We consider the system shuffle. Alphabet: app : [list * list] --> list cons : [nat * list] --> list map : [nat -> nat * list] --> list nil : [] --> list reverse : [list] --> list shuffle : [list] --> list Rules: app(nil, x) => x app(cons(x, y), z) => cons(x, app(y, z)) reverse(nil) => nil reverse(cons(x, y)) => app(reverse(y), cons(x, nil)) shuffle(nil) => nil shuffle(cons(x, y)) => cons(x, shuffle(reverse(y))) map(f, nil) => nil map(f, cons(x, y)) => cons(f x, map(f, y)) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: app(nil, X) => X app(cons(X, Y), Z) => cons(X, app(Y, Z)) reverse(nil) => nil reverse(cons(X, Y)) => app(reverse(Y), cons(X, nil)) shuffle(nil) => nil shuffle(cons(X, Y)) => cons(X, shuffle(reverse(Y))) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) QTRSRRRProof [EQUIVALENT] || (2) QTRS || (3) QTRSRRRProof [EQUIVALENT] || (4) QTRS || (5) QTRSRRRProof [EQUIVALENT] || (6) QTRS || (7) QTRSRRRProof [EQUIVALENT] || (8) QTRS || (9) QTRSRRRProof [EQUIVALENT] || (10) QTRS || (11) RisEmptyProof [EQUIVALENT] || (12) YES || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || app(nil, %X) -> %X || app(cons(%X, %Y), %Z) -> cons(%X, app(%Y, %Z)) || reverse(nil) -> nil || reverse(cons(%X, %Y)) -> app(reverse(%Y), cons(%X, nil)) || shuffle(nil) -> nil || shuffle(cons(%X, %Y)) -> cons(%X, shuffle(reverse(%Y))) || || Q is empty. || || ---------------------------------------- || || (1) QTRSRRRProof (EQUIVALENT) || Used ordering: || Polynomial interpretation [POLO]: || || POL(app(x_1, x_2)) = x_1 + x_2 || POL(cons(x_1, x_2)) = 2 + 2*x_1 + x_2 || POL(nil) = 0 || POL(reverse(x_1)) = x_1 || POL(shuffle(x_1)) = 2*x_1 || With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: || || shuffle(cons(%X, %Y)) -> cons(%X, shuffle(reverse(%Y))) || || || || || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || app(nil, %X) -> %X || app(cons(%X, %Y), %Z) -> cons(%X, app(%Y, %Z)) || reverse(nil) -> nil || reverse(cons(%X, %Y)) -> app(reverse(%Y), cons(%X, nil)) || shuffle(nil) -> nil || || Q is empty. || || ---------------------------------------- || || (3) QTRSRRRProof (EQUIVALENT) || Used ordering: || Polynomial interpretation [POLO]: || || POL(app(x_1, x_2)) = x_1 + 2*x_2 || POL(cons(x_1, x_2)) = x_1 + x_2 || POL(nil) = 0 || POL(reverse(x_1)) = 2*x_1 || POL(shuffle(x_1)) = 1 + 2*x_1 || With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: || || shuffle(nil) -> nil || || || || || ---------------------------------------- || || (4) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || app(nil, %X) -> %X || app(cons(%X, %Y), %Z) -> cons(%X, app(%Y, %Z)) || reverse(nil) -> nil || reverse(cons(%X, %Y)) -> app(reverse(%Y), cons(%X, nil)) || || Q is empty. || || ---------------------------------------- || || (5) QTRSRRRProof (EQUIVALENT) || Used ordering: || Polynomial interpretation [POLO]: || || POL(app(x_1, x_2)) = x_1 + x_2 || POL(cons(x_1, x_2)) = 1 + 2*x_1 + x_2 || POL(nil) = 0 || POL(reverse(x_1)) = 1 + x_1 || With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: || || reverse(nil) -> nil || || || || || ---------------------------------------- || || (6) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || app(nil, %X) -> %X || app(cons(%X, %Y), %Z) -> cons(%X, app(%Y, %Z)) || reverse(cons(%X, %Y)) -> app(reverse(%Y), cons(%X, nil)) || || Q is empty. || || ---------------------------------------- || || (7) QTRSRRRProof (EQUIVALENT) || Used ordering: || Polynomial interpretation [POLO]: || || POL(app(x_1, x_2)) = x_1 + x_2 || POL(cons(x_1, x_2)) = 1 + 2*x_1 + x_2 || POL(nil) = 0 || POL(reverse(x_1)) = 2*x_1 || With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: || || reverse(cons(%X, %Y)) -> app(reverse(%Y), cons(%X, nil)) || || || || || ---------------------------------------- || || (8) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || app(nil, %X) -> %X || app(cons(%X, %Y), %Z) -> cons(%X, app(%Y, %Z)) || || Q is empty. || || ---------------------------------------- || || (9) QTRSRRRProof (EQUIVALENT) || Used ordering: || Polynomial interpretation [POLO]: || || POL(app(x_1, x_2)) = 2 + 2*x_1 + x_2 || POL(cons(x_1, x_2)) = 1 + 2*x_1 + x_2 || POL(nil) = 1 || With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: || || app(nil, %X) -> %X || app(cons(%X, %Y), %Z) -> cons(%X, app(%Y, %Z)) || || || || || ---------------------------------------- || || (10) || Obligation: || Q restricted rewrite system: || R is empty. || Q is empty. || || ---------------------------------------- || || (11) RisEmptyProof (EQUIVALENT) || The TRS R is empty. Hence, termination is trivially proven. || ---------------------------------------- || || (12) || YES || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with dynamic dependency pairs. After applying [Kop12, Thm. 7.22] to denote collapsing dependency pairs in an extended form, we thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] map#(F, cons(X, Y)) =#> F(X) 1] map#(F, cons(X, Y)) =#> map#(F, Y) Rules R_0: app(nil, X) => X app(cons(X, Y), Z) => cons(X, app(Y, Z)) reverse(nil) => nil reverse(cons(X, Y)) => app(reverse(Y), cons(X, nil)) shuffle(nil) => nil shuffle(cons(X, Y)) => cons(X, shuffle(reverse(Y))) map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. As the system is abstraction-simple and the formative flag is set, it suffices to find a tagged reduction pair [Kop12, Def. 6.70]. Thus, we must orient: map#(F, cons(X, Y)) >? F(X) map#(F, cons(X, Y)) >? map#(F, Y) app(nil, X) >= X app(cons(X, Y), Z) >= cons(X, app(Y, Z)) reverse(nil) >= nil reverse(cons(X, Y)) >= app(reverse(Y), cons(X, nil)) shuffle(nil) >= nil shuffle(cons(X, Y)) >= cons(X, shuffle(reverse(Y))) map(F, nil) >= nil map(F, cons(X, Y)) >= cons(F X, map(F, Y)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: app = \y0y1.y0 + y1 cons = \y0y1.2 + y0 + y1 map = \G0y1.y1 + y1G0(y1) map# = \G0y1.3 + y1G0(y1) nil = 0 reverse = \y0.y0 shuffle = \y0.2y0 Using this interpretation, the requirements translate to: [[map#(_F0, cons(_x1, _x2))]] = 3 + 2F0(2 + x1 + x2) + x1F0(2 + x1 + x2) + x2F0(2 + x1 + x2) > F0(x1) = [[_F0(_x1)]] [[map#(_F0, cons(_x1, _x2))]] = 3 + 2F0(2 + x1 + x2) + x1F0(2 + x1 + x2) + x2F0(2 + x1 + x2) >= 3 + x2F0(x2) = [[map#(_F0, _x2)]] [[app(nil, _x0)]] = x0 >= x0 = [[_x0]] [[app(cons(_x0, _x1), _x2)]] = 2 + x0 + x1 + x2 >= 2 + x0 + x1 + x2 = [[cons(_x0, app(_x1, _x2))]] [[reverse(nil)]] = 0 >= 0 = [[nil]] [[reverse(cons(_x0, _x1))]] = 2 + x0 + x1 >= 2 + x0 + x1 = [[app(reverse(_x1), cons(_x0, nil))]] [[shuffle(nil)]] = 0 >= 0 = [[nil]] [[shuffle(cons(_x0, _x1))]] = 4 + 2x0 + 2x1 >= 2 + x0 + 2x1 = [[cons(_x0, shuffle(reverse(_x1)))]] [[map(_F0, nil)]] = 0 >= 0 = [[nil]] [[map(_F0, cons(_x1, _x2))]] = 2 + x1 + x2 + 2F0(2 + x1 + x2) + x1F0(2 + x1 + x2) + x2F0(2 + x1 + x2) >= 2 + x2 + x2F0(x2) + max(x1, F0(x1)) = [[cons(_F0 _x1, map(_F0, _x2))]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_0, R_0, minimal, formative) by (P_1, R_0, minimal, formative), where P_1 consists of: map#(F, cons(X, Y)) =#> map#(F, Y) Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(map#) = 2 Thus, we can orient the dependency pairs as follows: nu(map#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(map#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_1, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.