We consider the system prefixshuffle. Alphabet: 0 : [] --> nat app : [natlist * natlist] --> natlist apply2 : [pair -> nat -> pair * pair * nat] --> pair cons : [nat * natlist] --> natlist fst : [pair] --> natlist nil : [] --> natlist p : [natlist * natlist] --> pair pcons : [pair * plist] --> plist pnil : [] --> plist pps : [natlist] --> plist prefixshuffle : [pair * natlist] --> plist pshuffle : [natlist] --> pair reverse : [natlist] --> natlist s : [nat] --> nat shuffle : [natlist] --> natlist Rules: app(nil, x) => x app(cons(x, y), z) => cons(x, app(y, z)) reverse(nil) => nil reverse(cons(x, y)) => app(reverse(y), cons(x, nil)) shuffle(nil) => nil shuffle(cons(x, y)) => cons(x, shuffle(reverse(y))) fst(p(x, y)) => x pshuffle(x) => p(x, shuffle(x)) prefixshuffle(x, nil) => pcons(x, pnil) prefixshuffle(x, cons(y, z)) => pcons(x, prefixshuffle(apply2(/\u./\v.pshuffle(app(fst(u), cons(v, nil))), x, y), reverse(z))) apply2(f, x, 0) => x apply2(f, x, s(y)) => f x s(y) pps(x) => prefixshuffle(p(nil, nil), x) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] app#(cons(X, Y), Z) =#> app#(Y, Z) 1] reverse#(cons(X, Y)) =#> app#(reverse(Y), cons(X, nil)) 2] reverse#(cons(X, Y)) =#> reverse#(Y) 3] shuffle#(cons(X, Y)) =#> shuffle#(reverse(Y)) 4] shuffle#(cons(X, Y)) =#> reverse#(Y) 5] pshuffle#(X) =#> shuffle#(X) 6] prefixshuffle#(X, cons(Y, Z)) =#> prefixshuffle#(apply2(/\x./\y.pshuffle(app(fst(x), cons(y, nil))), X, Y), reverse(Z)) 7] prefixshuffle#(X, cons(Y, Z)) =#> apply2#(/\x./\y.pshuffle(app(fst(x), cons(y, nil))), X, Y) 8] prefixshuffle#(X, cons(Y, Z)) =#> pshuffle#(app(fst(U), cons(V, nil))) 9] prefixshuffle#(X, cons(Y, Z)) =#> app#(fst(U), cons(V, nil)) 10] prefixshuffle#(X, cons(Y, Z)) =#> fst#(U) 11] prefixshuffle#(X, cons(Y, Z)) =#> reverse#(Z) 12] pps#(X) =#> prefixshuffle#(p(nil, nil), X) Rules R_0: app(nil, X) => X app(cons(X, Y), Z) => cons(X, app(Y, Z)) reverse(nil) => nil reverse(cons(X, Y)) => app(reverse(Y), cons(X, nil)) shuffle(nil) => nil shuffle(cons(X, Y)) => cons(X, shuffle(reverse(Y))) fst(p(X, Y)) => X pshuffle(X) => p(X, shuffle(X)) prefixshuffle(X, nil) => pcons(X, pnil) prefixshuffle(X, cons(Y, Z)) => pcons(X, prefixshuffle(apply2(/\x./\y.pshuffle(app(fst(x), cons(y, nil))), X, Y), reverse(Z))) apply2(F, X, 0) => X apply2(F, X, s(Y)) => F X s(Y) pps(X) => prefixshuffle(p(nil, nil), X) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0 * 1 : 0 * 2 : 1, 2 * 3 : 3, 4 * 4 : 1, 2 * 5 : 3, 4 * 6 : 6, 7, 8, 9, 10, 11 * 7 : * 8 : 5 * 9 : 0 * 10 : * 11 : 1, 2 * 12 : 6, 7, 8, 9, 10, 11 This graph has the following strongly connected components: P_1: app#(cons(X, Y), Z) =#> app#(Y, Z) P_2: reverse#(cons(X, Y)) =#> reverse#(Y) P_3: shuffle#(cons(X, Y)) =#> shuffle#(reverse(Y)) P_4: prefixshuffle#(X, cons(Y, Z)) =#> prefixshuffle#(apply2(/\x./\y.pshuffle(app(fst(x), cons(y, nil))), X, Y), reverse(Z)) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f), (P_2, R_0, m, f), (P_3, R_0, m, f) and (P_4, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, computable, formative), (P_2, R_0, computable, formative), (P_3, R_0, computable, formative) and (P_4, R_0, computable, formative) is finite. We consider the dependency pair problem (P_4, R_0, computable, formative). The formative rules of (P_4, R_0) are R_1 ::= app(nil, X) => X app(cons(X, Y), Z) => cons(X, app(Y, Z)) reverse(nil) => nil reverse(cons(X, Y)) => app(reverse(Y), cons(X, nil)) shuffle(nil) => nil shuffle(cons(X, Y)) => cons(X, shuffle(reverse(Y))) fst(p(X, Y)) => X pshuffle(X) => p(X, shuffle(X)) apply2(F, X, 0) => X apply2(F, X, s(Y)) => F X s(Y) By [Kop12, Thm. 7.17], we may replace the dependency pair problem (P_4, R_0, computable, formative) by (P_4, R_1, computable, formative). Thus, the original system is terminating if each of (P_1, R_0, computable, formative), (P_2, R_0, computable, formative), (P_3, R_0, computable, formative) and (P_4, R_1, computable, formative) is finite. We consider the dependency pair problem (P_4, R_1, computable, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: prefixshuffle#(X, cons(Y, Z)) >? prefixshuffle#(apply2(/\x./\y.pshuffle(app(fst(x), cons(y, nil))), X, Y), reverse(Z)) app(nil, X) >= X app(cons(X, Y), Z) >= cons(X, app(Y, Z)) reverse(nil) >= nil reverse(cons(X, Y)) >= app(reverse(Y), cons(X, nil)) shuffle(nil) >= nil shuffle(cons(X, Y)) >= cons(X, shuffle(reverse(Y))) fst(p(X, Y)) >= X pshuffle(X) >= p(X, shuffle(X)) apply2(F, X, 0) >= X apply2(F, X, s(Y)) >= F X s(Y) We apply [Kop12, Thm. 6.75] and use the following argument functions: pi( pshuffle(X) ) = #argfun-pshuffle#(p(X, shuffle(X))) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: #argfun-pshuffle# = \y0.y0 0 = 0 app = \y0y1.y0 + y1 apply2 = \G0y1y2.y1 + G0(y1,y1) cons = \y0y1.1 + y1 fst = \y0.y0 nil = 0 p = \y0y1.y0 prefixshuffle# = \y0y1.2y1 pshuffle = \y0.0 reverse = \y0.y0 s = \y0.0 shuffle = \y0.2y0 Using this interpretation, the requirements translate to: [[prefixshuffle#(_x0, cons(_x1, _x2))]] = 2 + 2x2 > 2x2 = [[prefixshuffle#(apply2(/\x./\y.#argfun-pshuffle#(p(app(fst(x), cons(y, nil)), shuffle(app(fst(x), cons(y, nil))))), _x0, _x1), reverse(_x2))]] [[app(nil, _x0)]] = x0 >= x0 = [[_x0]] [[app(cons(_x0, _x1), _x2)]] = 1 + x1 + x2 >= 1 + x1 + x2 = [[cons(_x0, app(_x1, _x2))]] [[reverse(nil)]] = 0 >= 0 = [[nil]] [[reverse(cons(_x0, _x1))]] = 1 + x1 >= 1 + x1 = [[app(reverse(_x1), cons(_x0, nil))]] [[shuffle(nil)]] = 0 >= 0 = [[nil]] [[shuffle(cons(_x0, _x1))]] = 2 + 2x1 >= 1 + 2x1 = [[cons(_x0, shuffle(reverse(_x1)))]] [[fst(p(_x0, _x1))]] = x0 >= x0 = [[_x0]] [[#argfun-pshuffle#(p(_x0, shuffle(_x0)))]] = x0 >= x0 = [[p(_x0, shuffle(_x0))]] [[apply2(_F0, _x1, 0)]] = x1 + F0(x1,x1) >= x1 = [[_x1]] [[apply2(_F0, _x1, s(_x2))]] = x1 + F0(x1,x1) >= F0(x1,0) = [[_F0 _x1 s(_x2)]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace a dependency pair problem (P_4, R_1) by ({}, R_1). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if each of (P_1, R_0, computable, formative), (P_2, R_0, computable, formative) and (P_3, R_0, computable, formative) is finite. We consider the dependency pair problem (P_3, R_0, computable, formative). The formative rules of (P_3, R_0) are exactly R_1: app(nil, X) => X app(cons(X, Y), Z) => cons(X, app(Y, Z)) reverse(nil) => nil reverse(cons(X, Y)) => app(reverse(Y), cons(X, nil)) shuffle(nil) => nil shuffle(cons(X, Y)) => cons(X, shuffle(reverse(Y))) fst(p(X, Y)) => X pshuffle(X) => p(X, shuffle(X)) apply2(F, X, 0) => X apply2(F, X, s(Y)) => F X s(Y) By [Kop12, Thm. 7.17], we may replace the dependency pair problem (P_3, R_0, computable, formative) by (P_3, R_1, computable, formative). Thus, the original system is terminating if each of (P_1, R_0, computable, formative), (P_2, R_0, computable, formative) and (P_3, R_1, computable, formative) is finite. We consider the dependency pair problem (P_3, R_1, computable, formative). We will use the reduction pair processor with usable rules [Kop12, Thm. 7.44]. The usable rules of (P_3, R_1) are: app(nil, X) => X app(cons(X, Y), Z) => cons(X, app(Y, Z)) reverse(nil) => nil reverse(cons(X, Y)) => app(reverse(Y), cons(X, nil)) It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: shuffle#(cons(X, Y)) >? shuffle#(reverse(Y)) app(nil, X) >= X app(cons(X, Y), Z) >= cons(X, app(Y, Z)) reverse(nil) >= nil reverse(cons(X, Y)) >= app(reverse(Y), cons(X, nil)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: app = \y0y1.y0 + y1 cons = \y0y1.1 + y1 nil = 0 reverse = \y0.y0 shuffle# = \y0.y0 Using this interpretation, the requirements translate to: [[shuffle#(cons(_x0, _x1))]] = 1 + x1 > x1 = [[shuffle#(reverse(_x1))]] [[app(nil, _x0)]] = x0 >= x0 = [[_x0]] [[app(cons(_x0, _x1), _x2)]] = 1 + x1 + x2 >= 1 + x1 + x2 = [[cons(_x0, app(_x1, _x2))]] [[reverse(nil)]] = 0 >= 0 = [[nil]] [[reverse(cons(_x0, _x1))]] = 1 + x1 >= 1 + x1 = [[app(reverse(_x1), cons(_x0, nil))]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace a dependency pair problem (P_3, R_1) by ({}, R_1). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if each of (P_1, R_0, computable, formative) and (P_2, R_0, computable, formative) is finite. We consider the dependency pair problem (P_2, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(reverse#) = 1 Thus, we can orient the dependency pairs as follows: nu(reverse#(cons(X, Y))) = cons(X, Y) |> Y = nu(reverse#(Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_2, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if (P_1, R_0, computable, formative) is finite. We consider the dependency pair problem (P_1, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(app#) = 1 Thus, we can orient the dependency pairs as follows: nu(app#(cons(X, Y), Z)) = cons(X, Y) |> Y = nu(app#(Y, Z)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_1, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.