We consider the system fuhkop11frocos. Alphabet: append : [list * list] --> list cons : [nat * list] --> list map : [nat -> nat * list] --> list mirror : [list] --> list nil : [] --> list reverse : [list] --> list shuffle : [list] --> list Rules: append(nil, x) => x append(cons(x, y), z) => cons(x, append(y, z)) reverse(nil) => nil shuffle(nil) => nil shuffle(cons(x, y)) => cons(x, shuffle(reverse(y))) mirror(nil) => nil mirror(cons(x, y)) => append(cons(x, mirror(y)), cons(x, nil)) map(f, nil) => nil map(f, cons(x, y)) => cons(f x, map(f, y)) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: append(nil, X) => X append(cons(X, Y), Z) => cons(X, append(Y, Z)) reverse(nil) => nil shuffle(nil) => nil shuffle(cons(X, Y)) => cons(X, shuffle(reverse(Y))) mirror(nil) => nil mirror(cons(X, Y)) => append(cons(X, mirror(Y)), cons(X, nil)) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) QTRSRRRProof [EQUIVALENT] || (2) QTRS || (3) QTRSRRRProof [EQUIVALENT] || (4) QTRS || (5) QTRSRRRProof [EQUIVALENT] || (6) QTRS || (7) QTRSRRRProof [EQUIVALENT] || (8) QTRS || (9) RisEmptyProof [EQUIVALENT] || (10) YES || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || append(nil, %X) -> %X || append(cons(%X, %Y), %Z) -> cons(%X, append(%Y, %Z)) || reverse(nil) -> nil || shuffle(nil) -> nil || shuffle(cons(%X, %Y)) -> cons(%X, shuffle(reverse(%Y))) || mirror(nil) -> nil || mirror(cons(%X, %Y)) -> append(cons(%X, mirror(%Y)), cons(%X, nil)) || || Q is empty. || || ---------------------------------------- || || (1) QTRSRRRProof (EQUIVALENT) || Used ordering: || Polynomial interpretation [POLO]: || || POL(append(x_1, x_2)) = x_1 + x_2 || POL(cons(x_1, x_2)) = 2*x_1 + x_2 || POL(mirror(x_1)) = 2*x_1 || POL(nil) = 0 || POL(reverse(x_1)) = x_1 || POL(shuffle(x_1)) = 1 + 2*x_1 || With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: || || shuffle(nil) -> nil || || || || || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || append(nil, %X) -> %X || append(cons(%X, %Y), %Z) -> cons(%X, append(%Y, %Z)) || reverse(nil) -> nil || shuffle(cons(%X, %Y)) -> cons(%X, shuffle(reverse(%Y))) || mirror(nil) -> nil || mirror(cons(%X, %Y)) -> append(cons(%X, mirror(%Y)), cons(%X, nil)) || || Q is empty. || || ---------------------------------------- || || (3) QTRSRRRProof (EQUIVALENT) || Used ordering: || Polynomial interpretation [POLO]: || || POL(append(x_1, x_2)) = x_1 + x_2 || POL(cons(x_1, x_2)) = 2*x_1 + x_2 || POL(mirror(x_1)) = 1 + 2*x_1 || POL(nil) = 0 || POL(reverse(x_1)) = x_1 || POL(shuffle(x_1)) = 2*x_1 || With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: || || mirror(nil) -> nil || || || || || ---------------------------------------- || || (4) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || append(nil, %X) -> %X || append(cons(%X, %Y), %Z) -> cons(%X, append(%Y, %Z)) || reverse(nil) -> nil || shuffle(cons(%X, %Y)) -> cons(%X, shuffle(reverse(%Y))) || mirror(cons(%X, %Y)) -> append(cons(%X, mirror(%Y)), cons(%X, nil)) || || Q is empty. || || ---------------------------------------- || || (5) QTRSRRRProof (EQUIVALENT) || Used ordering: || append/2(YES,YES) || nil/0) || cons/2(YES,YES) || reverse/1)YES( || shuffle/1)YES( || mirror/1(YES) || || Quasi precedence: || mirror_1 > append_2 > cons_2 || mirror_1 > nil || || || Status: || append_2: [2,1] || nil: multiset status || cons_2: [2,1] || mirror_1: multiset status || || With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: || || append(nil, %X) -> %X || append(cons(%X, %Y), %Z) -> cons(%X, append(%Y, %Z)) || mirror(cons(%X, %Y)) -> append(cons(%X, mirror(%Y)), cons(%X, nil)) || || || || || ---------------------------------------- || || (6) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || reverse(nil) -> nil || shuffle(cons(%X, %Y)) -> cons(%X, shuffle(reverse(%Y))) || || Q is empty. || || ---------------------------------------- || || (7) QTRSRRRProof (EQUIVALENT) || Used ordering: || Knuth-Bendix order [KBO] with precedence:reverse_1 > shuffle_1 > cons_2 > nil || || and weight map: || || nil=1 || reverse_1=0 || shuffle_1=1 || cons_2=0 || || The variable weight is 1With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: || || reverse(nil) -> nil || shuffle(cons(%X, %Y)) -> cons(%X, shuffle(reverse(%Y))) || || || || || ---------------------------------------- || || (8) || Obligation: || Q restricted rewrite system: || R is empty. || Q is empty. || || ---------------------------------------- || || (9) RisEmptyProof (EQUIVALENT) || The TRS R is empty. Hence, termination is trivially proven. || ---------------------------------------- || || (10) || YES || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] map#(F, cons(X, Y)) =#> map#(F, Y) Rules R_0: append(nil, X) => X append(cons(X, Y), Z) => cons(X, append(Y, Z)) reverse(nil) => nil shuffle(nil) => nil shuffle(cons(X, Y)) => cons(X, shuffle(reverse(Y))) mirror(nil) => nil mirror(cons(X, Y)) => append(cons(X, mirror(Y)), cons(X, nil)) map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(map#) = 2 Thus, we can orient the dependency pairs as follows: nu(map#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(map#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_0, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.