We consider the system 520. Alphabet: 0 : [string] --> string 1 : [string] --> string false : [] --> bool fold : [bool -> bool * bool -> bool * bool * string] --> bool nil : [] --> string not : [bool] --> bool true : [] --> bool Rules: not(true) => false not(false) => true fold(/\x.X(x), /\y.Y(y), Z, nil) => Z fold(/\x.X(x), /\y.Y(y), Z, 0(U)) => fold(/\z.X(z), /\u.Y(u), X(Z), U) fold(/\x.X(x), /\y.Y(y), Z, 1(U)) => fold(/\z.X(z), /\u.Y(u), Y(Z), U) 0(1(X)) => 1(0(X)) We observe that the rules contain a first-order subset: not(true) => false not(false) => true 0(1(X)) => 1(0(X)) Moreover, the system is finitely branching. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is Ce-terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed Ce-terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) QTRSRRRProof [EQUIVALENT] || (2) QTRS || (3) RisEmptyProof [EQUIVALENT] || (4) YES || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || not(true) -> false || not(false) -> true || 0(1(%X)) -> 1(0(%X)) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || || ---------------------------------------- || || (1) QTRSRRRProof (EQUIVALENT) || Used ordering: || Polynomial interpretation [POLO]: || || POL(0(x_1)) = 2 + 2*x_1 || POL(1(x_1)) = 1 + x_1 || POL(false) = 2 || POL(not(x_1)) = 2 + 2*x_1 || POL(true) = 1 || POL(~PAIR(x_1, x_2)) = 2 + x_1 + x_2 || With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: || || not(true) -> false || not(false) -> true || 0(1(%X)) -> 1(0(%X)) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || || || || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || R is empty. || Q is empty. || || ---------------------------------------- || || (3) RisEmptyProof (EQUIVALENT) || The TRS R is empty. Hence, termination is trivially proven. || ---------------------------------------- || || (4) || YES || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] fold#(/\x.X(x), /\y.Y(y), Z, 0(U)) =#> fold#(/\z.X(z), /\u.Y(u), X(Z), U) 1] fold#(/\x.X(x), /\y.Y(y), Z, 1(U)) =#> fold#(/\z.X(z), /\u.Y(u), Y(Z), U) Rules R_0: not(true) => false not(false) => true fold(/\x.X(x), /\y.Y(y), Z, nil) => Z fold(/\x.X(x), /\y.Y(y), Z, 0(U)) => fold(/\z.X(z), /\u.Y(u), X(Z), U) fold(/\x.X(x), /\y.Y(y), Z, 1(U)) => fold(/\z.X(z), /\u.Y(u), Y(Z), U) 0(1(X)) => 1(0(X)) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(fold#) = 4 Thus, we can orient the dependency pairs as follows: nu(fold#(/\x.X(x), /\y.Y(y), Z, 0(U))) = 0(U) |> U = nu(fold#(/\z.X(z), /\u.Y(u), X(Z), U)) nu(fold#(/\x.X(x), /\y.Y(y), Z, 1(U))) = 1(U) |> U = nu(fold#(/\z.X(z), /\u.Y(u), Y(Z), U)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_0, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.