We consider the system 429. Alphabet: asort : [natlist] --> natlist cons : [nat * natlist] --> natlist dsort : [natlist] --> natlist insert : [nat * natlist * nat -> nat -> nat * nat -> nat -> nat] --> natlist max : [nat * nat] --> nat min : [nat * nat] --> nat nil : [] --> natlist sort : [natlist * nat -> nat -> nat * nat -> nat -> nat] --> natlist Rules: insert(X, nil, /\x./\y.Y(x, y), /\z./\u.Z(z, u)) => cons(X, nil) insert(X, cons(Y, Z), /\x./\y.U(x, y), /\z./\u.V(z, u)) => cons(U(X, Y), insert(V(X, Y), Z, /\v./\w.U(v, w), /\x'./\y'.V(x', y'))) sort(nil, /\x./\y.X(x, y), /\z./\u.Y(z, u)) => nil sort(cons(X, Y), /\x./\y.Z(x, y), /\z./\u.U(z, u)) => insert(X, sort(Y, /\v./\w.Z(v, w), /\x'./\y'.U(x', y')), /\z'./\u'.Z(z', u'), /\v'./\w'.U(v', w')) asort(X) => sort(X, /\x./\y.min(x, y), /\z./\u.max(z, u)) dsort(X) => sort(X, /\x./\y.max(x, y), /\z./\u.min(z, u)) We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] insert#(X, cons(Y, Z), /\x./\y.U(x, y), /\z./\u.V(z, u)) =#> insert#(V(X, Y), Z, /\v./\w.U(v, w), /\x'./\y'.V(x', y')) 1] sort#(cons(X, Y), /\x./\y.Z(x, y), /\z./\u.U(z, u)) =#> insert#(X, sort(Y, /\v./\w.Z(v, w), /\x'./\y'.U(x', y')), /\z'./\u'.Z(z', u'), /\v'./\w'.U(v', w')) 2] sort#(cons(X, Y), /\x./\y.Z(x, y), /\z./\u.U(z, u)) =#> sort#(Y, /\v./\w.Z(v, w), /\x'./\y'.U(x', y')) 3] asort#(X) =#> sort#(X, /\x./\y.min(x, y), /\z./\u.max(z, u)) 4] dsort#(X) =#> sort#(X, /\x./\y.max(x, y), /\z./\u.min(z, u)) Rules R_0: insert(X, nil, /\x./\y.Y(x, y), /\z./\u.Z(z, u)) => cons(X, nil) insert(X, cons(Y, Z), /\x./\y.U(x, y), /\z./\u.V(z, u)) => cons(U(X, Y), insert(V(X, Y), Z, /\v./\w.U(v, w), /\x'./\y'.V(x', y'))) sort(nil, /\x./\y.X(x, y), /\z./\u.Y(z, u)) => nil sort(cons(X, Y), /\x./\y.Z(x, y), /\z./\u.U(z, u)) => insert(X, sort(Y, /\v./\w.Z(v, w), /\x'./\y'.U(x', y')), /\z'./\u'.Z(z', u'), /\v'./\w'.U(v', w')) asort(X) => sort(X, /\x./\y.min(x, y), /\z./\u.max(z, u)) dsort(X) => sort(X, /\x./\y.max(x, y), /\z./\u.min(z, u)) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0 * 1 : 0 * 2 : 1, 2 * 3 : 1, 2 * 4 : 1, 2 This graph has the following strongly connected components: P_1: insert#(X, cons(Y, Z), /\x./\y.U(x, y), /\z./\u.V(z, u)) =#> insert#(V(X, Y), Z, /\v./\w.U(v, w), /\x'./\y'.V(x', y')) P_2: sort#(cons(X, Y), /\x./\y.Z(x, y), /\z./\u.U(z, u)) =#> sort#(Y, /\v./\w.Z(v, w), /\x'./\y'.U(x', y')) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f) and (P_2, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, computable, formative) and (P_2, R_0, computable, formative) is finite. We consider the dependency pair problem (P_2, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(sort#) = 1 Thus, we can orient the dependency pairs as follows: nu(sort#(cons(X, Y), /\x./\y.Z(x, y), /\z./\u.U(z, u))) = cons(X, Y) |> Y = nu(sort#(Y, /\v./\w.Z(v, w), /\x'./\y'.U(x', y'))) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_2, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if (P_1, R_0, computable, formative) is finite. We consider the dependency pair problem (P_1, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(insert#) = 2 Thus, we can orient the dependency pairs as follows: nu(insert#(X, cons(Y, Z), /\x./\y.U(x, y), /\z./\u.V(z, u))) = cons(Y, Z) |> Z = nu(insert#(V(X, Y), Z, /\v./\w.U(v, w), /\x'./\y'.V(x', y'))) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_1, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.