We consider the system monad. Alphabet: bind : [] --> Ta -> (a -> Ta) -> Ta return : [] --> a -> Ta Rules: bind (return x) (/\y.f y) => f x bind x (/\y.return y) => x bind (bind x (/\y.f y)) (/\z.g z) => bind x (/\u.bind (f u) (/\v.g v)) Using the transformations described in [Kop11], this system can be brought in a form without leading free variables in the left-hand side, and where the left-hand side of a variable is always a functional term or application headed by a functional term. We now transform the resulting AFS into an AFSM by replacing all free variables by meta-variables (with arity 0). This leads to the following AFSM: Alphabet: bind : [Ta * a -> Ta] --> Ta return : [a] --> Ta ~AP1 : [a -> Ta * a] --> Ta Rules: bind(return(X), /\x.~AP1(F, x)) => ~AP1(F, X) bind(X, /\x.return(x)) => X bind(bind(X, /\x.~AP1(F, x)), /\y.~AP1(G, y)) => bind(X, /\z.bind(~AP1(F, z), /\u.~AP1(G, u))) bind(return(X), /\x.return(x)) => return(X) bind(bind(X, /\x.return(x)), /\y.~AP1(F, y)) => bind(X, /\z.bind(return(z), /\u.~AP1(F, u))) bind(bind(X, /\x.~AP1(F, x)), /\y.return(y)) => bind(X, /\z.bind(~AP1(F, z), /\u.return(u))) bind(bind(X, /\x.return(x)), /\y.return(y)) => bind(X, /\z.bind(return(z), /\u.return(u))) ~AP1(F, X) => F X Symbol ~AP1 is an encoding for application that is only used in innocuous ways. We can simplify the program (without losing non-termination) by removing it. Additionally, we can remove some (now-)redundant rules. This gives: Alphabet: bind : [Ta * a -> Ta] --> Ta return : [a] --> Ta Rules: bind(return(X), /\x.Y(x)) => Y(X) bind(X, /\x.return(x)) => X bind(bind(X, /\x.Y(x)), /\y.Z(y)) => bind(X, /\z.bind(Y(z), /\u.Z(u))) We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] bind#(bind(X, /\x.Y(x)), /\y.Z(y)) =#> bind#(X, /\z.bind(Y(z), /\u.Z(u))) 1] bind#(bind(X, /\x.Y(x)), /\y.Z(y)) =#> bind#(Y(U), /\z.Z(z)) Rules R_0: bind(return(X), /\x.Y(x)) => Y(X) bind(X, /\x.return(x)) => X bind(bind(X, /\x.Y(x)), /\y.Z(y)) => bind(X, /\z.bind(Y(z), /\u.Z(u))) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We apply the accessible subterm criterion with the following projection function: nu(bind#) = 1 Thus, we can orient the dependency pairs as follows: nu(bind#(bind(X, /\x.Y(x)), /\y.Z(y))) = bind(X, /\z.Y(z)) [>] X = nu(bind#(X, /\x.bind(Y(x), /\u.Z(u)))) nu(bind#(bind(X, /\x.Y(x)), /\y.Z(y))) = bind(X, /\z.Y(z)) [>] Y(U) = nu(bind#(Y(U), /\x.Z(x))) By [FuhKop19, Thm. 63], we may replace a dependency pair problem (P_0, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop11] C. Kop. Simplifying Algebraic Functional Systems. In Proceedings of CAI 2011, volume 6742 of LNCS. 201--215, Springer, 2011. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.