J(κ) whenever t1, . . . , tm are I-computable. By the induction hypothesis they
are J-computable, so this holds by assumption. ut

The RC-set C whose existence is asserted below offers computability with a
notion of accessibility. It is worth noting that this is not a standard definition,
but is designed to provide an additional relationship VI that is terminating on
computable terms. This relation will be useful in termination proofs using static
DPs.

A static higher-order dependency pair framework (extended version) 33

Theorem 74. Let VI be the relation on base-type terms where f s1 · · · sm VI

si t1 · · · tn whenever i ∈ Acc(f) and si : σ1 → . . . → σn → ι and each tj is
I-computable.

There exists an RC-set C such that C = {s ∈ T (F ,V) | s has base type ∧ s
is terminating under = ∪VC and if s =∗ f s1 · · · sm then si is C-computable for
all i ∈ Acc(f)}.

Proof. We will define, by well-founded induction on ι using �S , a set Aι of terms
as follows.

Assume Aκ has already been defined for all κ with ι �S κ, and let Xι

be the set of RC-sets I such that I(κ) = Aκ whenever ι �S κ. We observe
that Xι is a complete lattice with respect to ⊆: defining the bottom element
t∅ :=

⋃
{Aκ | ι �S κ} ∪MIN and the top element u∅ :=

⋃
{Aκ | ι �S κ} ∪

⋃
{

SN(κ) | ¬(ι �S κ)}, and letting tZ :=
⋃
Z, uZ :=

⋂
Z for non-empty Z, it is

easily checked that u and t give a greatest lower and least upper bound within
Xι respectively. Now for an RC-set I ∈ Xι, we let:

Fι(I) = {s ∈ I | s : κ 6≈S ι}
∪ {s ∈ T (F ,V) | s : κ ≈S ι ∧ s is terminating

under = ∪VI ∧ if s =∗ f s1 · · · sm for a symbol
f ∈ F then ∀i ∈ Acc(f) : si is I-computable]}

Clearly, Fι maps elements of Xι to Xι: terms of type κ 6≈S ι are left alone,
and Fι(I) satisfies the properties to be an RC-set. Moreover, Fι is monotone. To
see this, let I, J ∈ Xι such that I ⊆ J ; we must see that Fι(I) ⊆ Fι(J). To this
end, let s ∈ Fι(I); we will see that also s ∈ Fι(J). This is immediate if s : κ 6≈S ι,
as membership in Xι guarantees that Fι(I)(κ) = I(κ) ⊆ J(κ) = Fι(J)(κ). So
assume s : κ ≈S ι. We must see two things:

– s is terminating under = ∪VJ . We show that = ∪VJ ⊆ = ∪VI ; as s is
terminating in the latter, the requirement follows. Clearly = ⊆ = ∪VI , so
assume sVJ s

′. Then s = f t1 · · · tm and s′ = ti u1 · · ·un for i ∈ Acc(f) and
J-computable u1, . . . , un. We can write ti : σ1 → . . . → σn → κ and since
i ∈ Acc(f) we have ι �S κ and ι �S− σj for each j. By Lemma 73 then each
uj is also I-computable, so also sVI s1.

– If s =∗ f s1 · · · sm for some symbol f then for all i ∈ Acc(f): si is J-
computable. But this is obvious: as s ∈ Fι(I), we know that such si are
I-computable, and since ι �S+ σi for i ∈ Acc(f), Lemma 73 provides J-
computability.

Thus, F is a monotone function on a complete lattice; by Tarski’s fixpoint theorem
there is a fixpoint, so an RC-set I such that for all sorts κ:

– if ι �S κ then I(κ) = Aκ;
– if ι ≈S κ then I(κ) = {s ∈ T (F ,V) | s : κ∧ s is terminating under = ∪VI ∧

if s =∗ f s1 · · · sm for a symbol f then ∀i ∈ Acc(f) : si is I-computable}

We define Aκ := I(κ) for all κ ≈S ι.
Now we let C :=

⋃
ι∈S Aι. Clearly, C satisfies the given requirement. ut

34 Carsten Fuhs and Cynthia Kop

Thm. 74 easily gives the proof of Thm. 13 in the text:

Proof (Proof of Thm. 13). Thm. 13 follows by taking ⇒R for = (which satisfies
the requirements by Lemma 68) and taking for each Acc(f) the maximum set
{i | 1 ≤ i ≤ m ∧ ι �S+ σi}. ut

A.2 Additional properties of computable terms

For reasoning about computable terms (as we will do when defining static DPs
and reasoning about computable chains), there are a number of properties besides
those in Lemma 71 that will prove very useful to have. In the following, we fix
the RC-set C as obtained from Thm. 74.

Lemma 75. If s is C-computable and s = t, then t is also C-computable.

(This actually holds for any RC-set, but we will only use it for C.)

Proof. By induction on the type of s. If s has base type, then C-computability
implies that s ∈ C, and because C is an RC-set all reducts of s are also in C.
Otherwise, s : σ → τ and computability of s implies computability of s u for
all computable u : σ. By the induction hypothesis, the fact that s u = t u by
monotonicity of = implies that t u is computable for all computable u, and
therefore by definition t is computable. ut

Thus, computability is preserved under =; the following result shows that it
is also preserved under VC .

Lemma 76. If s is C-computable and sVC t, then t is also C-computable.

Proof. If sVC t, then both terms have base type, so C-computability is simply
membership in C. We have s = f s1 · · · sm and t = si t1 · · · tn with each tj C-
computable. Since, by definition of C, also si is C-computable, C-computability
of t immediately follows. ut

Finally, we will see that C-computability is also preserved under �acc. For
this, we first make a more general statement, which will also handle variables
below binders (which are freed in subterms).

Lemma 77. Let s : σ1 → . . . → σm → ι and t : τ1 → . . . → τn → κ be meta-
terms, such that s�acc t. Let γ be a substitution with FMV (s) ⊆ dom(γ) ⊆M.

Let u1 : τ1, . . . , un : τn be C-computable terms, and δ a substitution with
dom(δ) ⊆ V such that each δ(x) is C-computable, and for t′ := (t(γ ∪ δ)) u1 · · ·un
there is no overlap between FV (t′) and the variables bound in s.

Then there exist a C-computable substitution ξ with dom(ξ) ⊆ V and C-
computable terms v1 : σ1, . . . , vm : σm such that we have (s(γ ∪ ξ)) v1 · · · vm (VC

∪ ⇒headβ)∗ t′.

A static higher-order dependency pair framework (extended version) 35

Proof. We prove the lemma by induction on the derivation of s�acc t; in this,
we can assume (by α-conversion) that variables that occur bound in s do not
also occur free or occur in γ.

If s = t, then we are done choosing ξ and v equal to δ and u.
If s = λx.s′ with x : σ1 and s′ �acc t, then by the assumption based on

α-conversion above, x does not occur free in s or in the range of γ. By the
induction hypothesis, there exist a computable substitution ξ′ and computable
terms v2, . . . , vm such that (s′(γ∪ξ′)) v2 · · · vm (VC ∪ ⇒headβ)∗ t′. We can safely
assume that x does not occur in the range of ξ′, since x does not occur in t′

either (if x does occur, we can replace it by a different variable). Therefore, if
we define ξ := [x := x] ∪ [y := ξ′(y) | y ∈ V ∧ y 6= x], we have s′(γ ∪ ξ′) =
(s′(γ ∪ ξ))[x := ξ′(x)]. Choosing v1 := ξ′(x), we get (s(γ ∪ ξ)) v1 · · · vm ⇒headβ

(s′(γ ∪ ξ′)) v2 · · · vm (VC ∪ ⇒headβ)∗ t′.
If s = x s1 · · · sj for si : π1 → . . . → πn′ → κ′ with ι �S κ′ and x /∈ FV (si)

and si �acc t, then the induction hypothesis provides C-computable terms
w1 : π1, . . . , wn′ : πn′ and a substitution ξ′ such that (si(γ ∪ ξ′)) w1 · · ·wn′ (VC

∪ ⇒headβ)∗ t′. Since x /∈ FV (si) by definition of �acc, we can safely assume that
x /∈ dom(ξ′). Now recall that by assumption F contains infinitely many construct-
ors of all types; let c : κ→ ι be a symbol that does not occur anywhere in R. We
can safely assume that Acc(c) = {1}. Then w := λy1 . . . yjz1 . . . zm.c (yi w1 · · ·wn′)
is C-computable. Now let ξ := [x := w] ∪ [y := ξ′(y) | y ∈ V ∧ y 6= x], and
let v1, . . . , vm be variables (which are C-computable by Lemma 71(1)). Then
(s(γ ∪ ξ)) v1 · · · vm ⇒j+m

headβ si(γ ∪ ξ′) w1 · · ·w′n (VC ∪ ⇒headβ)∗ t′.
Otherwise, s = f s1 · · · sn and si �acc t for some i ∈ Acc(f); by the induction

hypothesis there exist ξ and C-computable terms w1, . . . , wn′ such that s′ :=
(si(γ ∪ ξ)) w1 · · ·wn′ (VC ∪ ⇒headβ)∗t′. We have (s(γ ∪ ξ)) v1 · · · vm VC s′ for
any v (e.g., variables). ut

From this we conclude:

Lemma 78. Let s be a closed meta-term, γ a substitution with FMV (s) ⊆
dom(γ) ⊆ M and t such that s �acc t and sγ is C-computable. Then for all
substitutions δ mapping FV (t) to computable terms: t(γ ∪ δ) is C-computable.

Proof. t(γ ∪ δ) is C-computable if (t(γ ∪ δ)) u1 · · ·un is C-computable for all
computable u1, . . . , un. By Lemma 77 and the fact that s is closed, there exist
C-computable terms v1, . . . , vm such that (sγ) v1 · · · vm (VC ∪ ⇒headβ)∗ (t(γ ∪
δ)) u1 · · ·un. But sγ is C-computable, and therefore so is (sγ) v1 · · · vm. Since VC

and ⇒headβ are both computability-preserving by Lemmas 76 and 75 respectively
(as ⇒headβ is included in =) we are done. ut

Lemma 79. A neutral term is C-computable if and only if all its =-reducts are
C-computable.

Proof. That C-computability of a term implies C-computability of its reducts is
given by Lemma 75. For the other direction, let s : σ1 → . . .→ σm → ι be neutral
and suppose that all its reducts are C-computable. To prove that also s is C-
computable, we must see that for all C-computable terms t1 : σ1, . . . , tm : σm the

36 Carsten Fuhs and Cynthia Kop

term u := s t1 · · · tm is in C. We prove this by induction on (t1, . . . , tm) ordered
by =prod. Clearly, since s does not have the form f s1 · · · sn with Acc(f) 6= ∅, nor
does u, so u ∈ C if all its reducts are in C. But since s is neutral, all reducts of
u either have the form s′ t1 · · · tm with s = s′ – which is in C because all ti are
C-computable and s′ is computable as a reduct of s – or the form s t1 · · · t′i · · · tm
with ti = t′i – which is in C by the induction hypothesis. ut

Using the ⇒headβ-restrictions on =, we obtain the following result:

Lemma 80. Let x : σ ∈ V. A term λx.s ∈ T (F ,V) is C-computable if and only
if s[x := t] is computable for all C-computable t : σ.

Proof. If λx.s is C-computable, then by definition so is (λx.s) t for all C-
computable t; by Lemma 75 and inclusion of ⇒headβ in =, this implies C-
computability of the reducts s[x := t].

For the other direction, suppose s[x := t] is C-computable for all C-computable
t : σ. To obtain C-computability of λx.s, we must see that (λx.s) t is C-
computable for all C-computable t : σ. As (λx.s) t is neutral, this holds if
all its =-reducts u are C-computable by Lemma 79, and certainly if all its =+-
reducts are C-computable, which we prove by induction on u oriented with =. But
by definition of = (and induction on the derivation (λx.s) t =+ u) there exists
a term v such that s[x := t] =∗ v and u⇒∗headβ v. If u = v, we thus obtain the

required property, and if u⇒+
headβ v, then u is neutral and hence is C-computable

if all its =-reducts are, which is the case by the induction hypothesis. ut

B Static dependency pairs

In this appendix, we will first prove the main result from § 4: Thm. 37. Then, we
will prove the “inverse” result, Thm. 34. Finally, to provide a greater context
to the current work, we will discuss how the definitions in [34,46] relate to the
definitions here.

B.1 Static dependency pairs: the main result

To start, we prove Thm. 37, which states that a properly applied, accessible
function passing AFSM with rules R is terminating if it admits no R-computable
formative (SDP(R),R)-dependency chains. Thm. 32, which states that an AFSM
is terminating if it admits no (SDP(R),R)-dependency chains, follows as a
corollary.

In the following, let C = CR be a computability predicate following Def. 74
for = the rewrite relation ⇒R. We will briefly call a term “computable” if it is
C-computable.

Henceforth, we will assume without explicitly stating it that (F ,R) is properly
applied, so we can speak of minar(f) without disclaimers; we let minar(f) = 0 for
f /∈ D. We start with an observation on the consequences of accessible function
passingness:

A static higher-order dependency pair framework (extended version) 37

Lemma 81. Let ` be a closed pattern, Z a meta-variable and x1, . . . , xk variables
such that `�acc Z〈x1, . . . , xk〉. If `γ is a computable term, then so is γ(Z).

Proof. Since ` is closed, `(γ ∪ δ) = `γ is computable for all computable substitu-
tions δ whose domain is contained in V . By Lemma 78, we thus have computability
of Z〈x1, . . . , xk〉(γ ∪ δ) for all such δ. Since `γ is a term, Z ∈ dom(γ) so we can
either write γ(Z) = λx1 . . . xk.s or γ(Z) = λx1 . . . xi.s

′ with i < k and s′ not an
abstraction.

In the first case, if we let δ := [x1 := u1, . . . , xk := uk] for computable terms
u1, . . . , uk we have computability of Z〈x1, . . . , xk〉(γ ∪ δ) = s[x1 := u1, . . . , xk :=
uk]. Since this holds for all computable u1, . . . , uk, Lemma 80 provides computab-
ility of λx1 . . . xk.s = γ(Z). In the second case, the same substitution δ provides
computability of s′[x1 := u1, . . . , xi := ui] ui+1 · · ·un which (since this holds for
any ui+1, . . . , un) implies computability of s′[x1 := u1, . . . , xi := ui], and this in
turn implies computability of γ(Z) as before. ut

Thus, computability of the left-hand side of an instantiated DP implies
computability of all instantiated meta-variables. To transfer this property to the
right-hand side of the instantiated pair, we have a closer look at the relation �A.

In the following, we say that a meta-term s respects minar if s�β f t1 · · · tn
implies n ≥ minar(f).

Lemma 82. Let s be a meta-term that respects minar and γ a substitution on a
finite domain with FMV (s) ⊆ dom(γ) ⊆M, such that all γ(Z) are computable. If
there exists a computable substitution δ on a variable domain (that is, dom(γ) ⊆ V)
such that s(γ ∪ δ) is not computable, then there exists a pair t (A) ∈ cand(s) such
that all of the following hold:

– there is a computable substitution δ on variable domain such that t(γ ∪ δ) is
not computable;

– γ respects A;
– for all t′ 6= t such that t�B t

′ holds for some B respected by γ: t′(γ ∪ δ) is
computable for all computable substitutions δ on variable domain.

Proof. Let S be the set of all pairs t (A) such that (a) s�A t, (b) there exists a
computable substitution δ on variable domain such that t(γ∪δ) is not computable,
and (c) γ respects A. This set is non-empty, as it contains {s (∅)}. As the relations
�β and ⊇ are both well-founded quasi-orderings (the latter on finite sets), we can
select a pair t (A) that is, in a sense, minimal in S: for all t′ (A′) ∈ S: if t�β t

′

then t = t′ and not A′ (A (it is possible that A and A′ are incomparable). We
observe that for all t′, B such that t′ 6= t and t�B t

′ and γ respects B we cannot
have t′ (A∪B) ∈ S by minimality of t (A), so since s�A∪B t�A∪B t

′ and clearly
γ respects A ∪B, it can only follow that requirement (b) is not satisfied for t′.

Now suppose that t has the form f t1 · · · tn. Then by the above reasoning, all
ti(γ ∪ δ) are computable, and by definition of “s respects minar” we know that
n ≥ k := minar(f). Thus, (f t1 · · · tk)(γ ∪ δ) is not computable (since otherwise
t(γ ∪ δ) would be computable), and by definition of S as a set of BRSMTs of s

38 Carsten Fuhs and Cynthia Kop

(and minimality of A) we have f t1 · · · tk (A) ∈ cand(s). By minimality of t in S,
we see that f t1 · · · tk (A) satisfies all the requirements for the lemma to hold.

Thus, if t has the form f t1 · · · tn, we are done; towards a contradiction we
will show that if t does not have this form, then t (A) is not minimal.

Consider the form of t:

– t = λx.t′: by Lemma 80, non-computability of t(γ∪δ) implies non-computabi-
lity of t′(γ ∪ δ)[x := u] for some computable u. Since, by α-conversion, we
can assume that x does not occur in domain or range of γ or δ, we have
non-computability of t′(γ ∪ δ ∪ [x := u]), and δ ∪ [x := u] is a computable
substitution on variable domain while t�A t

′.
– t = x t1 · · · tn with x ∈ V: whether x ∈ dom(δ) or not, δ(x) is computable

(either by the assumption on δ or by Lemma 71(1)). Therefore, the only way
for t(γ ∪ δ) to not be computable is if some si(γ ∪ δ) is not computable, and
s�A si.

– t = c t1 · · · tn with c ∈ F \ D: t(γ ∪ δ) is non-computable only if there exist
computable terms un+1, . . . , um such that the term c t1 · · · tn un+1 · · ·um
of base type is not in C. This can only be the case if it is non-terminating
or some ti(γ ∪ δ) is not computable. Since head-reductions are impossible,
non-termination implies non-termination of some ti(γ ∪ δ) or uj , which
by Lemma 71(2) implies non-computability; as all uj are computable by
assumption, this means some ti(γ ∪ δ) is non-computable. We are done
because t�A ti.

– t = f t1 · · · tn with f ∈ D but n < arity(f): same as above, because terms of
this form cannot be reduced at the head (or the root).

– t = (λx.u) t0 · · · tn: t(γ ∪ δ) is neutral, so by Lemma 79 non-computability
implies the non-computability of a reduct. If the reduct u(γ ∪ δ)[x := t0(γ ∪
δ)] (t1(γ∪δ)) · · · (tn(γ∪δ)) = (u[x := t0] t1 · · · tn)(γ∪δ) is non-computable, we
are done because t�A u[x := t0] t1 · · · tn. Otherwise, note that all many-step
reducts of t(γ ∪ δ) are either also a reduct of (u[x := t0] t1 · · · tn)(γ ∪ δ) – and
therefore computable – or have the form (λx.u′) t′0 · · · t′n with u(γ ∪ δ)⇒∗R u′

and each ti(γ ∪ δ)⇒∗R t′i. Thus, at least one of u(γ ∪ δ) or ti(γ ∪ δ) has to be
non-terminating. But if u(γ∪δ) is non-terminating, then so is u[x := u′](γ∪δ),
contradicting computability of (u[x := t0] t1 · · · tn)(γ ∪ δ). The same holds if
ti(γ∪ δ) is non-terminating for some i ≥ 1. Thus, t0(γ∪ δ) is non-terminating
and therefore non-computable, and we indeed have t�A t0.

– t = Z〈s1, . . . , sk〉 t1 · · · tn: we either have γ(Z) = λx1 . . . xk.u or γ(Z) =
λx1 . . . xi.u

′ with i < k and u′ not an abstraction; in the latter case let u :=
λxi+1 . . . xk.u

′ xi+1 · · ·xk. Either way, t(γ ∪ δ) = u[x1 := s1(γ ∪ δ), . . . , xk :=
sk(γ ∪ δ)] (t1(γ ∪ δ)) · · · (tn(γ ∪ δ)).
For this term to be non-computable, either some ti(γ ∪ δ) should be non-
computable, or u[x1 := s1(γ ∪ δ), . . . , xk := sk(γ ∪ δ)]. The former case
immediately contradicts minimality, since t �∅ ti, so we assume the latter.
However, if all si(γ∪δ) are computable, then so is u[x1 := s1(γ∪δ), . . . , xk :=
sk(γ ∪ δ)]:
• if γ(Z) = λx1 . . . xk.u then this holds by computability of all γ(Z) and

Lemma 80;

A static higher-order dependency pair framework (extended version) 39

• if γ(Z) = λx1 . . . xi.u
′ with i < k and u = u′ xi+1 · · ·xk, then com-

putability of γ(Z) and Lemma 80 provide computability of u′[x1 :=
q1, . . . , xi := qi], which by definition of computability for higher-order
terms implies computability for u′[x1 := q1, . . . , xi := qi] qi+1 · · · qn =
u[x1 := q1, . . . , xn := qn].

Thus, some si(γ ∪ δ) must be non-computable, and since substituting an
unused variable has no effect, this must be the case for some i with xi ∈ FV (u).
So in this case, γ respects B := A ∪ {Z : i} and we obtain s�B t�B si. ut

Next, let us consider formative reductions. We will prove that reductions
from a terminating term to some instance of a pattern may be assumed to be
formative.

Lemma 83. Let ` be a pattern and γ a substitution on domain FMV (`) such
that a meta-variable Z with arity(Z) = k is mapped to a term λx1 . . . xk.t. Let
s be a terminating term. If s ⇒∗R `γ, then there exists a substitution δ on the
same domain as γ such that each δ(Z)⇒∗R γ(Z) and s⇒∗R `δ by an `-formative
reduction.

Note that the restriction on γ is very light: every substitution γ on do-
main FMV (`) can be altered to map meta-variables with arity k to terms
with k abstracted variables: if γ(Z) = λx1 . . . xk.t with k = arity(Z) then let
γ′(Z) = γ(Z), and if γ(Z) = λx1 . . . xi.t with i < arity(Z) and t not an ab-
straction, then replace this by setting γ′(Z) := λx1 . . . xk.t xi+1 · · ·xk. Note that
Z〈x1, . . . , xk〉γ = Z〈x1, . . . , xk〉γ′. Therefore, we always have `γ = `γ′.

Proof. We prove the lemma by induction first on s ordered by ⇒R ∪�, second
on the length of the reduction s⇒∗R `γ. If ` is not a fully extended linear pattern,
then we are done choosing δ := γ. Otherwise, we consider four cases:

1. ` is a meta-variable application Z〈x1, . . . , xk〉;
2. ` is not a meta-variable application, and the reduction s ⇒∗R `γ does not

contain any headmost steps;
3. ` is not a meta-variable application, and the reduction s ⇒∗R `γ contains

headmost steps, the first of which is a ⇒β step;
4. ` is not a meta-variable application, and the reduction s ⇒∗R `γ contains

headmost steps, the first of which is not a ⇒β step.

In the first case, if ` is a meta-variable application Z〈x1, . . . , xk〉, then by
α-conversion we may write γ = [Z := λx1 . . . xk.t] with `γ = t. Let δ be
[Z := λx1 . . . xk.s]. Then δ has the same domain as γ, and indeed δ(Z) =
λx1 . . . xk.s⇒∗R λx1 . . . xk.(`γ) = γ(Z).

In the second case, a reduction without any headmost steps, note that s has
the same outer shape as `: either (a) s = λx.s′ and ` = λx.`′, or (b) s = a s1 · · · sn
and ` = a `1 · · · `n for some a ∈ V ∪ F (since ` is a pattern, a cannot be a meta-
variable application or abstraction if n > 0). In case (a), we obtain δ such that
s′ ⇒∗R `′δ by an `′-formative reduction and δ ⇒∗R γ by the induction hypothesis
(as sub-meta-terms of linear patterns are still linear patterns). In case (b), we let

40 Carsten Fuhs and Cynthia Kop

γi be the restriction of γ to FMV (`i) for 1 ≤ i ≤ n; by linearity of `, all γi have
non-overlapping domains and γ = γ1∪· · ·∪γn. The induction hypothesis provides
δ1, . . . , δn on the same domains such that each si ⇒∗R `iδi by an `i-formative
reduction and δi ⇒∗R γi; we are done choosing δ := δ1 ∪ · · · ∪ δn.

In the third case, if the first headmost step is a β-step, note that s must
have the form (λx.t) u q1 · · · qn, and moreover s ⇒∗R (λx.t′) u′ q′1 · · · q′n ⇒β

t′[x := u′] q′1 · · · q′n ⇒∗R `γ by steps in the respective subterms. But then also
s⇒β t[x := u] q1 · · · qn ⇒∗R t′[x := u′] q′1 · · · q′n ⇒∗R `γ, and we can get δ and an
`-formative reduction for t[x := u] q1 · · · qn ⇒∗R `δ by the induction hypothesis.

In the last case, if the first headmost step is not a β-step, then we can write
s = f s1 · · · sn ⇒∗R f s′1 · · · s′n = (`′η) s′i+1 · · · s′n ⇒R (rη) s′i+1 · · · s′n ⇒∗R `γ
for some f ∈ D, terms sj ⇒∗R s′j for 1 ≤ j ≤ n, rule `′ ⇒ r and sub-
stitution η on domain FMV (`′). But then `′ Zi+1 · · ·Zn ⇒ r Zi+1 · · ·Zn ∈
Rext, and for η′ := η ∪ [Zi+1 := s′i+1, . . . , Zn := s′n] we both have s ⇒∗R
(`′ Zi+1 · · ·Zn)η′ without any headmost steps, and (r Zi+1 · · ·Zn)η′ ⇒∗R `γ.
By the second induction hypothesis, there exists a substitution ξ such that
s ⇒∗R (`′ Zi+1 · · ·Zn)ξ by a (`′ Zi+1 · · ·Zn)-formative reduction and ξ ⇒∗R η′.
This gives s ⇒+

R (r Zi+1 · · ·Zn)ξ ⇒∗R (r Zi+1 · · ·Zn)η′ ⇒∗R `γ, so by the first
induction hypothesis we obtain δ such that (r Zi+1 · · ·Zn)ξ ⇒∗R `δ by an `-
formative reduction, and δ ⇒∗R γ. ut

Essentially, Lemma 83 states that we can postpone reductions that are not
needed to obtain an instance of the given pattern. This is not overly surprising,
but will help us eliminate some proof obligations later in the termination proof.

From this, we have the main result on static dependency chains.

Theorem 37. Let (F ,R) be a properly applied, accessible function passing
AFSM. If (F ,R) is non-terminating, then there is an infinite R-computable
formative (SDP(R),R)-dependency chain.

Proof. In the following, let a minimal non-computable term be a term s :=
f s1 · · · sk with k = minar(f), such that f ∈ D, and s is not computable but all
si are C-computable. We say that s is MNC.

We first observe that if ⇒R is non-terminating, then there exists a MNC
term. After all, if ⇒R is non-terminating, then there is a non-terminating term
s, which (by Lemma 71(2)) is also non-computable. Let t (A) be the element of
cand(s) that is given by Lemma 82 for γ = δ = []. Then A = ∅ and t has the
form f t1 · · · tk with k = minar(f), and there exists a computable substitution δ
such that tδ is not computable but all tiδ are.

Thus, assuming ⇒R is non-terminating, we can select a MNC term t−1.
Now for i ∈ N, let a MNC term ti−1 = f q1 · · · qk be given. By definition of

computability, there are computable qk+1, . . . , qm such that f q1 · · · qk has base
type and is not computable. Since all qi are computable this implies that f q1 · · · qk
is non-terminating, and since they are terminating, there is eventually a reduction
at the head: there exist a rule f `1 · · · `k ⇒ r and a substitution γ such that
f q1 · · · qm ⇒∗R,in f q′1 · · · q′m (where ⇒∗R,in indicates a reduction in the argument
terms qj) = f (`1γ) · · · (`kγ) q′k+1 · · · q′m ⇒R (rγ) q′k+1 · · · q′m, which latter term

A static higher-order dependency pair framework (extended version) 41

is still non-terminating. But then also (rγ) qk+1 · · · qm is non-terminating (as it
reduces to the term above), so rγ is not computable.

From the above we conclude: ti−1 ⇒∗R,in (f `1 · · · `k)γ ⇒R rγ, and rγ is not
computable. By Lemma 83, we can safely assume that the reductions qj ⇒∗R `jγ
are `j-formative if f `1 · · · `k is a fully extended linear pattern; and since f `1 · · · `k
is closed we can safely assume that dom(γ) = FMV (f `1 · · · `k).

Let si := f] (`1γ) · · · (`kγ), and note that all `jγ are computable by Lemma 75.
We observe that for all Z occurring in r we have that γ(Z) is C-computable
by a combination of accessible function passingness, computability of `jγ and
Lemma 81. As rγ is non-computable, Lemma 82 provides an element t (A) of
cand(r) with pleasant minimality properties and a computable substitution δ
on domain FV (t) such that γ respects A and t(γ ∪ δ) is not computable. For
FV (t) = {x1, . . . , xn}, let Z1, . . . , Zn be fresh meta-variables; then p := t[x1 :=
Z1, . . . , xn := Zn] = metafy(t), and pη = tδ for η the substitution mapping
X ∈ FMV (`) to γ(`) and each Zj to δ(xj).

Set ρi := `] V p] (A) and ti := p]η. Then ti is MNC, because the meta-term t
supplied by Lemma 82 has the form g u1 · · ·um with m = arity(g) and uj(γ∪δ) is
C-computable for each j because t�A uj . Thus, we can continue the construction.

The chain [(ρ0, s0, t0), (ρ1, s1, t1), . . .] thus constructed is an infinite formative
(SDP(R),R)-dependency chain. That it is a (SDP(R),R)-dependency chain is
obvious because each ρi ∈ SDP(R) (since t (A) ∈ cand(r)), because γ respects A
and η corresponds with γ on all meta-variables that take arguments, and because
FV (p) = ∅ and dom(η) = FMV (`)∪ {Z1, . . . , Zn} = FMV (`)∪FMV (p). That it
is a formative chain follows by the initial selection of γ, as we assumed formative
reductions to each `jγ.

It is also a computable chain: clearly we have ti = pη in step i in the
construction above. Suppose p] �B v and η respects B, but (λy1 . . . yn.v)η is
not computable for FV (v) = {y1, . . . , yn} – so by Lemma 80, v(η ∪ ζ) is not
computable for some computable substitution ζ on domain FV (v). Since the
meta-variables Zj do not occur applied in p, we can safely assume that B contains
only conditions for the meta-variables in dom(γ). By renaming each Zj back to xj ,
we obtain that γ respects B and t�B v

′ with v = v′[x1 := Z1, . . . , xn := Zn]. But
then rγ�A∪B t�A∪B v

′ and γ respects A∪B and v′(γ∪ δ∪ ζ) is non-computable.
By minimality of the choice t (A), we have v′ = t, so v = p]. However, p]η has a
marked symbol g] as a head symbol, and thus cannot be reduced at the top; by
C-computability of its immediate subterms, it is computable. ut

We also prove the statement that U-computability implies minimality:

Lemma 84. Every U-computable (P,R)-dependency chain is minimal.

Proof. Let [(ρ0, s0, t0), (ρ1, s1, t1), . . .] be a U-computable (P,R)-chain and let
i ∈ N; we must prove that the strict subterms of ti are terminating under ⇒R.
By definition, since �∅ is a reflexive relation, ti is CU -computable where CU is
given by Thm. 13 for a relation ⇒U ⊇ ⇒R. By Lemma 71(2), ti is therefore
terminating under ⇒U , so certainly under ⇒R as well. The strict subterms of a
terminating term are all terminating. ut

42 Carsten Fuhs and Cynthia Kop

B.2 Static dependency pairs: the inverse result

In this section, we prove Thm. 34, which states that the existence of certain
kinds of dependency chains implies non-termination of the original AFSM. This
is not a true inverse of Thm. 37 or even Thm. 32: as observed in the text, there
are terminating AFSMs that do admit an infinite chain. It does, however, give
us a way to use the DP framework to prove non-termination in some cases.

We begin by exploring the connection between �β and reduction steps. Note
that this result is not limited to PA-AFP AFSMs, so in the following we do not
assume that the rules or dependency pairs involved satisfy arity restrictions.

Lemma 85. Let s, t be meta-terms and suppose s�A t for some set A of meta-
variable conditions. Then for any substitution γ that respects A and has a finite
domain with FMV (s) ⊆ dom(γ) ⊆M: sγ (I ∪ ⇒β)∗ tγ.

Proof. By induction on the definition of �A. Consider the last step in its deriva-
tion.

– If s = t then sγ = tγ.
– If s = λx.u and u�At, then by α-conversion we can assume that x /∈ FV (γ(Z))

for any Z ∈ FMV (s). Thus, sγ = λx.(uγ) I uγ (I ∪ ⇒β)∗ tγ by the
induction hypothesis.

– If s = (λx.u) s0 · · · sn and u[x := s0] s1 · · · sn �A t, then by α-conversion we
can safely assume that x is fresh w.r.t. γ as above; thus, sγ = (λx.(uγ)) (s0γ) · · ·
(snγ) ⇒β (uγ[x := s0γ]) (s1γ) · · · (snγ) = (u[x := s0] s1 · · · sn)γ, which re-
duces to tγ by the induction hypothesis.

– If s = u s1 · · · sn for u an abstraction, variable, function symbol or meta-
variable application, and si �A t, then sγ = (uγ) (s1γ) · · · (snγ) I siγ (I
∪ ⇒β)∗ tγ by the induction hypothesis.

– If s = Z〈t1, . . . , tk〉 s1 · · · sn and ti �A t for some 1 ≤ i ≤ k with (Z : i) ∈ A,
then we can write γ(Z) = λx1 . . . xn.w (where n ≤ k), and sγ = w[x1 :=
t1γ, . . . , xn := tnγ] (tn+1γ) · · · (tkγ). Since γ respects A, either xi occurs
in w or i > n; therefore γ(Z) I tiγ. We again complete by the induction
hypothesis. ut

In fact, the text is ambiguous regarding the definition of SDP when an AFSM
is not properly applied, since minar(f) may not be uniquely defined. However,
the result holds for any choice of minar(f). In the following lemma, we only
use that the elements of SDP(R) are DPs f] `1 · · · `k V g] p1 · · · pi (A) where
f] `1 · · · `k ⇒ r is a rule and there exist pi+1 . . . pn such that r �A g p1 · · · pn.

Lemma 86. For `] V p] (A) ∈ SDP(R) such that FMV (p) ⊆ FMV (`), and
substitution γ on domain FMV (`) such that γ respects the meta-variable condi-
tions in A: both `γ and pγ are terms and `γ (⇒R ∪�)+ pγ.

Proof. By definition of SDP and the fact that no fresh meta-variables occur
on the right, there is a rule ` ⇒ r such that p (A) ∈ cand(r), so there are
r1, . . . , rn such that r�A p r1 · · · rn. Clearly, we have `γ ⇒R rγ by that rule, and
rγ (�∪ ⇒R)∗ (p r1 · · · rn)γ � pγ by Lemma 85 (using that I is a sub-relation
of �). We are done because ⇒β is included in ⇒R. ut

A static higher-order dependency pair framework (extended version) 43

This allows us to draw the required conclusion:

Theorem 34. For any AFSM (F ,R): if there is an infinite (SDP(R),R)-chain
[(ρ0, s0, t0), (ρ1, s1, t1), . . .] with all ρi conservative, then ⇒R is non-terminating.

Proof. Let s[i , t
[
i denote the terms si, ti with all] marks removed. An infinite

(SDP(R),R)-dependency chain that does not use any DPs where fresh meta-
variables are introduced on the right-hand side provides a sequence (si, ti) for
i ∈ N such that for all i, s[i (⇒R ∪�)+ t[i (by Lemma 86), and t[i ⇒∗R s[i+1. Thus,
we obtain an infinite ⇒R ∪� sequence, which provides an infinite ⇒R sequence
due to monotonicity of ⇒R. ut

B.3 Original static dependency pairs

Since the most recent work on static dependency pairs has been defined for a
polymorphic variation of the HRS formalism, it is not evident from sight how
our definitions relate. Here, we provide context by showing how the definitions
from [34,46] apply to the restriction of HRSs that can be translated to AFSMs.

It should be noted that HRSs, as translated to AFSMs, should be seen as
η-expanded rules; in practice, for `⇒ r we have that `I s or r I s implies that
either s is an abstraction, or s has base type. This definition implies that the
system is properly applied, but is much stronger. We will refer to this restriction
as fully applied.

Definition 87. An AFSM (F ,R) is plain function passing following [34] if:

– for all rules f `1 · · · `m ⇒ r and all Z ∈ FMV (r): if Z does not have
base type, then there are variables x1, . . . , xn and some i such that `i =
λx1 . . . xn.Z〈xj1 , . . . , xjk〉.

An AFSM (F ,R) is plain function passing following [46] if:

– for all rules f `1 · · · `m ⇒ r and all Z ∈ FMV (r): there are some variables
x1, . . . , xk and some i ≤ m such that `i�

[46]

safeZ〈x1, . . . , xk〉, where the relation
�

[46]

safe is given by:

• s�[46]

safe s,
• λx.t�[46]

safe s if t�[46]

safe s,
• x t1 · · · tn �

[46]

safe s if ti �
[46]

safe s for some i with x ∈ V \ FV (ti)
• f t1 · · · tn �

[46]

safe s if ti �
[46]

safe s for some ti of base type.7

In addition, in both cases right-hand sides of rules are assumed to be presented
in β-normal form and are fully applied.

7 The authors of [46] refer to such subterms as accessible. We do not use this terminology,
as it does not correspond to the accessibility notion in [8,9] which we follow here. In
particular, the accessibility notion we use considers the relation �S

+, which corresponds
to the positive/negative inductive types in [8,9]. This is not used in [46].

44 Carsten Fuhs and Cynthia Kop

The definitions of PFP in [34,46] also capture some non-pattern HRSs, but
these cannot be represented as AFSMs. Note that the key difference between �

[46]

safe

and � for patterns is that the former is not allowed to descend into a non-base
argument of a function symbol. The same difference applies when comparing �

[46]

safe

with �acc: �
[46]

safe also cannot descend into the accessible higher-order arguments.

Example 88. The rules from Ex. 6 are PFP following both definitions. The rules
from Ex. 17 are PFP following [46] but not following [34]. The rules from Ex. 8
are not PFP in either definition, since lim F �

[46]

safe F does not hold (although
they are AFP).

For a PFP AFSM, static dependency pairs are then defined as pairs `] V
f] p1 · · · pm. This allows for a very simple notion of chains, even closer to the one
in the first-order setting than our Def. 30.

Definition 89. A static dependency chain following [34,46] is an infinite se-
quence [(`0 V p0, γ0), (`1 V p1, γ1), . . .] where piγi ⇒∗R `i+1γi+1 for all i. It is
minimal if each piγi is terminating under ⇒R.

Both papers present a counterpart of Theorems 32 and 37 that roughly
translates to the following:

Theorem 90 ([34,46]). Let R be plain function passing following either defini-
tion in Def. 87. Let P = {`] V f] p1 · · · pm | ` ⇒ r ∈ R ∧ r � f p1 · · · pm ∧ f ∈
D ∧m = arity(f)}. If ⇒R is non-terminating, then there is an infinite minimal
static dependency chain with all `i V pi ∈ P.

Note that the chains are proved minimal, but not computable (which is a new
definition in the current paper).

However, there is no counterpart to Thm. 34: this result relies on the presence
of meta-variable conditions, which are not present in the static DPs from the
literature.

Note that �acc corresponds to �
[46]

safe (from Def. 87) if �S equates all sorts
(as then always Acc(f) = { the indices of all base type arguments of f}). Thus,
Def. 18 includes both notions from Def. 87.

C Dependency pair processors

In this appendix, we prove the soundness – and where applicable completeness –
of all DP processors defined in the text.

We first observe:

Lemma 91. If Proc maps every DP problem to a set of problems such that for
all (P ′,R′,m′, f ′) ∈ Proc(P,R,m, f) we have that P ′ ⊆ P, R′ ⊆ R, m′ � m
and f ′ = f , then Proc is complete.

A static higher-order dependency pair framework (extended version) 45

Proof. Proc(P,R,m, f) is never NO. Suppose Proc(P,R,m, f) contains an infinite
element (P ′,R′,m′, f ′); we must prove that then (P,R,m, f) is infinite as well.
This is certainly the case if ⇒R is non-terminating, so assume that ⇒R is
terminating. Then certainly ⇒R′ ⊆ ⇒R is terminating as well, so (P ′,R′,m′, f ′)
can be infinite only because there exists an infinite (P ′,R′)-chain that is U-
computable if m′ = computableU , minimal if m′ = minimal and formative if
f ′ = formative. By definition, this is also a (P,R)-dependency chain, which is
formative if f = f ′ = formative. Since ⇒R is terminating, this chain is also
minimal. If we have m = computableU , then also m′ = computableU (since
computableU is maximal under �) and the chain is indeed U-computable. ut

C.1 The dependency graph

The dependency graph processor lets us split a DP problem into multiple smaller
ones. To prove soundness of its main processor, we first prove a helper result.

Lemma 92. Let M = (P,R,m, f) and Gθ an approximation of its dependency
graph. Then for every infinite M-chain [(ρ0, s0, t0), (ρ1, s1, t1), . . .] there exist
n ∈ N and a cycle C in Gθ such that for all i > n: θ(ρi) ∈ C.

Proof. We claim (**): for all i ∈ N, there is an edge from θ(ρi) to θ(ρi+1). By
definition of approximation, the claim follows if DG has an edge from ρi to ρi+1.
But this is obvious: by definition of a chain, if [(ρ0, s0, t0), (ρ1, s1, t1), . . .] is a
dependency chain, then so is [(ρi, si, ti), (ρi+1, si+1, ti+1)].

Now, having (**), the chain traces an infinite path in Gθ. Let C be the set
of nodes that occur infinitely often on this path; then for every node d that is
not in C, there is an index nd after which θ(ρi) is never d anymore. Since Gθ is
a finite graph, we can take n := max({nd | d a node in Gθ ∧ d /∈ C}). Now for
every pair d, b ∈ C: because they occur infinitely often, there is some i > n with
θ(ρi) = d and there is j > i with θ(ρj) = b. Thus, by (**) there is a path in Gθ
from d to b. Similarly, there is a path from b to d. Hence, they are on a cycle. ut

Note that to find a chain with all θ(ρi) ∈ C, we do not need to modify the
original chain at all: the satisfying chain is a tail of the original chain. Hence,
the same flags apply to the resulting chain. This makes it very easy to prove
correctness of the main processor:

Theorem 45 (Dependency graph processor). The processor ProcGθ that
maps a DP problem M = (P,R,m, f) to {({ρ ∈ P | θ(ρ) ∈ Ci},R,m, f) | 1 ≤
i ≤ n} if Gθ is an approximation of the dependency graph of M and C1, . . . , Cn
are the (nodes of the) non-trivial strongly connected components (SCCs) of Gθ,
is both sound and complete.

Proof. Completeness follows by Lemma 91. Soundness follows because if (P,R,m,
f) admits an infinite chain, then by Lemma 92 there is a cycle C such that a tail
of this chain is mapped into C. Let C ′ be the strongly connected component in
which C lies, and P ′ = {ρ ∈ P | θ(ρ) ∈ C ′}. Then clearly the same tail lies in P ′,
giving an infinite (P ′,R,m, f)-chain, and (P ′,R,m, f) is one of the elements of
the set returned by the dependency graph processor. ut

46 Carsten Fuhs and Cynthia Kop

The dependency graph processor is essential to prove termination in our
framework because it is the only processor defined so far that can map a DP
problem to ∅.

C.2 Processors based on reduction triples

Theorem 49 (Basic reduction triple processor). Let M = (P1]P2,R,m,
f) be a DP problem. If (%,<,�) is a reduction triple such that

1. for all `⇒ r ∈ R, we have ` % r;
2. for all `V p (A) ∈ P1, we have ` � p;
3. for all `V p (A) ∈ P2, we have ` < p;

then the processor that maps M to {(P2,R,m, f)} is both sound and complete.

Proof. Completeness follows by Lemma 91. Soundness follows because every
infinite (P1]P2,R)-chain [(ρ0, s0, t0), (ρ1, s1, t1), . . .] with P1,P2,R satisfying the
given properties induces an infinite � ∪ < ∪ % sequence, and every occurrence of
a DP in P1 in the chain corresponds to a � step in the sequence. By compatibility
of the relations, well-foundedness guarantees that there can only be finitely many
such steps, so there exists some n such that [(ρn, sn, tn), (ρn+1, sn+1, tn+1), . . .]
is an infinite (P2,R)-chain.

To see that we indeed obtain the sequence, let i ∈ N. Denote ρi := `V p (A),
and let γ be a substitution on domain FMV (`)∪FMV (p) such that si = `γ and
ti = pγ. Meta-stability gives us that si = `γ (< ∪ �) pγ = ti. As ⇒R is included
in % by meta-stability and monotonicity, and because ti ⇒∗R si+1, we have
ti % si+1. Thus, si(< ∪ �)· % si+1. Moreover, a � step is used if ρi ∈ P1. ut

Now that we have seen a basic processor using reduction triples, soundness of
the base-type processor presented in the text follows easily.

Theorem 52 (Reduction triple processor). Let Bot be a set {⊥σ : σ |
σ a type} ⊆ F] of unused constructors, M = (P1] P2,R,m, f) a DP problem
and (%,<,�) a reduction triple such that: (a) for all ` ⇒ r ∈ R, we have
` % r; and (b) for all ` V p (A) ∈ P1] P2 with ` : σ1 → . . . → σm → ι and
p : τ1 → . . .→ τn → κ we have, for fresh meta-variables Z1 : σ1, . . . , Zm : σm:

– ` Z1 · · ·Zm � p ⊥τ1 · · · ⊥τn if `V p (A) ∈ P1

– ` Z1 · · ·Zm < p ⊥τ1 · · · ⊥τn if `V p (A) ∈ P2

Then the processor that maps M to {(P2,R,m, f)} is both sound and complete.

Proof. Completeness follows by Lemma 91. Soundness follows by soundness of
Thm. 49: let (%,<,�) be a reduction triple satisfying the requirements above,
and for R ∈ {<,�} define R′ as follows: for s : σ1 → . . . → σm → ι and
t : τ1 → . . . → τn → κ, let s R′ t if for all u1 : σ1, . . . , um : σm there exist
w1 : τ1, . . . , wn : τn such that s u1 · · ·um R t w1 · · ·wn. We claim that (%,<′,�′)
is a reduction triple satisfying the requirements of Thm. 49, which implies
soundness of the present processor.

A static higher-order dependency pair framework (extended version) 47

It is clear that <′ and �′ satisfy the requirements of Thm. 49: if ` V
p (A) ∈ P1, then for any u1, . . . , um we let w1 := ⊥τ1 , . . . , wn := ⊥τn and have
` u1 · · ·um � p w1 · · ·wn by meta-stability of �; the same holds for <. It remains
to be seen that �′ and <′ are both transitive and meta-stable, that <′ is reflexive
and that �′ is well-founded.

– Meta-stability: given that ` �′ p and γ is a substitution on domain FMV (`)∪
FMV (p), we must see that `γ �′ pγ (the case for <′ follows in the same way).
Let u1, . . . , um be arbitrary terms and δ := γ ∪ [Z1 := u1, . . . , Zm := um];
then (` Z1 · · ·Zm)δ � (p ⊥τ1 · · · ⊥τn)δ, so indeed `δ = `γ �′ pγ.

– Transitivity: if s � t � v then for all u there exist w such that s u � t w,
and for all w there exist q such that t w � v q; thus, also s u � v q. The
case for < is similar.

– Reflexivity of <′: always s <′ s since for all u1, . . . , um we have s u < s u.
– Well-foundedness of �′: suppose s1 �′ s2 �′ . . . and let u1 be a sequence of

variables; we find u2,u3, . . . such that s1 u1 �′ s2 u2 �′ . . . as in the case
for transitivity. ut

C.3 Rule removal without search for orderings

There is very little to prove: the importance is in the definition.

Theorem 58 (Formative rules processor). For a formative rules approxim-
ation FR, the processor ProcFR that maps a DP problem (P,R,m, formative)
to {(P,FR(P,R),m, formative)} is both sound and complete.

Proof. Completeness follows by Lemma 91. Soundness follows by definition of a
formative rules approximation (a formative infinite (P,R)-dependency chain can
be built using only rules in FR(P,R)). ut

The practical challenge lies in proving that a given formative rules approx-
imation really is one. The definition of a good approximation function is left to
future work.

C.4 Subterm criterion processors

Next, we move on to the subterm processors. We first present the basic one –
which differs little from its first-order counterpart, but is provided for context.

Theorem 61 (Subterm criterion processor). The processor Procsubcrit that
maps a DP problem (P1] P2,R,m, f) with m � minimal to {(P2,R,m, f)} if
a projection function ν exists such that ν(`) � ν(p) for all `V p (A) ∈ P1 and
ν(`) = ν(p) for all `V p (A) ∈ P2, is sound and complete.

Proof. Completeness follows by Lemma 91. Soundness follows because an infinite
(P,R,m, f)-chain with the properties above induces an infinite sequence ν(s0) �
ν(t0) ⇒∗R ν(s1) � ν(t1) ⇒∗R Since the chain is minimal (either because

48 Carsten Fuhs and Cynthia Kop

m = minimal, or by Lemma 84 if m = computableU), ν(p0) is terminating, and
therefore it is terminating under ⇒R ∪�. Thus, there is some index n such
that for all i ≥ n: ν(si) = ν(ti) = ν(si+1). But this can only be the case if
ν(`i) = ν(pi). But then the tail of the chain starting at position n does not use
any pair in P1, and is therefore an infinite (P2,R,m, f)-chain. ut

We now turn to the proof of the computable subterm criterion processor.
This proof is very similar to the one for the normal subterm criterion, but it
fundamentally uses the definition of a computable chain.

Theorem 63 (Computable subterm criterion processor). The processor
Procstatcrit that maps a DP problem (P1] P2,R, computableU , f) to {(P2,R,
computableU , f)} if a projection function ν exists such that ν(`) = ν(p) for all
`V p (A) ∈ P1 and ν(`) = ν(p) for all `V p (A) ∈ P2, is sound and complete.
Here, = is the relation on base-type terms with s = t if s 6= t and (a) s�acc t or (b)
a meta-variable Z exists with s�acc Z〈x1, . . . , xk〉 and t = Z〈t1, . . . , tk〉 s1 · · · sn.

Proof. Completeness follows by Lemma 91. Soundness follows because, for
C := CU the computability predicate corresponding to ⇒S , an infinite (P,R,
computableU , f)-chain induces an infinite VC ∪ ⇒R sequence starting in the C-
computable term ν(s1), with always si(VC ∪ ⇒R)∗ti if ρi ∈ P1 and ν(si) = ν(ti)
if ρi ∈ P2; like in the proof of the subterm criterion, this proves that the chain
has a tail that is a (P2,R, computableU , f)-chain because, by definition of C,
⇒R ∪VC is terminating on C-computable terms.

It remains to be seen that we indeed have ν(si) (VC ∪ ⇒R)+ν(ti) whenever
ρi ∈ P1. So suppose that ρ is a dependency pair ` V p (A) ∈ P1 such that
ν(`) = ν(p); we must see that ν(`γ) (VC ∪ ⇒β)+ν(pγ) for any substitution γ
on domain FMV (`) ∪ FMV (r) such that vγ is C-computable for all v,B such
that r �B v and γ respects B.

Write ` = f `1 · · · `k and p = g p1 · · · pn; then ν(`γ) = `ν(f)γ and ν(pγ) =
pν(g)γ. Since, by definition of a dependency pair, ` is closed, we also have
FV (`ν(f)) = ∅. Consider the two possible reasons why `ν(f) = pν(g).

– `ν(f) �acc pν(g): since both sides have base type by assumption and `ν(f) is
closed, by Lemma 77 also `ν(f)γ (VC ∪ ⇒β)∗pν(g)γ.

– `ν(f) �acc Z〈x1, . . . , xk〉 and pν(g) = Z〈u1, . . . , uk〉 v1 · · · vn: denote γ(Z) =
λx1 . . . xk.q and also γ(Z) ≈k λx1 . . . xk.q

′. Then we can write q =
λxk+1 . . . xi.q

′′ as well as q′ = q′′ xi+1 · · ·xk for some k ≤ i ≤ k. Moreover:

pν(g)γ = q′[x1 := u1γ, . . . , xk := ukγ] v1γ · · · vnγ

By definition of an U -computable chain, vjγ is computable for each 1 ≤ j ≤ n,
and ujγ is computable for each 1 ≤ j ≤ k such that xj ∈ FV (q′). Write
v′j := vjγ and let u′j := ujγ if xj ∈ FV (q′), otherwise u′j := a fresh variable;
then all u′j and v′j are computable, and still:

pν(g)γ
= q′[x1 := u′1, . . . , xk := u′k] v′1 · · · v′n
= q′′[x1 := u′1, . . . , xi := u′i] u

′
i+1 · · ·u′k′ v′1 · · · v′n

A static higher-order dependency pair framework (extended version) 49

On the other hand, by Lemma 77 and the observation that FV (`ν(f)) = ∅,
we have `ν(f)γ (VC ∪ ⇒β)+ q[x1 := u′1, . . . , xk := u′k] u′k+1 · · ·u′k v′1 · · · v′n,
and as q = λxk+1 . . . xi.q

′′ this term β-reduces to q′′[x1 := u′1, . . . , xi :=
u′i] u

′
i+1 · · ·u′k′ v′1 · · · v′n = pν(g)γ. ut

C.5 Non-termination

Soundness and completeness of the non-termination processor in Thm. 65 are
both direct consequences of Def. 40 and Def. 41.

D Experimental results

Finally, while the main paper focuses on a theoretical exposition, we here present
an experimental evaluation of the results in this paper. The work has been
implemented in the second author’s termination tool WANDA, using higher-order
polynomial interpretations [15] and a recursive path ordering [29, Chapter 5] for
reduction triples. Both methods rely on an encoding of underlying constraints
into SAT. The search for a sort ordering, and a projection function for the
subterm criterion, is also delegated to SAT. The non-termination processor has
not been implemented (WANDA performs some loop analysis, but outside the
DP framework; this is a planned future improvement), and the subterm criterion
processor has been merged with the computable subterm criterion processor.

In addition to the results in this paper, WANDA includes a search for monotonic
termination orderings outside the DP framework (using successive rule removal),
a dynamic DP framework (following [31]), and a mechanism [14] within both
DP frameworks to delegate some first-order parts of the AFSM to a first-order
termination tool (here we use AProVE [19]).

We have evaluated the power of our techniques on the Termination Problems
Database [49], version 10.5. Of the 198 benchmarks in the category Higher Order
Union Beta, 153 are accessible function passing. Comparing the power of static
DPs versus dynamic DPs or no DP framework gives the following results (where
Time is the average runtime on success in seconds):

Technique Yes Time
Only rule removal 92 0.36
Static DPs with techniques from this paper 124 0.07
Dynamic DPs with techniques from this paper 132 0.53
Static DPs with delegation to a first-order prover 129 0.58
Dynamic DPs with delegation to a first-order prover 137 1.01
Static and dynamic DPs with delegation to a first-order prover 150 0.73
Non-terminating? 16 0.66

While static DPs have a slightly lower success rate than dynamic DPs, their
evaluation is much faster, since they allow for greater modularity: the dynamic
setting includes dependency pairs where the right-hand does not have a (marked)
defined symbol at the head (e.g., map F (cons H T) V F H), which make both

50 Carsten Fuhs and Cynthia Kop

the subterm criterion processor and the dependency graph processor harder to
apply. The combination of static and dynamic DPs performs substantially better
than either style alone: although the gains can be seen as modest if the size of
the data set is not taken into account (153 versus 166 YES+NO, giving an 8%
increase), the numbers indicate a 29% decrease in failure rate (from 45 to 32).

We have also compared the individual techniques in this paper by disabling
them from the second test above. This gives the table below:

Disabled Yes Time
Formative rules 124 0.06
Usable rules 124 0.09
Subterm criterion 121 0.15
Graph 121 0.33
Reduction triples 92 0.01
Nothing 124 0.06

Note that none of the techniques individually give
much power except for reduction triples: where
one method is disabled, another can typically pick
up the slack. If all processors except reduction
triples are disabled, only 105 benchmarks are
proved. Most processors do individually give a
significant speedup. Only formative rules does not;
this processor is useful in the dynamic setting,
but does not appear to be so here.

Evaluation pages for these experiments are available at:

https://www.cs.ru.nl/~cynthiakop/experiments/esop2019/

