We consider the system 430. Alphabet: append : [natlist * natlist] --> natlist cons : [nat * natlist] --> natlist map : [nat -> nat * natlist] --> natlist nil : [] --> natlist Rules: append(nil, X) => X append(cons(X, Y), Z) => cons(X, append(Y, Z)) append(append(X, Y), Z) => append(X, append(Y, Z)) map(/\x.X(x), nil) => nil map(/\x.X(x), cons(Y, Z)) => cons(X(Y), map(/\y.X(y), Z)) We observe that the rules contain a first-order subset: append(nil, X) => X append(cons(X, Y), Z) => cons(X, append(Y, Z)) append(append(X, Y), Z) => append(X, append(Y, Z)) Moreover, the system is finitely branching. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is Ce-terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed Ce-terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) QTRSRRRProof [EQUIVALENT] || (2) QTRS || (3) RisEmptyProof [EQUIVALENT] || (4) YES || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || append(nil, %X) -> %X || append(cons(%X, %Y), %Z) -> cons(%X, append(%Y, %Z)) || append(append(%X, %Y), %Z) -> append(%X, append(%Y, %Z)) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || || ---------------------------------------- || || (1) QTRSRRRProof (EQUIVALENT) || Used ordering: || Knuth-Bendix order [KBO] with precedence:~PAIR_2 > append_2 > cons_2 > nil || || and weight map: || || nil=1 || append_2=0 || cons_2=0 || ~PAIR_2=0 || || The variable weight is 1With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: || || append(nil, %X) -> %X || append(cons(%X, %Y), %Z) -> cons(%X, append(%Y, %Z)) || append(append(%X, %Y), %Z) -> append(%X, append(%Y, %Z)) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || || || || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || R is empty. || Q is empty. || || ---------------------------------------- || || (3) RisEmptyProof (EQUIVALENT) || The TRS R is empty. Hence, termination is trivially proven. || ---------------------------------------- || || (4) || YES || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with dynamic dependency pairs. We thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] map#(/\x.X(x), cons(Y, Z)) =#> X(Y) 1] map#(/\x.X(x), cons(Y, Z)) =#> map#(/\y.X(y), Z) 2] map#(/\x.X(x), cons(Y, Z)) =#> X(y) Rules R_0: append(nil, X) => X append(cons(X, Y), Z) => cons(X, append(Y, Z)) append(append(X, Y), Z) => append(X, append(Y, Z)) map(/\x.X(x), nil) => nil map(/\x.X(x), cons(Y, Z)) => cons(X(Y), map(/\y.X(y), Z)) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. As the system is abstraction-simple and the formative flag is set, it suffices to find a tagged reduction pair [Kop12, Def. 6.70]. Thus, we must orient: map#(/\x.X(x), cons(Y, Z)) >? X(Y) map#(/\x.X(x), cons(Y, Z)) >? map#(/\y.X(y), Z) map#(/\x.X(x), cons(Y, Z)) >? X(~c0) append(nil, X) >= X append(cons(X, Y), Z) >= cons(X, append(Y, Z)) append(append(X, Y), Z) >= append(X, append(Y, Z)) map(/\x.X(x), nil) >= nil map(/\x.X(x), cons(Y, Z)) >= cons(X(Y), map(/\y.X(y), Z)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: append = \y0y1.y1 + 2y0 cons = \y0y1.1 + y1 + 2y0 map = \G0y1.3 + y1 + 2y1G0(y1) map# = \G0y1.3 + G0(0) + y1G0(y1) nil = 1 ~c0 = 0 Using this interpretation, the requirements translate to: [[map#(/\x._x0(x), cons(_x1, _x2))]] = 3 + F0(0) + F0(1 + x2 + 2x1) + 2x1F0(1 + x2 + 2x1) + x2F0(1 + x2 + 2x1) > F0(x1) = [[_x0(_x1)]] [[map#(/\x._x0(x), cons(_x1, _x2))]] = 3 + F0(0) + F0(1 + x2 + 2x1) + 2x1F0(1 + x2 + 2x1) + x2F0(1 + x2 + 2x1) >= 3 + F0(0) + x2F0(x2) = [[map#(/\x._x0(x), _x2)]] [[map#(/\x._x0(x), cons(_x1, _x2))]] = 3 + F0(0) + F0(1 + x2 + 2x1) + 2x1F0(1 + x2 + 2x1) + x2F0(1 + x2 + 2x1) > F0(0) = [[_x0(~c0)]] [[append(nil, _x0)]] = 2 + x0 >= x0 = [[_x0]] [[append(cons(_x0, _x1), _x2)]] = 2 + x2 + 2x1 + 4x0 >= 1 + x2 + 2x0 + 2x1 = [[cons(_x0, append(_x1, _x2))]] [[append(append(_x0, _x1), _x2)]] = x2 + 2x1 + 4x0 >= x2 + 2x0 + 2x1 = [[append(_x0, append(_x1, _x2))]] [[map(/\x._x0(x), nil)]] = 4 + 2F0(1) >= 1 = [[nil]] [[map(/\x._x0(x), cons(_x1, _x2))]] = 4 + x2 + 2x1 + 2x2F0(1 + x2 + 2x1) + 2F0(1 + x2 + 2x1) + 4x1F0(1 + x2 + 2x1) >= 4 + x2 + 2x2F0(x2) + 2F0(x1) = [[cons(_x0(_x1), map(/\x._x0(x), _x2))]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_0, R_0, minimal, formative) by (P_1, R_0, minimal, formative), where P_1 consists of: map#(/\x.X(x), cons(Y, Z)) =#> map#(/\y.X(y), Z) Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(map#) = 2 Thus, we can orient the dependency pairs as follows: nu(map#(/\x.X(x), cons(Y, Z))) = cons(Y, Z) |> Z = nu(map#(/\y.X(y), Z)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_1, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.