We consider the system 515. Alphabet: cons : [a * alist] --> alist map : [a -> a * alist] --> alist nil : [] --> alist Rules: map(/\x.X(x), nil) => nil map(/\x.X(x), cons(Y, Z)) => cons(X(Y), map(/\y.X(y), Z)) map(/\x.X(x), map(/\y.Y(y), Z)) => map(/\z.X(Y(z)), Z) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): map(/\x.X(x), nil) >? nil map(/\x.X(x), cons(Y, Z)) >? cons(X(Y), map(/\y.X(y), Z)) map(/\x.X(x), map(/\y.Y(y), Z)) >? map(/\z.X(Y(z)), Z) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: cons = \y0y1.3 + y0 + y1 map = \G0y1.3 + 3y1 + 2G0(y1) + y1G0(y1) nil = 0 Using this interpretation, the requirements translate to: [[map(/\x._x0(x), nil)]] = 3 + 2F0(0) > 0 = [[nil]] [[map(/\x._x0(x), cons(_x1, _x2))]] = 12 + 3x1 + 3x2 + 5F0(3 + x1 + x2) + x1F0(3 + x1 + x2) + x2F0(3 + x1 + x2) > 6 + 3x2 + F0(x1) + 2F0(x2) + x2F0(x2) = [[cons(_x0(_x1), map(/\x._x0(x), _x2))]] [[map(/\x._x0(x), map(/\y._x1(y), _x2))]] = 12 + 9x2 + 2F0(3 + 3x2 + 2F1(x2) + x2F1(x2))F1(x2) + 3x2F0(3 + 3x2 + 2F1(x2) + x2F1(x2)) + 3x2F1(x2) + 5F0(3 + 3x2 + 2F1(x2) + x2F1(x2)) + 6F1(x2) + x2F0(3 + 3x2 + 2F1(x2) + x2F1(x2))F1(x2) > 3 + 3x2 + 2F0(F1(x2)) + x2F0(F1(x2)) = [[map(/\x._x0(_x1(x)), _x2)]] We can thus remove the following rules: map(/\x.X(x), nil) => nil map(/\x.X(x), cons(Y, Z)) => cons(X(Y), map(/\y.X(y), Z)) map(/\x.X(x), map(/\y.Y(y), Z)) => map(/\z.X(Y(z)), Z) All rules were succesfully removed. Thus, termination of the original system has been reduced to termination of the beta-rule, which is well-known to hold. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.