We consider the system 452. Alphabet: a : [] --> o f : [o -> o] --> o g : [o] --> o h : [o] --> o Rules: f(/\x.X(x)) => X(X(a)) g(X) => h(X) We observe that the rules contain a first-order subset: g(X) => h(X) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) RFCMatchBoundsTRSProof [EQUIVALENT] || (2) YES || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || g(%X) -> h(%X) || || Q is empty. || || ---------------------------------------- || || (1) RFCMatchBoundsTRSProof (EQUIVALENT) || Termination of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 0. This implies Q-termination of R. || The following rules were used to construct the certificate: || || g(%X) -> h(%X) || || The certificate found is represented by the following graph. || The certificate consists of the following enumerated nodes: || 1, 2 || || Node 1 is start node and node 2 is final node. || || Those nodes are connected through the following edges: || || * 1 to 2 labelled h_1(0)* 2 to 2 labelled #_1(0) || || || ---------------------------------------- || || (2) || YES || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs in [Kop12, Ch. 7.8]). We thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: Rules R_0: f(/\x.X(x)) => X(X(a)) g(X) => h(X) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.