We consider the system 427. Alphabet: all : [T -> F] --> F and : [F * F] --> F ex : [T -> F] --> F not : [F] --> F or : [F * F] --> F Rules: and(X, all(/\x.Y(x))) => all(/\y.and(X, Y(y))) and(all(/\x.X(x)), Y) => all(/\y.and(X(y), Y)) or(X, all(/\x.Y(x))) => all(/\y.or(X, Y(y))) or(all(/\x.X(x)), Y) => all(/\y.or(X(y), Y)) and(X, ex(/\x.Y(x))) => ex(/\y.and(X, Y(y))) and(ex(/\x.X(x)), Y) => ex(/\y.and(X(y), Y)) or(X, ex(/\x.Y(x))) => ex(/\y.or(X, Y(y))) or(ex(/\x.X(x)), Y) => ex(/\y.or(X(y), Y)) not(all(/\x.X(x))) => ex(/\y.not(X(y))) not(ex(/\x.X(x))) => all(/\y.not(X(y))) We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] and#(X, all(/\x.Y(x))) =#> and#(X, Y(Z)) 1] and#(all(/\x.X(x)), Y) =#> and#(X(Z), Y) 2] or#(X, all(/\x.Y(x))) =#> or#(X, Y(Z)) 3] or#(all(/\x.X(x)), Y) =#> or#(X(Z), Y) 4] and#(X, ex(/\x.Y(x))) =#> and#(X, Y(Z)) 5] and#(ex(/\x.X(x)), Y) =#> and#(X(Z), Y) 6] or#(X, ex(/\x.Y(x))) =#> or#(X, Y(Z)) 7] or#(ex(/\x.X(x)), Y) =#> or#(X(Z), Y) 8] not#(all(/\x.X(x))) =#> not#(X(Y)) 9] not#(ex(/\x.X(x))) =#> not#(X(Y)) Rules R_0: and(X, all(/\x.Y(x))) => all(/\y.and(X, Y(y))) and(all(/\x.X(x)), Y) => all(/\y.and(X(y), Y)) or(X, all(/\x.Y(x))) => all(/\y.or(X, Y(y))) or(all(/\x.X(x)), Y) => all(/\y.or(X(y), Y)) and(X, ex(/\x.Y(x))) => ex(/\y.and(X, Y(y))) and(ex(/\x.X(x)), Y) => ex(/\y.and(X(y), Y)) or(X, ex(/\x.Y(x))) => ex(/\y.or(X, Y(y))) or(ex(/\x.X(x)), Y) => ex(/\y.or(X(y), Y)) not(all(/\x.X(x))) => ex(/\y.not(X(y))) not(ex(/\x.X(x))) => all(/\y.not(X(y))) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0, 1, 4, 5 * 1 : 0, 1, 4, 5 * 2 : 2, 3, 6, 7 * 3 : 2, 3, 6, 7 * 4 : 0, 1, 4, 5 * 5 : 0, 1, 4, 5 * 6 : 2, 3, 6, 7 * 7 : 2, 3, 6, 7 * 8 : 8, 9 * 9 : 8, 9 This graph has the following strongly connected components: P_1: and#(X, all(/\x.Y(x))) =#> and#(X, Y(Z)) and#(all(/\x.X(x)), Y) =#> and#(X(Z), Y) and#(X, ex(/\x.Y(x))) =#> and#(X, Y(Z)) and#(ex(/\x.X(x)), Y) =#> and#(X(Z), Y) P_2: or#(X, all(/\x.Y(x))) =#> or#(X, Y(Z)) or#(all(/\x.X(x)), Y) =#> or#(X(Z), Y) or#(X, ex(/\x.Y(x))) =#> or#(X, Y(Z)) or#(ex(/\x.X(x)), Y) =#> or#(X(Z), Y) P_3: not#(all(/\x.X(x))) =#> not#(X(Y)) not#(ex(/\x.X(x))) =#> not#(X(Y)) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f), (P_2, R_0, m, f) and (P_3, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, computable, formative), (P_2, R_0, computable, formative) and (P_3, R_0, computable, formative) is finite. We consider the dependency pair problem (P_3, R_0, computable, formative). We apply the accessible subterm criterion with the following projection function: nu(not#) = 1 Thus, we can orient the dependency pairs as follows: nu(not#(all(/\x.X(x)))) = all(/\y.X(y)) [>] X(Y) = nu(not#(X(Y))) nu(not#(ex(/\x.X(x)))) = ex(/\y.X(y)) [>] X(Y) = nu(not#(X(Y))) By [FuhKop19, Thm. 63], we may replace a dependency pair problem (P_3, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if each of (P_1, R_0, computable, formative) and (P_2, R_0, computable, formative) is finite. We consider the dependency pair problem (P_2, R_0, computable, formative). We apply the accessible subterm criterion with the following projection function: nu(or#) = 2 Thus, we can orient the dependency pairs as follows: nu(or#(X, all(/\x.Y(x)))) = all(/\y.Y(y)) [>] Y(Z) = nu(or#(X, Y(Z))) nu(or#(all(/\x.X(x)), Y)) = Y = Y = nu(or#(X(Z), Y)) nu(or#(X, ex(/\x.Y(x)))) = ex(/\y.Y(y)) [>] Y(Z) = nu(or#(X, Y(Z))) nu(or#(ex(/\x.X(x)), Y)) = Y = Y = nu(or#(X(Z), Y)) By [FuhKop19, Thm. 7.6], we may replace a dependency pair problem (P_2, R_0, computable, f) by (P_4, R_0, computable, f), where P_4 contains: or#(all(/\x.X(x)), Y) =#> or#(X(Z), Y) or#(ex(/\x.X(x)), Y) =#> or#(X(Z), Y) Thus, the original system is terminating if each of (P_1, R_0, computable, formative) and (P_4, R_0, computable, formative) is finite. We consider the dependency pair problem (P_4, R_0, computable, formative). We apply the accessible subterm criterion with the following projection function: nu(or#) = 1 Thus, we can orient the dependency pairs as follows: nu(or#(all(/\x.X(x)), Y)) = all(/\y.X(y)) [>] X(Z) = nu(or#(X(Z), Y)) nu(or#(ex(/\x.X(x)), Y)) = ex(/\y.X(y)) [>] X(Z) = nu(or#(X(Z), Y)) By [FuhKop19, Thm. 63], we may replace a dependency pair problem (P_4, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if (P_1, R_0, computable, formative) is finite. We consider the dependency pair problem (P_1, R_0, computable, formative). We apply the accessible subterm criterion with the following projection function: nu(and#) = 2 Thus, we can orient the dependency pairs as follows: nu(and#(X, all(/\x.Y(x)))) = all(/\y.Y(y)) [>] Y(Z) = nu(and#(X, Y(Z))) nu(and#(all(/\x.X(x)), Y)) = Y = Y = nu(and#(X(Z), Y)) nu(and#(X, ex(/\x.Y(x)))) = ex(/\y.Y(y)) [>] Y(Z) = nu(and#(X, Y(Z))) nu(and#(ex(/\x.X(x)), Y)) = Y = Y = nu(and#(X(Z), Y)) By [FuhKop19, Thm. 7.6], we may replace a dependency pair problem (P_1, R_0, computable, f) by (P_5, R_0, computable, f), where P_5 contains: and#(all(/\x.X(x)), Y) =#> and#(X(Z), Y) and#(ex(/\x.X(x)), Y) =#> and#(X(Z), Y) Thus, the original system is terminating if (P_5, R_0, computable, formative) is finite. We consider the dependency pair problem (P_5, R_0, computable, formative). We apply the accessible subterm criterion with the following projection function: nu(and#) = 1 Thus, we can orient the dependency pairs as follows: nu(and#(all(/\x.X(x)), Y)) = all(/\y.X(y)) [>] X(Z) = nu(and#(X(Z), Y)) nu(and#(ex(/\x.X(x)), Y)) = ex(/\y.X(y)) [>] X(Z) = nu(and#(X(Z), Y)) By [FuhKop19, Thm. 63], we may replace a dependency pair problem (P_5, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.