We consider the system 521. Alphabet: 0 : [string] --> string 0s : [string] --> string 1 : [string] --> string 1s : [string] --> string cmp : [string * string] --> bool decide : [string] --> bool false : [] --> bool nil : [] --> string true : [] --> bool Rules: decide(X) => cmp(0s(X), 1s(X)) 0s(nil) => nil 0s(0(X)) => 0(0s(X)) 0s(1(X)) => 0s(X) 1s(nil) => nil 1s(1(X)) => 1(1s(X)) 1s(0(X)) => 1s(X) cmp(0(X), 1(Y)) => cmp(X, Y) cmp(0(X), nil) => false cmp(nil, X) => true We observe that the rules contain a first-order subset: decide(X) => cmp(0s(X), 1s(X)) 0s(nil) => nil 0s(0(X)) => 0(0s(X)) 0s(1(X)) => 0s(X) 1s(nil) => nil 1s(1(X)) => 1(1s(X)) 1s(0(X)) => 1s(X) cmp(0(X), 1(Y)) => cmp(X, Y) cmp(0(X), nil) => false cmp(nil, X) => true Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) QTRSRRRProof [EQUIVALENT] || (2) QTRS || (3) QTRSRRRProof [EQUIVALENT] || (4) QTRS || (5) RisEmptyProof [EQUIVALENT] || (6) YES || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || decide(%X) -> cmp(0s(%X), 1s(%X)) || 0s(nil) -> nil || 0s(0(%X)) -> 0(0s(%X)) || 0s(1(%X)) -> 0s(%X) || 1s(nil) -> nil || 1s(1(%X)) -> 1(1s(%X)) || 1s(0(%X)) -> 1s(%X) || cmp(0(%X), 1(%Y)) -> cmp(%X, %Y) || cmp(0(%X), nil) -> false || cmp(nil, %X) -> true || || Q is empty. || || ---------------------------------------- || || (1) QTRSRRRProof (EQUIVALENT) || Used ordering: || Polynomial interpretation [POLO]: || || POL(0(x_1)) = 1 + 2*x_1 || POL(0s(x_1)) = x_1 || POL(1(x_1)) = x_1 || POL(1s(x_1)) = x_1 || POL(cmp(x_1, x_2)) = x_1 + x_2 || POL(decide(x_1)) = 1 + 2*x_1 || POL(false) = 0 || POL(nil) = 0 || POL(true) = 0 || With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: || || decide(%X) -> cmp(0s(%X), 1s(%X)) || 1s(0(%X)) -> 1s(%X) || cmp(0(%X), 1(%Y)) -> cmp(%X, %Y) || cmp(0(%X), nil) -> false || || || || || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || 0s(nil) -> nil || 0s(0(%X)) -> 0(0s(%X)) || 0s(1(%X)) -> 0s(%X) || 1s(nil) -> nil || 1s(1(%X)) -> 1(1s(%X)) || cmp(nil, %X) -> true || || Q is empty. || || ---------------------------------------- || || (3) QTRSRRRProof (EQUIVALENT) || Used ordering: || Knuth-Bendix order [KBO] with precedence:0s_1 > 0_1 > cmp_2 > true > 1s_1 > 1_1 > nil || || and weight map: || || nil=1 || true=2 || 0s_1=2 || 0_1=1 || 1_1=1 || 1s_1=2 || cmp_2=0 || || The variable weight is 1With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: || || 0s(nil) -> nil || 0s(0(%X)) -> 0(0s(%X)) || 0s(1(%X)) -> 0s(%X) || 1s(nil) -> nil || 1s(1(%X)) -> 1(1s(%X)) || cmp(nil, %X) -> true || || || || || ---------------------------------------- || || (4) || Obligation: || Q restricted rewrite system: || R is empty. || Q is empty. || || ---------------------------------------- || || (5) RisEmptyProof (EQUIVALENT) || The TRS R is empty. Hence, termination is trivially proven. || ---------------------------------------- || || (6) || YES || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: Rules R_0: decide(X) => cmp(0s(X), 1s(X)) 0s(nil) => nil 0s(0(X)) => 0(0s(X)) 0s(1(X)) => 0s(X) 1s(nil) => nil 1s(1(X)) => 1(1s(X)) 1s(0(X)) => 1s(X) cmp(0(X), 1(Y)) => cmp(X, Y) cmp(0(X), nil) => false cmp(nil, X) => true Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.