We consider the system 06plusmult. Alphabet: mult : [N * N] --> N plus : [N * N] --> N s : [N] --> N z : [] --> N Rules: plus(z, x) => x plus(s(x), y) => plus(x, s(y)) plus(plus(x, y), u) => plus(x, plus(y, u)) mult(z, x) => z mult(s(x), y) => plus(mult(x, y), y) mult(plus(x, y), u) => plus(mult(x, u), mult(y, u)) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: plus(z, X) => X plus(s(X), Y) => plus(X, s(Y)) plus(plus(X, Y), Z) => plus(X, plus(Y, Z)) mult(z, X) => z mult(s(X), Y) => plus(mult(X, Y), Y) mult(plus(X, Y), Z) => plus(mult(X, Z), mult(Y, Z)) Moreover, the system is finitely branching. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is Ce-terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed Ce-terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) QTRSRRRProof [EQUIVALENT] || (2) QTRS || (3) RisEmptyProof [EQUIVALENT] || (4) YES || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || plus(z, %X) -> %X || plus(s(%X), %Y) -> plus(%X, s(%Y)) || plus(plus(%X, %Y), %Z) -> plus(%X, plus(%Y, %Z)) || mult(z, %X) -> z || mult(s(%X), %Y) -> plus(mult(%X, %Y), %Y) || mult(plus(%X, %Y), %Z) -> plus(mult(%X, %Z), mult(%Y, %Z)) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || || ---------------------------------------- || || (1) QTRSRRRProof (EQUIVALENT) || Used ordering: || Quasi precedence: || mult_2 > plus_2 > s_1 || mult_2 > z > s_1 || ~PAIR_2 > s_1 || || || Status: || plus_2: [1,2] || z: multiset status || s_1: multiset status || mult_2: [1,2] || ~PAIR_2: multiset status || || With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: || || plus(z, %X) -> %X || plus(s(%X), %Y) -> plus(%X, s(%Y)) || plus(plus(%X, %Y), %Z) -> plus(%X, plus(%Y, %Z)) || mult(z, %X) -> z || mult(s(%X), %Y) -> plus(mult(%X, %Y), %Y) || mult(plus(%X, %Y), %Z) -> plus(mult(%X, %Z), mult(%Y, %Z)) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || || || || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || R is empty. || Q is empty. || || ---------------------------------------- || || (3) RisEmptyProof (EQUIVALENT) || The TRS R is empty. Hence, termination is trivially proven. || ---------------------------------------- || || (4) || YES || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: Rules R_0: plus(z, X) => X plus(s(X), Y) => plus(X, s(Y)) plus(plus(X, Y), Z) => plus(X, plus(Y, Z)) mult(z, X) => z mult(s(X), Y) => plus(mult(X, Y), Y) mult(plus(X, Y), Z) => plus(mult(X, Z), mult(Y, Z)) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.