We consider the system 431. Alphabet: 0 : [] --> nat rec : [nat -> A -> A * A * nat] --> A s : [nat] --> nat Rules: rec(/\x./\y.X(x, y), Y, 0) => Y rec(/\x./\y.X(x, y), Y, s(Z)) => X(Z, rec(/\z./\u.X(z, u), Y, Z)) We use the dependency pair framework as described in [Kop12, Ch. 6/7], with dynamic dependency pairs. We thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] rec#(/\x./\y.X(x, y), Y, s(Z)) =#> X(Z, rec(/\z./\u.X(z, u), Y, Z)) 1] rec#(/\x./\y.X(x, y), Y, s(Z)) =#> rec#(/\z./\u.X(z, u), Y, Z) {X : 2} 2] rec#(/\x./\y.X(x, y), Y, s(Z)) =#> X(z, u) {X : 2} Rules R_0: rec(/\x./\y.X(x, y), Y, 0) => Y rec(/\x./\y.X(x, y), Y, s(Z)) => X(Z, rec(/\z./\u.X(z, u), Y, Z)) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). This combination (P_0, R_0) has no formative rules! We will name the empty set of rules:R_1. By [Kop12, Thm. 7.17], we may replace the dependency pair problem (P_0, R_0, minimal, formative) by (P_0, R_1, minimal, formative). Thus, the original system is terminating if (P_0, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_1, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. As the system is abstraction-simple and the formative flag is set, it suffices to find a tagged reduction pair [Kop12, Def. 6.70]. Thus, we must orient: rec#(/\x./\y.X(x, y), Y, s(Z)) >? X(Z, rec(/\z./\u.X(z, u), Y, Z)) rec#(/\x./\y.X(x, y), Y, s(Z)) >? rec#(/\z./\u.X(z, u), Y, Z) rec#(/\x./\y.X(x, y), Y, s(Z)) >? X(~c0, ~c1) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: rec = \G0y1y2.0 rec# = \G0y1y2.3 + y2 + G0(0,0) + 2y2y2G0(y2,y2) + 2G0(y2,y2) + 3y1y2G0(y1,y2) + 3y1y2G0(y2,y1) s = \y0.3 + 3y0 ~c0 = 0 ~c1 = 0 Using this interpretation, the requirements translate to: [[rec#(/\x./\y._x0(x, y), _x1, s(_x2))]] = 6 + 3x2 + F0(0,0) + 9x1x2F0(x1,3 + 3x2) + 9x1x2F0(3 + 3x2,x1) + 9x1F0(x1,3 + 3x2) + 9x1F0(3 + 3x2,x1) + 18x2x2F0(3 + 3x2,3 + 3x2) + 20F0(3 + 3x2,3 + 3x2) + 36x2F0(3 + 3x2,3 + 3x2) > F0(x2,0) = [[_x0(_x2, rec(/\x./\y._x0(x, y), _x1, _x2))]] [[rec#(/\x./\y._x0(x, y), _x1, s(_x2))]] = 6 + 3x2 + F0(0,0) + 9x1x2F0(x1,3 + 3x2) + 9x1x2F0(3 + 3x2,x1) + 9x1F0(x1,3 + 3x2) + 9x1F0(3 + 3x2,x1) + 18x2x2F0(3 + 3x2,3 + 3x2) + 20F0(3 + 3x2,3 + 3x2) + 36x2F0(3 + 3x2,3 + 3x2) > 3 + x2 + F0(0,0) + 2x2x2F0(x2,x2) + 2F0(x2,x2) + 3x1x2F0(x1,x2) + 3x1x2F0(x2,x1) = [[rec#(/\x./\y._x0(x, y), _x1, _x2)]] [[rec#(/\x./\y._x0(x, y), _x1, s(_x2))]] = 6 + 3x2 + F0(0,0) + 9x1x2F0(x1,3 + 3x2) + 9x1x2F0(3 + 3x2,x1) + 9x1F0(x1,3 + 3x2) + 9x1F0(3 + 3x2,x1) + 18x2x2F0(3 + 3x2,3 + 3x2) + 20F0(3 + 3x2,3 + 3x2) + 36x2F0(3 + 3x2,3 + 3x2) > F0(0,0) = [[_x0(~c0, ~c1)]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace a dependency pair problem (P_0, R_1) by ({}, R_1). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.