We consider the system rec. Alphabet: 0 : [] --> nat rec : [nat * a * nat -> a -> a] --> a s : [nat] --> nat Rules: rec(0, x, f) => x rec(s(x), y, f) => f x rec(x, y, f) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] rec#(s(X), Y, F) =#> rec#(X, Y, F) Rules R_0: rec(0, X, F) => X rec(s(X), Y, F) => F X rec(X, Y, F) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(rec#) = 1 Thus, we can orient the dependency pairs as follows: nu(rec#(s(X), Y, F)) = s(X) |> X = nu(rec#(X, Y, F)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_0, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.