We consider the system fuhkop12rta1. Alphabet: app : [list * list] --> list cons : [nat * list] --> list hshuffle : [nat -> nat * list] --> list nil : [] --> list reverse : [list] --> list Rules: app(nil, x) => x app(cons(x, y), z) => cons(x, app(y, z)) reverse(nil) => nil reverse(cons(x, y)) => app(reverse(y), cons(x, nil)) hshuffle(f, nil) => nil hshuffle(f, cons(x, y)) => cons(f x, hshuffle(f, reverse(y))) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: app(nil, X) => X app(cons(X, Y), Z) => cons(X, app(Y, Z)) reverse(nil) => nil reverse(cons(X, Y)) => app(reverse(Y), cons(X, nil)) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) QTRSRRRProof [EQUIVALENT] || (2) QTRS || (3) QTRSRRRProof [EQUIVALENT] || (4) QTRS || (5) QTRSRRRProof [EQUIVALENT] || (6) QTRS || (7) RisEmptyProof [EQUIVALENT] || (8) YES || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || app(nil, %X) -> %X || app(cons(%X, %Y), %Z) -> cons(%X, app(%Y, %Z)) || reverse(nil) -> nil || reverse(cons(%X, %Y)) -> app(reverse(%Y), cons(%X, nil)) || || Q is empty. || || ---------------------------------------- || || (1) QTRSRRRProof (EQUIVALENT) || Used ordering: || Polynomial interpretation [POLO]: || || POL(app(x_1, x_2)) = x_1 + x_2 || POL(cons(x_1, x_2)) = 1 + 2*x_1 + x_2 || POL(nil) = 0 || POL(reverse(x_1)) = 1 + x_1 || With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: || || reverse(nil) -> nil || || || || || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || app(nil, %X) -> %X || app(cons(%X, %Y), %Z) -> cons(%X, app(%Y, %Z)) || reverse(cons(%X, %Y)) -> app(reverse(%Y), cons(%X, nil)) || || Q is empty. || || ---------------------------------------- || || (3) QTRSRRRProof (EQUIVALENT) || Used ordering: || Polynomial interpretation [POLO]: || || POL(app(x_1, x_2)) = x_1 + x_2 || POL(cons(x_1, x_2)) = 1 + 2*x_1 + x_2 || POL(nil) = 0 || POL(reverse(x_1)) = 2*x_1 || With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: || || reverse(cons(%X, %Y)) -> app(reverse(%Y), cons(%X, nil)) || || || || || ---------------------------------------- || || (4) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || app(nil, %X) -> %X || app(cons(%X, %Y), %Z) -> cons(%X, app(%Y, %Z)) || || Q is empty. || || ---------------------------------------- || || (5) QTRSRRRProof (EQUIVALENT) || Used ordering: || Polynomial interpretation [POLO]: || || POL(app(x_1, x_2)) = 2 + 2*x_1 + x_2 || POL(cons(x_1, x_2)) = 1 + 2*x_1 + x_2 || POL(nil) = 1 || With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: || || app(nil, %X) -> %X || app(cons(%X, %Y), %Z) -> cons(%X, app(%Y, %Z)) || || || || || ---------------------------------------- || || (6) || Obligation: || Q restricted rewrite system: || R is empty. || Q is empty. || || ---------------------------------------- || || (7) RisEmptyProof (EQUIVALENT) || The TRS R is empty. Hence, termination is trivially proven. || ---------------------------------------- || || (8) || YES || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] hshuffle#(F, cons(X, Y)) =#> hshuffle#(F, reverse(Y)) 1] hshuffle#(F, cons(X, Y)) =#> reverse#(Y) Rules R_0: app(nil, X) => X app(cons(X, Y), Z) => cons(X, app(Y, Z)) reverse(nil) => nil reverse(cons(X, Y)) => app(reverse(Y), cons(X, nil)) hshuffle(F, nil) => nil hshuffle(F, cons(X, Y)) => cons(F X, hshuffle(F, reverse(Y))) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0, 1 * 1 : This graph has the following strongly connected components: P_1: hshuffle#(F, cons(X, Y)) =#> hshuffle#(F, reverse(Y)) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f). Thus, the original system is terminating if (P_1, R_0, computable, formative) is finite. We consider the dependency pair problem (P_1, R_0, computable, formative). We will use the reduction pair processor with usable rules [Kop12, Thm. 7.44]. The usable rules of (P_1, R_0) are: app(nil, X) => X app(cons(X, Y), Z) => cons(X, app(Y, Z)) reverse(nil) => nil reverse(cons(X, Y)) => app(reverse(Y), cons(X, nil)) It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: hshuffle#(F, cons(X, Y)) >? hshuffle#(F, reverse(Y)) app(nil, X) >= X app(cons(X, Y), Z) >= cons(X, app(Y, Z)) reverse(nil) >= nil reverse(cons(X, Y)) >= app(reverse(Y), cons(X, nil)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: app = \y0y1.y0 + y1 cons = \y0y1.2 + y1 hshuffle# = \G0y1.2y1 nil = 0 reverse = \y0.y0 Using this interpretation, the requirements translate to: [[hshuffle#(_F0, cons(_x1, _x2))]] = 4 + 2x2 > 2x2 = [[hshuffle#(_F0, reverse(_x2))]] [[app(nil, _x0)]] = x0 >= x0 = [[_x0]] [[app(cons(_x0, _x1), _x2)]] = 2 + x1 + x2 >= 2 + x1 + x2 = [[cons(_x0, app(_x1, _x2))]] [[reverse(nil)]] = 0 >= 0 = [[nil]] [[reverse(cons(_x0, _x1))]] = 2 + x1 >= 2 + x1 = [[app(reverse(_x1), cons(_x0, nil))]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace a dependency pair problem (P_1, R_0) by ({}, R_0). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.