We consider the system rec. Alphabet: 0 : [] --> nat rec : [nat * a * nat -> a -> a] --> a s : [nat] --> nat Rules: rec(0, x, f) => x rec(s(x), y, f) => f x rec(x, y, f) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We use the dependency pair framework as described in [Kop12, Ch. 6/7], with dynamic dependency pairs. After applying [Kop12, Thm. 7.22] to denote collapsing dependency pairs in an extended form, we thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] rec#(s(X), Y, F) =#> F(X, rec(X, Y, F)) 1] rec#(s(X), Y, F) =#> rec#(X, Y, F) Rules R_0: rec(0, X, F) => X rec(s(X), Y, F) => F X rec(X, Y, F) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). This combination (P_0, R_0) has no formative rules! We will name the empty set of rules:R_1. By [Kop12, Thm. 7.17], we may replace the dependency pair problem (P_0, R_0, minimal, formative) by (P_0, R_1, minimal, formative). Thus, the original system is terminating if (P_0, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_1, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. As the system is abstraction-simple and the formative flag is set, it suffices to find a tagged reduction pair [Kop12, Def. 6.70]. Thus, we must orient: rec#(s(X), Y, F) >? F(X, rec(X, Y, F)) rec#(s(X), Y, F) >? rec#(X, Y, F) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: rec = \y0y1G2.0 rec# = \y0y1G2.3 + y0 + 2y0y0G2(y0,y0) + 2G2(y0,y0) + 3y0y1G2(y0,y1) + 3y0y1G2(y1,y0) s = \y0.3 + 3y0 Using this interpretation, the requirements translate to: [[rec#(s(_x0), _x1, _F2)]] = 6 + 3x0 + 9x0x1F2(x1,3 + 3x0) + 9x0x1F2(3 + 3x0,x1) + 9x1F2(x1,3 + 3x0) + 9x1F2(3 + 3x0,x1) + 18x0x0F2(3 + 3x0,3 + 3x0) + 20F2(3 + 3x0,3 + 3x0) + 36x0F2(3 + 3x0,3 + 3x0) > F2(x0,0) = [[_F2(_x0, rec(_x0, _x1, _F2))]] [[rec#(s(_x0), _x1, _F2)]] = 6 + 3x0 + 9x0x1F2(x1,3 + 3x0) + 9x0x1F2(3 + 3x0,x1) + 9x1F2(x1,3 + 3x0) + 9x1F2(3 + 3x0,x1) + 18x0x0F2(3 + 3x0,3 + 3x0) + 20F2(3 + 3x0,3 + 3x0) + 36x0F2(3 + 3x0,3 + 3x0) > 3 + x0 + 2x0x0F2(x0,x0) + 2F2(x0,x0) + 3x0x1F2(x0,x1) + 3x0x1F2(x1,x0) = [[rec#(_x0, _x1, _F2)]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace a dependency pair problem (P_0, R_1) by ({}, R_1). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.