We consider the system 516. Alphabet: cons : [a * alist] --> alist map : [a -> a * alist] --> alist nil : [] --> alist o : [a -> a * a -> a] --> a -> a Rules: map(/\x.X(x), nil) => nil map(/\x.X(x), cons(Y, Z)) => cons(X(Y), map(/\y.X(y), Z)) map(/\x.X(x), map(/\y.Y(y), Z)) => map(o(/\z.X(z), /\u.Y(u)), Z) o(/\x.X(x), /\y.Y(y)) Z => X(Y(Z)) We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). In order to do so, we start by eta-expanding the system, which gives: map(/\x.X(x), nil) => nil map(/\x.X(x), cons(Y, Z)) => cons(X(Y), map(/\y.X(y), Z)) map(/\x.X(x), map(/\y.Y(y), Z)) => map(/\z.o(/\u.X(u), /\v.Y(v), z), Z) o(/\x.X(x), /\y.Y(y), Z) => X(Y(Z)) We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] map#(/\x.X(x), cons(Y, Z)) =#> map#(/\y.X(y), Z) 1] map#(/\x.X(x), map(/\y.Y(y), Z)) =#> map#(/\z.o(/\u.X(u), /\v.Y(v), z), Z) 2] map#(/\x.X(x), map(/\y.Y(y), Z)) =#> o#(/\z.X(z), /\u.Y(u), U) Rules R_0: map(/\x.X(x), nil) => nil map(/\x.X(x), cons(Y, Z)) => cons(X(Y), map(/\y.X(y), Z)) map(/\x.X(x), map(/\y.Y(y), Z)) => map(/\z.o(/\u.X(u), /\v.Y(v), z), Z) o(/\x.X(x), /\y.Y(y), Z) => X(Y(Z)) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0, 1, 2 * 1 : 0, 1, 2 * 2 : This graph has the following strongly connected components: P_1: map#(/\x.X(x), cons(Y, Z)) =#> map#(/\y.X(y), Z) map#(/\x.X(x), map(/\y.Y(y), Z)) =#> map#(/\z.o(/\u.X(u), /\v.Y(v), z), Z) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f). Thus, the original system is terminating if (P_1, R_0, computable, formative) is finite. We consider the dependency pair problem (P_1, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(map#) = 2 Thus, we can orient the dependency pairs as follows: nu(map#(/\x.X(x), cons(Y, Z))) = cons(Y, Z) |> Z = nu(map#(/\y.X(y), Z)) nu(map#(/\x.X(x), map(/\y.Y(y), Z))) = map(/\z.Y(z), Z) |> Z = nu(map#(/\y.o(/\u.X(u), /\v.Y(v), y), Z)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_1, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.