We consider the system Applicative_first_order_05__#3.6. Alphabet: 0 : [] --> b cons : [c * d] --> d false : [] --> a filter : [c -> a * d] --> d filter2 : [a * c -> a * c * d] --> d gcd : [b * b] --> b if!fac6220gcd : [a * b * b] --> b le : [b * b] --> a map : [c -> c * d] --> d minus : [b * b] --> b nil : [] --> d pred : [b] --> b s : [b] --> b true : [] --> a Rules: le(0, x) => true le(s(x), 0) => false le(s(x), s(y)) => le(x, y) pred(s(x)) => x minus(x, 0) => x minus(x, s(y)) => pred(minus(x, y)) gcd(0, x) => x gcd(s(x), 0) => s(x) gcd(s(x), s(y)) => if!fac6220gcd(le(y, x), s(x), s(y)) if!fac6220gcd(true, s(x), s(y)) => gcd(minus(x, y), s(y)) if!fac6220gcd(false, s(x), s(y)) => gcd(minus(y, x), s(x)) map(f, nil) => nil map(f, cons(x, y)) => cons(f x, map(f, y)) filter(f, nil) => nil filter(f, cons(x, y)) => filter2(f x, f, x, y) filter2(true, f, x, y) => cons(x, filter(f, y)) filter2(false, f, x, y) => filter(f, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: le(0, X) => true le(s(X), 0) => false le(s(X), s(Y)) => le(X, Y) pred(s(X)) => X minus(X, 0) => X minus(X, s(Y)) => pred(minus(X, Y)) gcd(0, X) => X gcd(s(X), 0) => s(X) gcd(s(X), s(Y)) => if!fac6220gcd(le(Y, X), s(X), s(Y)) if!fac6220gcd(true, s(X), s(Y)) => gcd(minus(X, Y), s(Y)) if!fac6220gcd(false, s(X), s(Y)) => gcd(minus(Y, X), s(X)) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to nattprover, this system is indeed terminating: || Input TRS: || 1: le(0(),PeRCenTX) -> true() || 2: le(s(PeRCenTX),0()) -> false() || 3: le(s(PeRCenTX),s(PeRCenTY)) -> le(PeRCenTX,PeRCenTY) || 4: pred(s(PeRCenTX)) -> PeRCenTX || 5: minus(PeRCenTX,0()) -> PeRCenTX || 6: minus(PeRCenTX,s(PeRCenTY)) -> pred(minus(PeRCenTX,PeRCenTY)) || 7: gcd(0(),PeRCenTX) -> PeRCenTX || 8: gcd(s(PeRCenTX),0()) -> s(PeRCenTX) || 9: gcd(s(PeRCenTX),s(PeRCenTY)) -> if!fac6220gcd(le(PeRCenTY,PeRCenTX),s(PeRCenTX),s(PeRCenTY)) || 10: if!fac6220gcd(true(),s(PeRCenTX),s(PeRCenTY)) -> gcd(minus(PeRCenTX,PeRCenTY),s(PeRCenTY)) || 11: if!fac6220gcd(false(),s(PeRCenTX),s(PeRCenTY)) -> gcd(minus(PeRCenTY,PeRCenTX),s(PeRCenTX)) || Number of strict rules: 11 || Direct POLO(bPol) ... failed. || Uncurrying ... failed. || Dependency Pairs: || #1: #minus(PeRCenTX,s(PeRCenTY)) -> #pred(minus(PeRCenTX,PeRCenTY)) || #2: #minus(PeRCenTX,s(PeRCenTY)) -> #minus(PeRCenTX,PeRCenTY) || #3: #gcd(s(PeRCenTX),s(PeRCenTY)) -> #if!fac6220gcd(le(PeRCenTY,PeRCenTX),s(PeRCenTX),s(PeRCenTY)) || #4: #gcd(s(PeRCenTX),s(PeRCenTY)) -> #le(PeRCenTY,PeRCenTX) || #5: #if!fac6220gcd(false(),s(PeRCenTX),s(PeRCenTY)) -> #gcd(minus(PeRCenTY,PeRCenTX),s(PeRCenTX)) || #6: #if!fac6220gcd(false(),s(PeRCenTX),s(PeRCenTY)) -> #minus(PeRCenTY,PeRCenTX) || #7: #if!fac6220gcd(true(),s(PeRCenTX),s(PeRCenTY)) -> #gcd(minus(PeRCenTX,PeRCenTY),s(PeRCenTY)) || #8: #if!fac6220gcd(true(),s(PeRCenTX),s(PeRCenTY)) -> #minus(PeRCenTX,PeRCenTY) || #9: #le(s(PeRCenTX),s(PeRCenTY)) -> #le(PeRCenTX,PeRCenTY) || Number of SCCs: 3, DPs: 5 || SCC { #2 } || POLO(Sum)... succeeded. || le w: 0 || s w: x1 + 1 || #le w: 0 || minus w: 0 || gcd w: 0 || false w: 0 || true w: 0 || pred w: 0 || 0 w: 0 || #minus w: x2 || #pred w: 0 || if!fac6220gcd w: 0 || #if!fac6220gcd w: 0 || #gcd w: 0 || USABLE RULES: { } || Removed DPs: #2 || Number of SCCs: 2, DPs: 4 || SCC { #9 } || POLO(Sum)... succeeded. || le w: 0 || s w: x1 + 1 || #le w: x1 || minus w: 0 || gcd w: 0 || false w: 0 || true w: 0 || pred w: 0 || 0 w: 0 || #minus w: 0 || #pred w: 0 || if!fac6220gcd w: 0 || #if!fac6220gcd w: 0 || #gcd w: 0 || USABLE RULES: { } || Removed DPs: #9 || Number of SCCs: 1, DPs: 3 || SCC { #3 #5 #7 } || POLO(Sum)... succeeded. || le w: x1 + x2 + 1 || s w: x1 + 3 || #le w: 0 || minus w: x1 + 1 || gcd w: 0 || false w: 6 || true w: 3 || pred w: x1 || 0 w: 1 || #minus w: 0 || #pred w: 0 || if!fac6220gcd w: 0 || #if!fac6220gcd w: x2 + x3 || #gcd w: x1 + x2 + 1 || USABLE RULES: { 4..6 } || Removed DPs: #3 #5 #7 || Number of SCCs: 0, DPs: 0 || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] map#(F, cons(X, Y)) =#> map#(F, Y) 1] filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) 2] filter2#(true, F, X, Y) =#> filter#(F, Y) 3] filter2#(false, F, X, Y) =#> filter#(F, Y) Rules R_0: le(0, X) => true le(s(X), 0) => false le(s(X), s(Y)) => le(X, Y) pred(s(X)) => X minus(X, 0) => X minus(X, s(Y)) => pred(minus(X, Y)) gcd(0, X) => X gcd(s(X), 0) => s(X) gcd(s(X), s(Y)) => if!fac6220gcd(le(Y, X), s(X), s(Y)) if!fac6220gcd(true, s(X), s(Y)) => gcd(minus(X, Y), s(Y)) if!fac6220gcd(false, s(X), s(Y)) => gcd(minus(Y, X), s(X)) map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, nil) => nil filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0 * 1 : 2, 3 * 2 : 1 * 3 : 1 This graph has the following strongly connected components: P_1: map#(F, cons(X, Y)) =#> map#(F, Y) P_2: filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f) and (P_2, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, computable, formative) and (P_2, R_0, computable, formative) is finite. We consider the dependency pair problem (P_2, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(filter2#) = 4 nu(filter#) = 2 Thus, we can orient the dependency pairs as follows: nu(filter#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(filter2#(F X, F, X, Y)) nu(filter2#(true, F, X, Y)) = Y = Y = nu(filter#(F, Y)) nu(filter2#(false, F, X, Y)) = Y = Y = nu(filter#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_2, R_0, computable, f) by (P_3, R_0, computable, f), where P_3 contains: filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if each of (P_1, R_0, computable, formative) and (P_3, R_0, computable, formative) is finite. We consider the dependency pair problem (P_3, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. Thus, the original system is terminating if (P_1, R_0, computable, formative) is finite. We consider the dependency pair problem (P_1, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(map#) = 2 Thus, we can orient the dependency pairs as follows: nu(map#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(map#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_1, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.