We consider the system 430. Alphabet: append : [natlist * natlist] --> natlist cons : [nat * natlist] --> natlist map : [nat -> nat * natlist] --> natlist nil : [] --> natlist Rules: append(nil, X) => X append(cons(X, Y), Z) => cons(X, append(Y, Z)) append(append(X, Y), Z) => append(X, append(Y, Z)) map(/\x.X(x), nil) => nil map(/\x.X(x), cons(Y, Z)) => cons(X(Y), map(/\y.X(y), Z)) We observe that the rules contain a first-order subset: append(nil, X) => X append(cons(X, Y), Z) => cons(X, append(Y, Z)) append(append(X, Y), Z) => append(X, append(Y, Z)) Moreover, the system is finitely branching. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is Ce-terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed Ce-terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) QTRSRRRProof [EQUIVALENT] || (2) QTRS || (3) RisEmptyProof [EQUIVALENT] || (4) YES || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || append(nil, %X) -> %X || append(cons(%X, %Y), %Z) -> cons(%X, append(%Y, %Z)) || append(append(%X, %Y), %Z) -> append(%X, append(%Y, %Z)) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || || ---------------------------------------- || || (1) QTRSRRRProof (EQUIVALENT) || Used ordering: || Polynomial interpretation [POLO]: || || POL(append(x_1, x_2)) = 1 + 2*x_1 + x_2 || POL(cons(x_1, x_2)) = 1 + x_1 + x_2 || POL(nil) = 1 || POL(~PAIR(x_1, x_2)) = 1 + x_1 + x_2 || With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: || || append(nil, %X) -> %X || append(cons(%X, %Y), %Z) -> cons(%X, append(%Y, %Z)) || append(append(%X, %Y), %Z) -> append(%X, append(%Y, %Z)) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || || || || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || R is empty. || Q is empty. || || ---------------------------------------- || || (3) RisEmptyProof (EQUIVALENT) || The TRS R is empty. Hence, termination is trivially proven. || ---------------------------------------- || || (4) || YES || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] map#(/\x.X(x), cons(Y, Z)) =#> map#(/\y.X(y), Z) Rules R_0: append(nil, X) => X append(cons(X, Y), Z) => cons(X, append(Y, Z)) append(append(X, Y), Z) => append(X, append(Y, Z)) map(/\x.X(x), nil) => nil map(/\x.X(x), cons(Y, Z)) => cons(X(Y), map(/\y.X(y), Z)) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(map#) = 2 Thus, we can orient the dependency pairs as follows: nu(map#(/\x.X(x), cons(Y, Z))) = cons(Y, Z) |> Z = nu(map#(/\y.X(y), Z)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_0, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.