We consider the system zipWith. Alphabet: 0 : [] --> nat cons : [nat * list] --> list false : [] --> bool gcd : [nat * nat] --> nat gcdlists : [list * list] --> list if : [bool * nat * nat] --> nat le : [nat * nat] --> bool minus : [nat * nat] --> nat nil : [] --> list s : [nat] --> nat true : [] --> bool zipWith : [nat -> nat -> nat * list * list] --> list Rules: le(0, x) => true le(s(x), 0) => false le(s(x), s(y)) => le(x, y) minus(x, 0) => x minus(s(x), s(y)) => minus(x, y) gcd(0, x) => 0 gcd(s(x), 0) => 0 gcd(s(x), s(y)) => if(le(y, x), s(x), s(y)) if(true, s(x), s(y)) => gcd(minus(x, y), s(y)) if(false, s(x), s(y)) => gcd(minus(y, x), s(x)) zipWith(f, x, nil) => nil zipWith(f, nil, x) => nil zipWith(f, cons(x, y), cons(z, u)) => cons(f x z, zipWith(f, y, u)) gcdlists(x, y) => zipWith(/\z./\u.gcd(z, u), x, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: le(0, X) => true le(s(X), 0) => false le(s(X), s(Y)) => le(X, Y) minus(X, 0) => X minus(s(X), s(Y)) => minus(X, Y) gcd(0, X) => 0 gcd(s(X), 0) => 0 gcd(s(X), s(Y)) => if(le(Y, X), s(X), s(Y)) if(true, s(X), s(Y)) => gcd(minus(X, Y), s(Y)) if(false, s(X), s(Y)) => gcd(minus(Y, X), s(X)) Moreover, the system is finitely branching. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is Ce-terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed Ce-terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) DependencyPairsProof [EQUIVALENT] || (2) QDP || (3) DependencyGraphProof [EQUIVALENT] || (4) AND || (5) QDP || (6) UsableRulesProof [EQUIVALENT] || (7) QDP || (8) QDPSizeChangeProof [EQUIVALENT] || (9) YES || (10) QDP || (11) UsableRulesProof [EQUIVALENT] || (12) QDP || (13) QDPSizeChangeProof [EQUIVALENT] || (14) YES || (15) QDP || (16) QDPOrderProof [EQUIVALENT] || (17) QDP || (18) PisEmptyProof [EQUIVALENT] || (19) YES || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || gcd(0, %X) -> 0 || gcd(s(%X), 0) -> 0 || gcd(s(%X), s(%Y)) -> if(le(%Y, %X), s(%X), s(%Y)) || if(true, s(%X), s(%Y)) -> gcd(minus(%X, %Y), s(%Y)) || if(false, s(%X), s(%Y)) -> gcd(minus(%Y, %X), s(%X)) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || || ---------------------------------------- || || (1) DependencyPairsProof (EQUIVALENT) || Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. || ---------------------------------------- || || (2) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LE(s(%X), s(%Y)) -> LE(%X, %Y) || MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) || GCD(s(%X), s(%Y)) -> IF(le(%Y, %X), s(%X), s(%Y)) || GCD(s(%X), s(%Y)) -> LE(%Y, %X) || IF(true, s(%X), s(%Y)) -> GCD(minus(%X, %Y), s(%Y)) || IF(true, s(%X), s(%Y)) -> MINUS(%X, %Y) || IF(false, s(%X), s(%Y)) -> GCD(minus(%Y, %X), s(%X)) || IF(false, s(%X), s(%Y)) -> MINUS(%Y, %X) || || The TRS R consists of the following rules: || || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || gcd(0, %X) -> 0 || gcd(s(%X), 0) -> 0 || gcd(s(%X), s(%Y)) -> if(le(%Y, %X), s(%X), s(%Y)) || if(true, s(%X), s(%Y)) -> gcd(minus(%X, %Y), s(%Y)) || if(false, s(%X), s(%Y)) -> gcd(minus(%Y, %X), s(%X)) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (3) DependencyGraphProof (EQUIVALENT) || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes. || ---------------------------------------- || || (4) || Complex Obligation (AND) || || ---------------------------------------- || || (5) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) || || The TRS R consists of the following rules: || || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || gcd(0, %X) -> 0 || gcd(s(%X), 0) -> 0 || gcd(s(%X), s(%Y)) -> if(le(%Y, %X), s(%X), s(%Y)) || if(true, s(%X), s(%Y)) -> gcd(minus(%X, %Y), s(%Y)) || if(false, s(%X), s(%Y)) -> gcd(minus(%Y, %X), s(%X)) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (6) UsableRulesProof (EQUIVALENT) || We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (7) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) || || R is empty. || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (8) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) || The graph contains the following edges 1 > 1, 2 > 2 || || || ---------------------------------------- || || (9) || YES || || ---------------------------------------- || || (10) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LE(s(%X), s(%Y)) -> LE(%X, %Y) || || The TRS R consists of the following rules: || || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || gcd(0, %X) -> 0 || gcd(s(%X), 0) -> 0 || gcd(s(%X), s(%Y)) -> if(le(%Y, %X), s(%X), s(%Y)) || if(true, s(%X), s(%Y)) -> gcd(minus(%X, %Y), s(%Y)) || if(false, s(%X), s(%Y)) -> gcd(minus(%Y, %X), s(%X)) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (11) UsableRulesProof (EQUIVALENT) || We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (12) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LE(s(%X), s(%Y)) -> LE(%X, %Y) || || R is empty. || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (13) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *LE(s(%X), s(%Y)) -> LE(%X, %Y) || The graph contains the following edges 1 > 1, 2 > 2 || || || ---------------------------------------- || || (14) || YES || || ---------------------------------------- || || (15) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || GCD(s(%X), s(%Y)) -> IF(le(%Y, %X), s(%X), s(%Y)) || IF(true, s(%X), s(%Y)) -> GCD(minus(%X, %Y), s(%Y)) || IF(false, s(%X), s(%Y)) -> GCD(minus(%Y, %X), s(%X)) || || The TRS R consists of the following rules: || || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || gcd(0, %X) -> 0 || gcd(s(%X), 0) -> 0 || gcd(s(%X), s(%Y)) -> if(le(%Y, %X), s(%X), s(%Y)) || if(true, s(%X), s(%Y)) -> gcd(minus(%X, %Y), s(%Y)) || if(false, s(%X), s(%Y)) -> gcd(minus(%Y, %X), s(%X)) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (16) QDPOrderProof (EQUIVALENT) || We use the reduction pair processor [LPAR04,JAR06]. || || || The following pairs can be oriented strictly and are deleted. || || GCD(s(%X), s(%Y)) -> IF(le(%Y, %X), s(%X), s(%Y)) || IF(true, s(%X), s(%Y)) -> GCD(minus(%X, %Y), s(%Y)) || IF(false, s(%X), s(%Y)) -> GCD(minus(%Y, %X), s(%X)) || The remaining pairs can at least be oriented weakly. || Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: || || POL( IF_3(x_1, ..., x_3) ) = 2x_2 + x_3 + 1 || POL( le_2(x_1, x_2) ) = 0 || POL( 0 ) = 0 || POL( true ) = 2 || POL( s_1(x_1) ) = 2x_1 + 2 || POL( false ) = 1 || POL( GCD_2(x_1, x_2) ) = 2x_1 + x_2 + 2 || POL( minus_2(x_1, x_2) ) = x_1 || || The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || || || ---------------------------------------- || || (17) || Obligation: || Q DP problem: || P is empty. || The TRS R consists of the following rules: || || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || gcd(0, %X) -> 0 || gcd(s(%X), 0) -> 0 || gcd(s(%X), s(%Y)) -> if(le(%Y, %X), s(%X), s(%Y)) || if(true, s(%X), s(%Y)) -> gcd(minus(%X, %Y), s(%Y)) || if(false, s(%X), s(%Y)) -> gcd(minus(%Y, %X), s(%X)) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (18) PisEmptyProof (EQUIVALENT) || The TRS P is empty. Hence, there is no (P,Q,R) chain. || ---------------------------------------- || || (19) || YES || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with dynamic dependency pairs. After applying [Kop12, Thm. 7.22] to denote collapsing dependency pairs in an extended form, we thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] zipWith#(F, cons(X, Y), cons(Z, U)) =#> F(X, Z) 1] zipWith#(F, cons(X, Y), cons(Z, U)) =#> zipWith#(F, Y, U) 2] gcdlists#(X, Y) =#> zipWith#(/\x./\y.gcd(x, y), X, Y) 3] gcdlists#(X, Y) =#> gcd#(x, y) Rules R_0: le(0, X) => true le(s(X), 0) => false le(s(X), s(Y)) => le(X, Y) minus(X, 0) => X minus(s(X), s(Y)) => minus(X, Y) gcd(0, X) => 0 gcd(s(X), 0) => 0 gcd(s(X), s(Y)) => if(le(Y, X), s(X), s(Y)) if(true, s(X), s(Y)) => gcd(minus(X, Y), s(Y)) if(false, s(X), s(Y)) => gcd(minus(Y, X), s(X)) zipWith(F, X, nil) => nil zipWith(F, nil, X) => nil zipWith(F, cons(X, Y), cons(Z, U)) => cons(F X Z, zipWith(F, Y, U)) gcdlists(X, Y) => zipWith(/\x./\y.gcd(x, y), X, Y) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0, 1, 2, 3 * 1 : 0, 1 * 2 : 0, 1 * 3 : This graph has the following strongly connected components: P_1: zipWith#(F, cons(X, Y), cons(Z, U)) =#> F(X, Z) zipWith#(F, cons(X, Y), cons(Z, U)) =#> zipWith#(F, Y, U) gcdlists#(X, Y) =#> zipWith#(/\x./\y.gcd(x, y), X, Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f). Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). The formative rules of (P_1, R_0) are R_1 ::= zipWith(F, cons(X, Y), cons(Z, U)) => cons(F X Z, zipWith(F, Y, U)) gcdlists(X, Y) => zipWith(/\x./\y.gcd(x, y), X, Y) By [Kop12, Thm. 7.17], we may replace the dependency pair problem (P_1, R_0, minimal, formative) by (P_1, R_1, minimal, formative). Thus, the original system is terminating if (P_1, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_1, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. As the system is abstraction-simple and the formative flag is set, it suffices to find a tagged reduction pair [Kop12, Def. 6.70]. Thus, we must orient: zipWith#(F, cons(X, Y), cons(Z, U)) >? F(X, Z) zipWith#(F, cons(X, Y), cons(Z, U)) >? zipWith#(F, Y, U) gcdlists#(X, Y) >? zipWith#(/\x./\y.gcd-(x, y), X, Y) zipWith(F, cons(X, Y), cons(Z, U)) >= cons(F X Z, zipWith(F, Y, U)) gcdlists(X, Y) >= zipWith(/\x./\y.gcd-(x, y), X, Y) gcd-(X, Y) >= gcd(X, Y) We apply [Kop12, Thm. 6.75] and use the following argument functions: pi( gcdlists(X, Y) ) = #argfun-gcdlists#(zipWith(/\x./\y.gcd-(x, y), X, Y)) pi( gcdlists#(X, Y) ) = #argfun-gcdlists##(zipWith#(/\x./\y.gcd-(x, y), X, Y)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: #argfun-gcdlists# = \y0.3 + y0 #argfun-gcdlists## = \y0.3 + y0 cons = \y0y1.1 + y0 + y1 gcd = \y0y1.0 gcd- = \y0y1.3 + 3y0 + 3y1 gcdlists = \y0y1.0 gcdlists# = \y0y1.0 zipWith = \G0y1y2.y1 + 2y2 + 2y1y2G0(y1,y2) + 2G0(y1,y2) zipWith# = \G0y1y2.3 + G0(y1,y2) Using this interpretation, the requirements translate to: [[zipWith#(_F0, cons(_x1, _x2), cons(_x3, _x4))]] = 3 + F0(1 + x1 + x2,1 + x3 + x4) > F0(x1,x3) = [[_F0(_x1, _x3)]] [[zipWith#(_F0, cons(_x1, _x2), cons(_x3, _x4))]] = 3 + F0(1 + x1 + x2,1 + x3 + x4) >= 3 + F0(x2,x4) = [[zipWith#(_F0, _x2, _x4)]] [[#argfun-gcdlists##(zipWith#(/\x./\y.gcd-(x, y), _x0, _x1))]] = 9 + 3x0 + 3x1 > 6 + 3x0 + 3x1 = [[zipWith#(/\x./\y.gcd-(x, y), _x0, _x1)]] [[zipWith(_F0, cons(_x1, _x2), cons(_x3, _x4))]] = 3 + x1 + x2 + 2x3 + 2x4 + 2x1x3F0(1 + x1 + x2,1 + x3 + x4) + 2x1x4F0(1 + x1 + x2,1 + x3 + x4) + 2x1F0(1 + x1 + x2,1 + x3 + x4) + 2x2x3F0(1 + x1 + x2,1 + x3 + x4) + 2x2x4F0(1 + x1 + x2,1 + x3 + x4) + 2x2F0(1 + x1 + x2,1 + x3 + x4) + 2x3F0(1 + x1 + x2,1 + x3 + x4) + 2x4F0(1 + x1 + x2,1 + x3 + x4) + 4F0(1 + x1 + x2,1 + x3 + x4) >= 1 + x2 + 2x4 + 2x2x4F0(x2,x4) + 2F0(x2,x4) + max(x1, x3, F0(x1,x3)) = [[cons(_F0 _x1 _x3, zipWith(_F0, _x2, _x4))]] [[#argfun-gcdlists#(zipWith(/\x./\y.gcd-(x, y), _x0, _x1))]] = 9 + 6x0x0x1 + 6x0x1 + 6x0x1x1 + 7x0 + 8x1 >= 6 + 6x0x0x1 + 6x0x1 + 6x0x1x1 + 7x0 + 8x1 = [[zipWith(/\x./\y.gcd-(x, y), _x0, _x1)]] [[gcd-(_x0, _x1)]] = 3 + 3x0 + 3x1 >= 0 = [[gcd(_x0, _x1)]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_1, R_1, minimal, formative) by (P_2, R_1, minimal, formative), where P_2 consists of: zipWith#(F, cons(X, Y), cons(Z, U)) =#> zipWith#(F, Y, U) Thus, the original system is terminating if (P_2, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_2, R_1, minimal, formative). We apply the subterm criterion with the following projection function: nu(zipWith#) = 2 Thus, we can orient the dependency pairs as follows: nu(zipWith#(F, cons(X, Y), cons(Z, U))) = cons(X, Y) |> Y = nu(zipWith#(F, Y, U)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_2, R_1, minimal, f) by ({}, R_1, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.