We consider the system 01GoedelT. Alphabet: rec : [] --> N -> a -> (N -> a -> a) -> a s : [] --> N -> N z : [] --> N Rules: rec z x (/\y.f y) => x rec (s x) y (/\u.f u) => f x (rec x y (/\v.f v)) Using the transformations described in [Kop11], this system can be brought in a form without leading free variables in the left-hand side, and where the left-hand side of a variable is always a functional term or application headed by a functional term. We now transform the resulting AFS into an AFSM by replacing all free variables by meta-variables (with arity 0). This leads to the following AFSM: Alphabet: rec : [N * a * N -> a -> a] --> a s : [N] --> N z : [] --> N ~AP1 : [N -> a -> a * N] --> a -> a Rules: rec(z, X, /\x.~AP1(F, x)) => X rec(s(X), Y, /\x.~AP1(F, x)) => ~AP1(F, X) rec(X, Y, /\y.~AP1(F, y)) ~AP1(F, X) => F X Symbol ~AP1 is an encoding for application that is only used in innocuous ways. We can simplify the program (without losing non-termination) by removing it. This gives: Alphabet: rec : [N * a * N -> a -> a] --> a s : [N] --> N z : [] --> N Rules: rec(z, X, /\x.F(x)) => X rec(s(X), Y, /\x.F(x)) => F(X) rec(X, Y, /\y.F(y)) We use the dependency pair framework as described in [Kop12, Ch. 6/7], with dynamic dependency pairs. After applying [Kop12, Thm. 7.22] to denote collapsing dependency pairs in an extended form, we thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] rec#(s(X), Y, /\x.F(x)) =#> F(X, rec(X, Y, /\y.F(y))) 1] rec#(s(X), Y, /\x.F(x)) =#> rec#(X, Y, /\y.F(y)) 2] rec#(s(X), Y, /\x.F(x)) =#> F(y) Rules R_0: rec(z, X, /\x.F(x)) => X rec(s(X), Y, /\x.F(x)) => F(X) rec(X, Y, /\y.F(y)) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). This combination (P_0, R_0) has no formative rules! We will name the empty set of rules:R_1. By [Kop12, Thm. 7.17], we may replace the dependency pair problem (P_0, R_0, minimal, formative) by (P_0, R_1, minimal, formative). Thus, the original system is terminating if (P_0, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_1, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. As the system is abstraction-simple and the formative flag is set, it suffices to find a tagged reduction pair [Kop12, Def. 6.70]. Thus, we must orient: rec#(s(X), Y, /\x.F(x)) >? F(X, rec(X, Y, /\y.F(y))) rec#(s(X), Y, /\x.F(x)) >? rec#(X, Y, /\y.F(y)) rec#(s(X), Y, /\x.F(x)) >? F(~c1) ~c0 We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: rec = \y0y1G2.0 rec# = \y0y1G2.3 + y0 + G2(0,0) + 2y0y0G2(y0,y0) + 2G2(y0,y0) + 3y0y1G2(y0,y1) + 3y0y1G2(y1,y0) s = \y0.3 + 3y0 ~c0 = 0 ~c1 = 0 Using this interpretation, the requirements translate to: [[rec#(s(_x0), _x1, /\x._F2(x))]] = 6 + 3x0 + F2(0,0) + 9x0x1F2(x1,3 + 3x0) + 9x0x1F2(3 + 3x0,x1) + 9x1F2(x1,3 + 3x0) + 9x1F2(3 + 3x0,x1) + 18x0x0F2(3 + 3x0,3 + 3x0) + 20F2(3 + 3x0,3 + 3x0) + 36x0F2(3 + 3x0,3 + 3x0) > F2(x0,0) = [[_F2(_x0, rec(_x0, _x1, /\x._F2(x)))]] [[rec#(s(_x0), _x1, /\x._F2(x))]] = 6 + 3x0 + F2(0,0) + 9x0x1F2(x1,3 + 3x0) + 9x0x1F2(3 + 3x0,x1) + 9x1F2(x1,3 + 3x0) + 9x1F2(3 + 3x0,x1) + 18x0x0F2(3 + 3x0,3 + 3x0) + 20F2(3 + 3x0,3 + 3x0) + 36x0F2(3 + 3x0,3 + 3x0) > 3 + x0 + F2(0,0) + 2x0x0F2(x0,x0) + 2F2(x0,x0) + 3x0x1F2(x0,x1) + 3x0x1F2(x1,x0) = [[rec#(_x0, _x1, /\x._F2(x))]] [[rec#(s(_x0), _x1, /\x._F2(x))]] = 6 + 3x0 + F2(0,0) + 9x0x1F2(x1,3 + 3x0) + 9x0x1F2(3 + 3x0,x1) + 9x1F2(x1,3 + 3x0) + 9x1F2(3 + 3x0,x1) + 18x0x0F2(3 + 3x0,3 + 3x0) + 20F2(3 + 3x0,3 + 3x0) + 36x0F2(3 + 3x0,3 + 3x0) > F2(0,0) = [[_F2(~c1) ~c0]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace a dependency pair problem (P_0, R_1) by ({}, R_1). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop11] C. Kop. Simplifying Algebraic Functional Systems. In Proceedings of CAI 2011, volume 6742 of LNCS. 201--215, Springer, 2011. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.