We consider the system 447. Alphabet: a : [] --> A b : [] --> A f : [A] --> A g : [A] --> A h : [A] --> A Rules: f(X) => g(X) g(X) => h(X) a => b We observe that the rules contain a first-order subset: f(X) => g(X) g(X) => h(X) a => b Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) QTRS Reverse [EQUIVALENT] || (2) QTRS || (3) RFCMatchBoundsTRSProof [EQUIVALENT] || (4) YES || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || f(%X) -> g(%X) || g(%X) -> h(%X) || a -> b || || Q is empty. || || ---------------------------------------- || || (1) QTRS Reverse (EQUIVALENT) || We applied the QTRS Reverse Processor [REVERSE]. || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || f(x) -> g(x) || g(x) -> h(x) || a'(x) -> b'(x) || || Q is empty. || || ---------------------------------------- || || (3) RFCMatchBoundsTRSProof (EQUIVALENT) || Termination of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 1. This implies Q-termination of R. || The following rules were used to construct the certificate: || || f(x) -> g(x) || g(x) -> h(x) || a'(x) -> b'(x) || || The certificate found is represented by the following graph. || The certificate consists of the following enumerated nodes: || 2, 4 || || Node 2 is start node and node 4 is final node. || || Those nodes are connected through the following edges: || || * 2 to 4 labelled g_1(0), h_1(0), b'_1(0), h_1(1)* 4 to 4 labelled #_1(0) || || || ---------------------------------------- || || (4) || YES || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs in [Kop12, Ch. 7.8]). We thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: Rules R_0: f(X) => g(X) g(X) => h(X) a => b Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.