We consider the system sort. Alphabet: 0 : [] --> nat ascending!6220sort : [list] --> list cons : [nat * list] --> list descending!6220sort : [list] --> list insert : [nat * list * nat -> nat -> nat * nat -> nat -> nat] --> list max : [nat * nat] --> nat min : [nat * nat] --> nat nil : [] --> list s : [nat] --> nat sort : [list * nat -> nat -> nat * nat -> nat -> nat] --> list Rules: max(0, x) => x max(x, 0) => x max(s(x), s(y)) => s(max(x, y)) min(0, x) => 0 min(x, 0) => 0 min(s(x), s(y)) => s(min(x, y)) insert(x, nil, f, g) => cons(x, nil) insert(x, cons(y, z), f, g) => cons(f x y, insert(g x y, z, f, g)) sort(nil, f, g) => nil sort(cons(x, y), f, g) => insert(x, sort(y, f, g), f, g) ascending!6220sort(x) => sort(x, /\y./\z.min(y, z), /\u./\v.max(u, v)) descending!6220sort(x) => sort(x, /\y./\z.max(y, z), /\u./\v.min(u, v)) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: max(0, X) => X max(X, 0) => X max(s(X), s(Y)) => s(max(X, Y)) min(0, X) => 0 min(X, 0) => 0 min(s(X), s(Y)) => s(min(X, Y)) Moreover, the system is finitely branching. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is Ce-terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed Ce-terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) QTRSRRRProof [EQUIVALENT] || (2) QTRS || (3) RisEmptyProof [EQUIVALENT] || (4) YES || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || max(0, %X) -> %X || max(%X, 0) -> %X || max(s(%X), s(%Y)) -> s(max(%X, %Y)) || min(0, %X) -> 0 || min(%X, 0) -> 0 || min(s(%X), s(%Y)) -> s(min(%X, %Y)) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || || ---------------------------------------- || || (1) QTRSRRRProof (EQUIVALENT) || Used ordering: || Knuth-Bendix order [KBO] with precedence:~PAIR_2 > 0 > min_2 > max_2 > s_1 || || and weight map: || || 0=1 || s_1=1 || max_2=0 || min_2=0 || ~PAIR_2=0 || || The variable weight is 1With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: || || max(0, %X) -> %X || max(%X, 0) -> %X || max(s(%X), s(%Y)) -> s(max(%X, %Y)) || min(0, %X) -> 0 || min(%X, 0) -> 0 || min(s(%X), s(%Y)) -> s(min(%X, %Y)) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || || || || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || R is empty. || Q is empty. || || ---------------------------------------- || || (3) RisEmptyProof (EQUIVALENT) || The TRS R is empty. Hence, termination is trivially proven. || ---------------------------------------- || || (4) || YES || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] insert#(X, cons(Y, Z), F, G) =#> insert#(G X Y, Z, F, G) 1] sort#(cons(X, Y), F, G) =#> insert#(X, sort(Y, F, G), F, G) 2] sort#(cons(X, Y), F, G) =#> sort#(Y, F, G) 3] ascending!6220sort#(X) =#> sort#(X, /\x./\y.min(x, y), /\z./\u.max(z, u)) 4] ascending!6220sort#(X) =#> min#(Y, Z) 5] ascending!6220sort#(X) =#> max#(Y, Z) 6] descending!6220sort#(X) =#> sort#(X, /\x./\y.max(x, y), /\z./\u.min(z, u)) 7] descending!6220sort#(X) =#> max#(Y, Z) 8] descending!6220sort#(X) =#> min#(Y, Z) Rules R_0: max(0, X) => X max(X, 0) => X max(s(X), s(Y)) => s(max(X, Y)) min(0, X) => 0 min(X, 0) => 0 min(s(X), s(Y)) => s(min(X, Y)) insert(X, nil, F, G) => cons(X, nil) insert(X, cons(Y, Z), F, G) => cons(F X Y, insert(G X Y, Z, F, G)) sort(nil, F, G) => nil sort(cons(X, Y), F, G) => insert(X, sort(Y, F, G), F, G) ascending!6220sort(X) => sort(X, /\x./\y.min(x, y), /\z./\u.max(z, u)) descending!6220sort(X) => sort(X, /\x./\y.max(x, y), /\z./\u.min(z, u)) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0 * 1 : 0 * 2 : 1, 2 * 3 : 1, 2 * 4 : * 5 : * 6 : 1, 2 * 7 : * 8 : This graph has the following strongly connected components: P_1: insert#(X, cons(Y, Z), F, G) =#> insert#(G X Y, Z, F, G) P_2: sort#(cons(X, Y), F, G) =#> sort#(Y, F, G) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f) and (P_2, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, computable, formative) and (P_2, R_0, computable, formative) is finite. We consider the dependency pair problem (P_2, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(sort#) = 1 Thus, we can orient the dependency pairs as follows: nu(sort#(cons(X, Y), F, G)) = cons(X, Y) |> Y = nu(sort#(Y, F, G)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_2, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if (P_1, R_0, computable, formative) is finite. We consider the dependency pair problem (P_1, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(insert#) = 2 Thus, we can orient the dependency pairs as follows: nu(insert#(X, cons(Y, Z), F, G)) = cons(Y, Z) |> Z = nu(insert#(G X Y, Z, F, G)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_1, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.