We consider the system prenex_modif1. Alphabet: and : [form * form] --> form exists : [term -> form] --> form forall : [term -> form] --> form not : [form] --> form or : [form * form] --> form Rules: and(x, forall(/\y.f y)) => forall(/\z.and(x, f z)) and(forall(/\x.f x), y) => forall(/\z.and(f z, y)) and(x, exists(/\y.f y)) => exists(/\z.and(x, f z)) and(exists(/\x.f x), y) => exists(/\z.and(f z, y)) or(x, forall(/\y.f y)) => forall(/\z.or(x, f z)) or(forall(/\x.f x), y) => forall(/\z.or(f z, y)) or(x, exists(/\y.f y)) => exists(/\z.or(x, f z)) or(exists(/\x.f x), y) => exists(/\z.or(f z, y)) not(forall(/\x.f x)) => exists(/\y.not(f y)) not(exists(/\x.f x)) => forall(/\y.not(f y)) Using the transformations described in [Kop11], this system can be brought in a form without leading free variables in the left-hand side, and where the left-hand side of a variable is always a functional term or application headed by a functional term. We now transform the resulting AFS into an AFSM by replacing all free variables by meta-variables (with arity 0). This leads to the following AFSM: Alphabet: and : [form * form] --> form exists : [term -> form] --> form forall : [term -> form] --> form not : [form] --> form or : [form * form] --> form ~AP1 : [term -> form * term] --> form Rules: and(X, forall(/\x.~AP1(F, x))) => forall(/\y.and(X, ~AP1(F, y))) and(forall(/\x.~AP1(F, x)), X) => forall(/\y.and(~AP1(F, y), X)) and(X, exists(/\x.~AP1(F, x))) => exists(/\y.and(X, ~AP1(F, y))) and(exists(/\x.~AP1(F, x)), X) => exists(/\y.and(~AP1(F, y), X)) or(X, forall(/\x.~AP1(F, x))) => forall(/\y.or(X, ~AP1(F, y))) or(forall(/\x.~AP1(F, x)), X) => forall(/\y.or(~AP1(F, y), X)) or(X, exists(/\x.~AP1(F, x))) => exists(/\y.or(X, ~AP1(F, y))) or(exists(/\x.~AP1(F, x)), X) => exists(/\y.or(~AP1(F, y), X)) not(forall(/\x.~AP1(F, x))) => exists(/\y.not(~AP1(F, y))) not(exists(/\x.~AP1(F, x))) => forall(/\y.not(~AP1(F, y))) ~AP1(F, X) => F X Symbol ~AP1 is an encoding for application that is only used in innocuous ways. We can simplify the program (without losing non-termination) by removing it. This gives: Alphabet: and : [form * form] --> form exists : [term -> form] --> form forall : [term -> form] --> form not : [form] --> form or : [form * form] --> form Rules: and(X, forall(/\x.Y(x))) => forall(/\y.and(X, Y(y))) and(forall(/\x.X(x)), Y) => forall(/\y.and(X(y), Y)) and(X, exists(/\x.Y(x))) => exists(/\y.and(X, Y(y))) and(exists(/\x.X(x)), Y) => exists(/\y.and(X(y), Y)) or(X, forall(/\x.Y(x))) => forall(/\y.or(X, Y(y))) or(forall(/\x.X(x)), Y) => forall(/\y.or(X(y), Y)) or(X, exists(/\x.Y(x))) => exists(/\y.or(X, Y(y))) or(exists(/\x.X(x)), Y) => exists(/\y.or(X(y), Y)) not(forall(/\x.X(x))) => exists(/\y.not(X(y))) not(exists(/\x.X(x))) => forall(/\y.not(X(y))) We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] and#(X, forall(/\x.Y(x))) =#> and#(X, Y(Z)) 1] and#(forall(/\x.X(x)), Y) =#> and#(X(Z), Y) 2] and#(X, exists(/\x.Y(x))) =#> and#(X, Y(Z)) 3] and#(exists(/\x.X(x)), Y) =#> and#(X(Z), Y) 4] or#(X, forall(/\x.Y(x))) =#> or#(X, Y(Z)) 5] or#(forall(/\x.X(x)), Y) =#> or#(X(Z), Y) 6] or#(X, exists(/\x.Y(x))) =#> or#(X, Y(Z)) 7] or#(exists(/\x.X(x)), Y) =#> or#(X(Z), Y) 8] not#(forall(/\x.X(x))) =#> not#(X(Y)) 9] not#(exists(/\x.X(x))) =#> not#(X(Y)) Rules R_0: and(X, forall(/\x.Y(x))) => forall(/\y.and(X, Y(y))) and(forall(/\x.X(x)), Y) => forall(/\y.and(X(y), Y)) and(X, exists(/\x.Y(x))) => exists(/\y.and(X, Y(y))) and(exists(/\x.X(x)), Y) => exists(/\y.and(X(y), Y)) or(X, forall(/\x.Y(x))) => forall(/\y.or(X, Y(y))) or(forall(/\x.X(x)), Y) => forall(/\y.or(X(y), Y)) or(X, exists(/\x.Y(x))) => exists(/\y.or(X, Y(y))) or(exists(/\x.X(x)), Y) => exists(/\y.or(X(y), Y)) not(forall(/\x.X(x))) => exists(/\y.not(X(y))) not(exists(/\x.X(x))) => forall(/\y.not(X(y))) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0, 1, 2, 3 * 1 : 0, 1, 2, 3 * 2 : 0, 1, 2, 3 * 3 : 0, 1, 2, 3 * 4 : 4, 5, 6, 7 * 5 : 4, 5, 6, 7 * 6 : 4, 5, 6, 7 * 7 : 4, 5, 6, 7 * 8 : 8, 9 * 9 : 8, 9 This graph has the following strongly connected components: P_1: and#(X, forall(/\x.Y(x))) =#> and#(X, Y(Z)) and#(forall(/\x.X(x)), Y) =#> and#(X(Z), Y) and#(X, exists(/\x.Y(x))) =#> and#(X, Y(Z)) and#(exists(/\x.X(x)), Y) =#> and#(X(Z), Y) P_2: or#(X, forall(/\x.Y(x))) =#> or#(X, Y(Z)) or#(forall(/\x.X(x)), Y) =#> or#(X(Z), Y) or#(X, exists(/\x.Y(x))) =#> or#(X, Y(Z)) or#(exists(/\x.X(x)), Y) =#> or#(X(Z), Y) P_3: not#(forall(/\x.X(x))) =#> not#(X(Y)) not#(exists(/\x.X(x))) =#> not#(X(Y)) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f), (P_2, R_0, m, f) and (P_3, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, computable, formative), (P_2, R_0, computable, formative) and (P_3, R_0, computable, formative) is finite. We consider the dependency pair problem (P_3, R_0, computable, formative). We apply the accessible subterm criterion with the following projection function: nu(not#) = 1 Thus, we can orient the dependency pairs as follows: nu(not#(forall(/\x.X(x)))) = forall(/\y.X(y)) [>] X(Y) = nu(not#(X(Y))) nu(not#(exists(/\x.X(x)))) = exists(/\y.X(y)) [>] X(Y) = nu(not#(X(Y))) By [FuhKop19, Thm. 63], we may replace a dependency pair problem (P_3, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if each of (P_1, R_0, computable, formative) and (P_2, R_0, computable, formative) is finite. We consider the dependency pair problem (P_2, R_0, computable, formative). We apply the accessible subterm criterion with the following projection function: nu(or#) = 2 Thus, we can orient the dependency pairs as follows: nu(or#(X, forall(/\x.Y(x)))) = forall(/\y.Y(y)) [>] Y(Z) = nu(or#(X, Y(Z))) nu(or#(forall(/\x.X(x)), Y)) = Y = Y = nu(or#(X(Z), Y)) nu(or#(X, exists(/\x.Y(x)))) = exists(/\y.Y(y)) [>] Y(Z) = nu(or#(X, Y(Z))) nu(or#(exists(/\x.X(x)), Y)) = Y = Y = nu(or#(X(Z), Y)) By [FuhKop19, Thm. 7.6], we may replace a dependency pair problem (P_2, R_0, computable, f) by (P_4, R_0, computable, f), where P_4 contains: or#(forall(/\x.X(x)), Y) =#> or#(X(Z), Y) or#(exists(/\x.X(x)), Y) =#> or#(X(Z), Y) Thus, the original system is terminating if each of (P_1, R_0, computable, formative) and (P_4, R_0, computable, formative) is finite. We consider the dependency pair problem (P_4, R_0, computable, formative). We apply the accessible subterm criterion with the following projection function: nu(or#) = 1 Thus, we can orient the dependency pairs as follows: nu(or#(forall(/\x.X(x)), Y)) = forall(/\y.X(y)) [>] X(Z) = nu(or#(X(Z), Y)) nu(or#(exists(/\x.X(x)), Y)) = exists(/\y.X(y)) [>] X(Z) = nu(or#(X(Z), Y)) By [FuhKop19, Thm. 63], we may replace a dependency pair problem (P_4, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if (P_1, R_0, computable, formative) is finite. We consider the dependency pair problem (P_1, R_0, computable, formative). We apply the accessible subterm criterion with the following projection function: nu(and#) = 2 Thus, we can orient the dependency pairs as follows: nu(and#(X, forall(/\x.Y(x)))) = forall(/\y.Y(y)) [>] Y(Z) = nu(and#(X, Y(Z))) nu(and#(forall(/\x.X(x)), Y)) = Y = Y = nu(and#(X(Z), Y)) nu(and#(X, exists(/\x.Y(x)))) = exists(/\y.Y(y)) [>] Y(Z) = nu(and#(X, Y(Z))) nu(and#(exists(/\x.X(x)), Y)) = Y = Y = nu(and#(X(Z), Y)) By [FuhKop19, Thm. 7.6], we may replace a dependency pair problem (P_1, R_0, computable, f) by (P_5, R_0, computable, f), where P_5 contains: and#(forall(/\x.X(x)), Y) =#> and#(X(Z), Y) and#(exists(/\x.X(x)), Y) =#> and#(X(Z), Y) Thus, the original system is terminating if (P_5, R_0, computable, formative) is finite. We consider the dependency pair problem (P_5, R_0, computable, formative). We apply the accessible subterm criterion with the following projection function: nu(and#) = 1 Thus, we can orient the dependency pairs as follows: nu(and#(forall(/\x.X(x)), Y)) = forall(/\y.X(y)) [>] X(Z) = nu(and#(X(Z), Y)) nu(and#(exists(/\x.X(x)), Y)) = exists(/\y.X(y)) [>] X(Z) = nu(and#(X(Z), Y)) By [FuhKop19, Thm. 63], we may replace a dependency pair problem (P_5, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop11] C. Kop. Simplifying Algebraic Functional Systems. In Proceedings of CAI 2011, volume 6742 of LNCS. 201--215, Springer, 2011. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.