We consider the system Applicative_first_order_05__#3.57. Alphabet: 0 : [] --> b app : [c * c] --> c cons : [b * c] --> c false : [] --> a filter : [b -> a * c] --> c filter2 : [a * b -> a * b * c] --> c map : [b -> b * c] --> c minus : [b * b] --> b nil : [] --> c plus : [b * b] --> b quot : [b * b] --> b s : [b] --> b sum : [c] --> c true : [] --> a Rules: minus(x, 0) => x minus(s(x), s(y)) => minus(x, y) minus(minus(x, y), z) => minus(x, plus(y, z)) quot(0, s(x)) => 0 quot(s(x), s(y)) => s(quot(minus(x, y), s(y))) plus(0, x) => x plus(s(x), y) => s(plus(x, y)) app(nil, x) => x app(x, nil) => x app(cons(x, y), z) => cons(x, app(y, z)) sum(cons(x, nil)) => cons(x, nil) sum(cons(x, cons(y, z))) => sum(cons(plus(x, y), z)) sum(app(x, cons(y, cons(z, u)))) => sum(app(x, sum(cons(y, cons(z, u))))) map(f, nil) => nil map(f, cons(x, y)) => cons(f x, map(f, y)) filter(f, nil) => nil filter(f, cons(x, y)) => filter2(f x, f, x, y) filter2(true, f, x, y) => cons(x, filter(f, y)) filter2(false, f, x, y) => filter(f, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: minus(X, 0) => X minus(s(X), s(Y)) => minus(X, Y) minus(minus(X, Y), Z) => minus(X, plus(Y, Z)) quot(0, s(X)) => 0 quot(s(X), s(Y)) => s(quot(minus(X, Y), s(Y))) plus(0, X) => X plus(s(X), Y) => s(plus(X, Y)) app(nil, X) => X app(X, nil) => X app(cons(X, Y), Z) => cons(X, app(Y, Z)) sum(cons(X, nil)) => cons(X, nil) sum(cons(X, cons(Y, Z))) => sum(cons(plus(X, Y), Z)) sum(app(X, cons(Y, cons(Z, U)))) => sum(app(X, sum(cons(Y, cons(Z, U))))) Moreover, the system is finitely branching. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is Ce-terminating when seen as a many-sorted first-order TRS. According to nattprover, this system is indeed Ce-terminating: || Input TRS: || 1: minus(PeRCenTX,0()) -> PeRCenTX || 2: minus(s(PeRCenTX),s(PeRCenTY)) -> minus(PeRCenTX,PeRCenTY) || 3: minus(minus(PeRCenTX,PeRCenTY),PeRCenTZ) -> minus(PeRCenTX,plus(PeRCenTY,PeRCenTZ)) || 4: quot(0(),s(PeRCenTX)) -> 0() || 5: quot(s(PeRCenTX),s(PeRCenTY)) -> s(quot(minus(PeRCenTX,PeRCenTY),s(PeRCenTY))) || 6: plus(0(),PeRCenTX) -> PeRCenTX || 7: plus(s(PeRCenTX),PeRCenTY) -> s(plus(PeRCenTX,PeRCenTY)) || 8: app(nil(),PeRCenTX) -> PeRCenTX || 9: app(PeRCenTX,nil()) -> PeRCenTX || 10: app(cons(PeRCenTX,PeRCenTY),PeRCenTZ) -> cons(PeRCenTX,app(PeRCenTY,PeRCenTZ)) || 11: sum(cons(PeRCenTX,nil())) -> cons(PeRCenTX,nil()) || 12: sum(cons(PeRCenTX,cons(PeRCenTY,PeRCenTZ))) -> sum(cons(plus(PeRCenTX,PeRCenTY),PeRCenTZ)) || 13: sum(app(PeRCenTX,cons(PeRCenTY,cons(PeRCenTZ,PeRCenTU)))) -> sum(app(PeRCenTX,sum(cons(PeRCenTY,cons(PeRCenTZ,PeRCenTU))))) || 14: TIlDePAIR(PeRCenTX,PeRCenTY) -> PeRCenTX || 15: TIlDePAIR(PeRCenTX,PeRCenTY) -> PeRCenTY || Number of strict rules: 15 || Direct POLO(bPol) ... failed. || Uncurrying ... failed. || Dependency Pairs: || #1: #minus(s(PeRCenTX),s(PeRCenTY)) -> #minus(PeRCenTX,PeRCenTY) || #2: #sum(app(PeRCenTX,cons(PeRCenTY,cons(PeRCenTZ,PeRCenTU)))) -> #sum(app(PeRCenTX,sum(cons(PeRCenTY,cons(PeRCenTZ,PeRCenTU))))) || #3: #sum(app(PeRCenTX,cons(PeRCenTY,cons(PeRCenTZ,PeRCenTU)))) -> #app(PeRCenTX,sum(cons(PeRCenTY,cons(PeRCenTZ,PeRCenTU)))) || #4: #sum(app(PeRCenTX,cons(PeRCenTY,cons(PeRCenTZ,PeRCenTU)))) -> #sum(cons(PeRCenTY,cons(PeRCenTZ,PeRCenTU))) || #5: #sum(cons(PeRCenTX,cons(PeRCenTY,PeRCenTZ))) -> #sum(cons(plus(PeRCenTX,PeRCenTY),PeRCenTZ)) || #6: #sum(cons(PeRCenTX,cons(PeRCenTY,PeRCenTZ))) -> #plus(PeRCenTX,PeRCenTY) || #7: #plus(s(PeRCenTX),PeRCenTY) -> #plus(PeRCenTX,PeRCenTY) || #8: #app(cons(PeRCenTX,PeRCenTY),PeRCenTZ) -> #app(PeRCenTY,PeRCenTZ) || #9: #quot(s(PeRCenTX),s(PeRCenTY)) -> #quot(minus(PeRCenTX,PeRCenTY),s(PeRCenTY)) || #10: #quot(s(PeRCenTX),s(PeRCenTY)) -> #minus(PeRCenTX,PeRCenTY) || #11: #minus(minus(PeRCenTX,PeRCenTY),PeRCenTZ) -> #minus(PeRCenTX,plus(PeRCenTY,PeRCenTZ)) || #12: #minus(minus(PeRCenTX,PeRCenTY),PeRCenTZ) -> #plus(PeRCenTY,PeRCenTZ) || Number of SCCs: 6, DPs: 7 || SCC { #7 } || POLO(Sum)... succeeded. || TIlDePAIR w: 0 || s w: x1 + 1 || minus w: 0 || #plus w: x1 || sum w: 0 || 0 w: 0 || quot w: 0 || nil w: 0 || #TIlDePAIR w: 0 || #app w: 0 || #minus w: 0 || plus w: 0 || cons w: 0 || #quot w: 0 || #sum w: 0 || app w: 0 || USABLE RULES: { } || Removed DPs: #7 || Number of SCCs: 5, DPs: 6 || SCC { #8 } || POLO(Sum)... succeeded. || TIlDePAIR w: 0 || s w: 1 || minus w: 0 || #plus w: 0 || sum w: 0 || 0 w: 0 || quot w: 0 || nil w: 0 || #TIlDePAIR w: 0 || #app w: x1 || #minus w: 0 || plus w: 0 || cons w: x2 + 1 || #quot w: 0 || #sum w: 0 || app w: 0 || USABLE RULES: { } || Removed DPs: #8 || Number of SCCs: 4, DPs: 5 || SCC { #9 } || POLO(Sum)... succeeded. || TIlDePAIR w: 0 || s w: x1 + 2 || minus w: x1 + 1 || #plus w: 0 || sum w: 0 || 0 w: 1 || quot w: 0 || nil w: 0 || #TIlDePAIR w: 0 || #app w: 0 || #minus w: 0 || plus w: x1 + x2 + 1 || cons w: 1 || #quot w: x1 || #sum w: 0 || app w: 0 || USABLE RULES: { 1..3 6 7 } || Removed DPs: #9 || Number of SCCs: 3, DPs: 4 || SCC { #5 } || POLO(Sum)... succeeded. || TIlDePAIR w: 0 || s w: x1 + 2 || minus w: x1 + 1 || #plus w: 0 || sum w: 0 || 0 w: 1 || quot w: 0 || nil w: 0 || #TIlDePAIR w: 0 || #app w: 0 || #minus w: 0 || plus w: x1 + x2 + 1 || cons w: x1 + x2 + 2 || #quot w: x1 || #sum w: x1 || app w: 0 || USABLE RULES: { 1..3 6 7 } || Removed DPs: #5 || Number of SCCs: 2, DPs: 3 || SCC { #2 } || POLO(Sum)... succeeded. || TIlDePAIR w: 0 || s w: x1 + 2 || minus w: x1 + 1 || #plus w: 0 || sum w: 3 || 0 w: 1 || quot w: 0 || nil w: 1 || #TIlDePAIR w: 0 || #app w: 0 || #minus w: 0 || plus w: x1 + x2 + 1 || cons w: x2 + 2 || #quot w: x1 || #sum w: x1 || app w: x1 + x2 + 1 || USABLE RULES: { 1..3 6..12 } || Removed DPs: #2 || Number of SCCs: 1, DPs: 2 || SCC { #1 #11 } || POLO(Sum)... succeeded. || TIlDePAIR w: 0 || s w: x1 + 2 || minus w: x1 + x2 + 2 || #plus w: 0 || sum w: 3 || 0 w: 0 || quot w: 0 || nil w: 1 || #TIlDePAIR w: 0 || #app w: 0 || #minus w: x1 + x2 || plus w: x1 + x2 + 1 || cons w: x2 + 2 || #quot w: x1 || #sum w: x1 || app w: x1 + x2 + 1 || USABLE RULES: { 1..3 6..12 } || Removed DPs: #1 #11 || Number of SCCs: 0, DPs: 0 || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] map#(F, cons(X, Y)) =#> map#(F, Y) 1] filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) 2] filter2#(true, F, X, Y) =#> filter#(F, Y) 3] filter2#(false, F, X, Y) =#> filter#(F, Y) Rules R_0: minus(X, 0) => X minus(s(X), s(Y)) => minus(X, Y) minus(minus(X, Y), Z) => minus(X, plus(Y, Z)) quot(0, s(X)) => 0 quot(s(X), s(Y)) => s(quot(minus(X, Y), s(Y))) plus(0, X) => X plus(s(X), Y) => s(plus(X, Y)) app(nil, X) => X app(X, nil) => X app(cons(X, Y), Z) => cons(X, app(Y, Z)) sum(cons(X, nil)) => cons(X, nil) sum(cons(X, cons(Y, Z))) => sum(cons(plus(X, Y), Z)) sum(app(X, cons(Y, cons(Z, U)))) => sum(app(X, sum(cons(Y, cons(Z, U))))) map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, nil) => nil filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0 * 1 : 2, 3 * 2 : 1 * 3 : 1 This graph has the following strongly connected components: P_1: map#(F, cons(X, Y)) =#> map#(F, Y) P_2: filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f) and (P_2, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, computable, formative) and (P_2, R_0, computable, formative) is finite. We consider the dependency pair problem (P_2, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(filter2#) = 4 nu(filter#) = 2 Thus, we can orient the dependency pairs as follows: nu(filter#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(filter2#(F X, F, X, Y)) nu(filter2#(true, F, X, Y)) = Y = Y = nu(filter#(F, Y)) nu(filter2#(false, F, X, Y)) = Y = Y = nu(filter#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_2, R_0, computable, f) by (P_3, R_0, computable, f), where P_3 contains: filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if each of (P_1, R_0, computable, formative) and (P_3, R_0, computable, formative) is finite. We consider the dependency pair problem (P_3, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. Thus, the original system is terminating if (P_1, R_0, computable, formative) is finite. We consider the dependency pair problem (P_1, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(map#) = 2 Thus, we can orient the dependency pairs as follows: nu(map#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(map#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_1, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.