We consider the system 430. Alphabet: append : [natlist * natlist] --> natlist cons : [nat * natlist] --> natlist map : [nat -> nat * natlist] --> natlist nil : [] --> natlist Rules: append(nil, X) => X append(cons(X, Y), Z) => cons(X, append(Y, Z)) append(append(X, Y), Z) => append(X, append(Y, Z)) map(/\x.X(x), nil) => nil map(/\x.X(x), cons(Y, Z)) => cons(X(Y), map(/\y.X(y), Z)) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): append(nil, X) >? X append(cons(X, Y), Z) >? cons(X, append(Y, Z)) append(append(X, Y), Z) >? append(X, append(Y, Z)) map(/\x.X(x), nil) >? nil map(/\x.X(x), cons(Y, Z)) >? cons(X(Y), map(/\y.X(y), Z)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: append = \y0y1.y1 + 2y0 cons = \y0y1.1 + y0 + y1 map = \G0y1.3 + 3y1 + G0(0) + G0(y1) + 2y1G0(y1) nil = 0 Using this interpretation, the requirements translate to: [[append(nil, _x0)]] = x0 >= x0 = [[_x0]] [[append(cons(_x0, _x1), _x2)]] = 2 + x2 + 2x0 + 2x1 > 1 + x0 + x2 + 2x1 = [[cons(_x0, append(_x1, _x2))]] [[append(append(_x0, _x1), _x2)]] = x2 + 2x1 + 4x0 >= x2 + 2x0 + 2x1 = [[append(_x0, append(_x1, _x2))]] [[map(/\x._x0(x), nil)]] = 3 + 2F0(0) > 0 = [[nil]] [[map(/\x._x0(x), cons(_x1, _x2))]] = 6 + 3x1 + 3x2 + F0(0) + 2x1F0(1 + x1 + x2) + 2x2F0(1 + x1 + x2) + 3F0(1 + x1 + x2) > 4 + 3x2 + F0(0) + F0(x1) + F0(x2) + 2x2F0(x2) = [[cons(_x0(_x1), map(/\x._x0(x), _x2))]] We can thus remove the following rules: append(cons(X, Y), Z) => cons(X, append(Y, Z)) map(/\x.X(x), nil) => nil map(/\x.X(x), cons(Y, Z)) => cons(X(Y), map(/\y.X(y), Z)) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): append(nil, X) >? X append(append(X, Y), Z) >? append(X, append(Y, Z)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: append = \y0y1.3 + y1 + 3y0 nil = 3 Using this interpretation, the requirements translate to: [[append(nil, _x0)]] = 12 + x0 > x0 = [[_x0]] [[append(append(_x0, _x1), _x2)]] = 12 + x2 + 3x1 + 9x0 > 6 + x2 + 3x0 + 3x1 = [[append(_x0, append(_x1, _x2))]] We can thus remove the following rules: append(nil, X) => X append(append(X, Y), Z) => append(X, append(Y, Z)) All rules were succesfully removed. Thus, termination of the original system has been reduced to termination of the beta-rule, which is well-known to hold. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.