We consider the system merge. Alphabet: cons : [nat * list] --> list map : [nat -> nat * list] --> list merge : [list * list * list] --> list nil : [] --> list Rules: merge(nil, nil, x) => x merge(nil, cons(x, y), z) => merge(y, nil, cons(x, z)) merge(cons(x, y), z, u) => merge(z, y, cons(x, u)) map(f, nil) => nil map(f, cons(x, y)) => cons(f x, map(f, y)) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: merge(nil, nil, X) => X merge(nil, cons(X, Y), Z) => merge(Y, nil, cons(X, Z)) merge(cons(X, Y), Z, U) => merge(Z, Y, cons(X, U)) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) QTRSRRRProof [EQUIVALENT] || (2) QTRS || (3) RisEmptyProof [EQUIVALENT] || (4) YES || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || merge(nil, nil, %X) -> %X || merge(nil, cons(%X, %Y), %Z) -> merge(%Y, nil, cons(%X, %Z)) || merge(cons(%X, %Y), %Z, %U) -> merge(%Z, %Y, cons(%X, %U)) || || Q is empty. || || ---------------------------------------- || || (1) QTRSRRRProof (EQUIVALENT) || Used ordering: || Polynomial interpretation [POLO]: || || POL(cons(x_1, x_2)) = 1 + x_1 + x_2 || POL(merge(x_1, x_2, x_3)) = 2 + 2*x_1 + 2*x_2 + x_3 || POL(nil) = 2 || With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: || || merge(nil, nil, %X) -> %X || merge(nil, cons(%X, %Y), %Z) -> merge(%Y, nil, cons(%X, %Z)) || merge(cons(%X, %Y), %Z, %U) -> merge(%Z, %Y, cons(%X, %U)) || || || || || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || R is empty. || Q is empty. || || ---------------------------------------- || || (3) RisEmptyProof (EQUIVALENT) || The TRS R is empty. Hence, termination is trivially proven. || ---------------------------------------- || || (4) || YES || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with dynamic dependency pairs. After applying [Kop12, Thm. 7.22] to denote collapsing dependency pairs in an extended form, we thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] map#(F, cons(X, Y)) =#> F(X) 1] map#(F, cons(X, Y)) =#> map#(F, Y) Rules R_0: merge(nil, nil, X) => X merge(nil, cons(X, Y), Z) => merge(Y, nil, cons(X, Z)) merge(cons(X, Y), Z, U) => merge(Z, Y, cons(X, U)) map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. As the system is abstraction-simple and the formative flag is set, it suffices to find a tagged reduction pair [Kop12, Def. 6.70]. Thus, we must orient: map#(F, cons(X, Y)) >? F(X) map#(F, cons(X, Y)) >? map#(F, Y) merge(nil, nil, X) >= X merge(nil, cons(X, Y), Z) >= merge(Y, nil, cons(X, Z)) merge(cons(X, Y), Z, U) >= merge(Z, Y, cons(X, U)) map(F, nil) >= nil map(F, cons(X, Y)) >= cons(F X, map(F, Y)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: cons = \y0y1.1 + y0 + y1 map = \G0y1.2y1 + y1G0(y1) map# = \G0y1.3 + y1 + y1G0(y1) merge = \y0y1y2.y0 + y1 + y2 nil = 0 Using this interpretation, the requirements translate to: [[map#(_F0, cons(_x1, _x2))]] = 4 + x1 + x2 + F0(1 + x1 + x2) + x1F0(1 + x1 + x2) + x2F0(1 + x1 + x2) > F0(x1) = [[_F0(_x1)]] [[map#(_F0, cons(_x1, _x2))]] = 4 + x1 + x2 + F0(1 + x1 + x2) + x1F0(1 + x1 + x2) + x2F0(1 + x1 + x2) > 3 + x2 + x2F0(x2) = [[map#(_F0, _x2)]] [[merge(nil, nil, _x0)]] = x0 >= x0 = [[_x0]] [[merge(nil, cons(_x0, _x1), _x2)]] = 1 + x0 + x1 + x2 >= 1 + x0 + x1 + x2 = [[merge(_x1, nil, cons(_x0, _x2))]] [[merge(cons(_x0, _x1), _x2, _x3)]] = 1 + x0 + x1 + x2 + x3 >= 1 + x0 + x1 + x2 + x3 = [[merge(_x2, _x1, cons(_x0, _x3))]] [[map(_F0, nil)]] = 0 >= 0 = [[nil]] [[map(_F0, cons(_x1, _x2))]] = 2 + 2x1 + 2x2 + F0(1 + x1 + x2) + x1F0(1 + x1 + x2) + x2F0(1 + x1 + x2) >= 1 + 2x2 + x2F0(x2) + max(x1, F0(x1)) = [[cons(_F0 _x1, map(_F0, _x2))]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace a dependency pair problem (P_0, R_0) by ({}, R_0). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.