We consider the system Applicative_05__Ex7_9. Alphabet: 0 : [] --> a cons : [b * c] --> c d : [a * a] --> c false : [] --> c filter : [b -> c * c] --> c gtr : [a * a] --> c if : [c * c * c] --> c len : [c] --> a nil : [] --> c s : [a] --> a sub : [a * a] --> a true : [] --> c Rules: if(true, x, y) => x if(false, x, y) => y sub(x, 0) => x sub(s(x), s(y)) => sub(x, y) gtr(0, x) => false gtr(s(x), 0) => true gtr(s(x), s(y)) => gtr(x, y) d(x, 0) => true d(s(x), s(y)) => if(gtr(x, y), false, d(s(x), sub(y, x))) len(nil) => 0 len(cons(x, y)) => s(len(y)) filter(f, nil) => nil filter(f, cons(x, y)) => if(f x, cons(x, filter(f, y)), filter(f, y)) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: if(true, X, Y) => X if(false, X, Y) => Y sub(X, 0) => X sub(s(X), s(Y)) => sub(X, Y) gtr(0, X) => false gtr(s(X), 0) => true gtr(s(X), s(Y)) => gtr(X, Y) d(X, 0) => true d(s(X), s(Y)) => if(gtr(X, Y), false, d(s(X), sub(Y, X))) len(nil) => 0 len(cons(X, Y)) => s(len(Y)) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to mutermprover, this system is indeed terminating: || || Problem 1: || || (VAR %X %Y) || (RULES || d(s(%X),s(%Y)) -> if(gtr(%X,%Y),false,d(s(%X),sub(%Y,%X))) || d(%X,0) -> true || gtr(0,%X) -> false || gtr(s(%X),0) -> true || gtr(s(%X),s(%Y)) -> gtr(%X,%Y) || if(false,%X,%Y) -> %Y || if(true,%X,%Y) -> %X || len(cons(%X,%Y)) -> s(len(%Y)) || len(nil) -> 0 || sub(s(%X),s(%Y)) -> sub(%X,%Y) || sub(%X,0) -> %X || ) || || Problem 1: || || Innermost Equivalent Processor: || -> Rules: || d(s(%X),s(%Y)) -> if(gtr(%X,%Y),false,d(s(%X),sub(%Y,%X))) || d(%X,0) -> true || gtr(0,%X) -> false || gtr(s(%X),0) -> true || gtr(s(%X),s(%Y)) -> gtr(%X,%Y) || if(false,%X,%Y) -> %Y || if(true,%X,%Y) -> %X || len(cons(%X,%Y)) -> s(len(%Y)) || len(nil) -> 0 || sub(s(%X),s(%Y)) -> sub(%X,%Y) || sub(%X,0) -> %X || -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. || || || Problem 1: || || Dependency Pairs Processor: || -> Pairs: || D(s(%X),s(%Y)) -> D(s(%X),sub(%Y,%X)) || D(s(%X),s(%Y)) -> GTR(%X,%Y) || D(s(%X),s(%Y)) -> IF(gtr(%X,%Y),false,d(s(%X),sub(%Y,%X))) || D(s(%X),s(%Y)) -> SUB(%Y,%X) || GTR(s(%X),s(%Y)) -> GTR(%X,%Y) || LEN(cons(%X,%Y)) -> LEN(%Y) || SUB(s(%X),s(%Y)) -> SUB(%X,%Y) || -> Rules: || d(s(%X),s(%Y)) -> if(gtr(%X,%Y),false,d(s(%X),sub(%Y,%X))) || d(%X,0) -> true || gtr(0,%X) -> false || gtr(s(%X),0) -> true || gtr(s(%X),s(%Y)) -> gtr(%X,%Y) || if(false,%X,%Y) -> %Y || if(true,%X,%Y) -> %X || len(cons(%X,%Y)) -> s(len(%Y)) || len(nil) -> 0 || sub(s(%X),s(%Y)) -> sub(%X,%Y) || sub(%X,0) -> %X || || Problem 1: || || SCC Processor: || -> Pairs: || D(s(%X),s(%Y)) -> D(s(%X),sub(%Y,%X)) || D(s(%X),s(%Y)) -> GTR(%X,%Y) || D(s(%X),s(%Y)) -> IF(gtr(%X,%Y),false,d(s(%X),sub(%Y,%X))) || D(s(%X),s(%Y)) -> SUB(%Y,%X) || GTR(s(%X),s(%Y)) -> GTR(%X,%Y) || LEN(cons(%X,%Y)) -> LEN(%Y) || SUB(s(%X),s(%Y)) -> SUB(%X,%Y) || -> Rules: || d(s(%X),s(%Y)) -> if(gtr(%X,%Y),false,d(s(%X),sub(%Y,%X))) || d(%X,0) -> true || gtr(0,%X) -> false || gtr(s(%X),0) -> true || gtr(s(%X),s(%Y)) -> gtr(%X,%Y) || if(false,%X,%Y) -> %Y || if(true,%X,%Y) -> %X || len(cons(%X,%Y)) -> s(len(%Y)) || len(nil) -> 0 || sub(s(%X),s(%Y)) -> sub(%X,%Y) || sub(%X,0) -> %X || ->Strongly Connected Components: || ->->Cycle: || ->->-> Pairs: || SUB(s(%X),s(%Y)) -> SUB(%X,%Y) || ->->-> Rules: || d(s(%X),s(%Y)) -> if(gtr(%X,%Y),false,d(s(%X),sub(%Y,%X))) || d(%X,0) -> true || gtr(0,%X) -> false || gtr(s(%X),0) -> true || gtr(s(%X),s(%Y)) -> gtr(%X,%Y) || if(false,%X,%Y) -> %Y || if(true,%X,%Y) -> %X || len(cons(%X,%Y)) -> s(len(%Y)) || len(nil) -> 0 || sub(s(%X),s(%Y)) -> sub(%X,%Y) || sub(%X,0) -> %X || ->->Cycle: || ->->-> Pairs: || LEN(cons(%X,%Y)) -> LEN(%Y) || ->->-> Rules: || d(s(%X),s(%Y)) -> if(gtr(%X,%Y),false,d(s(%X),sub(%Y,%X))) || d(%X,0) -> true || gtr(0,%X) -> false || gtr(s(%X),0) -> true || gtr(s(%X),s(%Y)) -> gtr(%X,%Y) || if(false,%X,%Y) -> %Y || if(true,%X,%Y) -> %X || len(cons(%X,%Y)) -> s(len(%Y)) || len(nil) -> 0 || sub(s(%X),s(%Y)) -> sub(%X,%Y) || sub(%X,0) -> %X || ->->Cycle: || ->->-> Pairs: || GTR(s(%X),s(%Y)) -> GTR(%X,%Y) || ->->-> Rules: || d(s(%X),s(%Y)) -> if(gtr(%X,%Y),false,d(s(%X),sub(%Y,%X))) || d(%X,0) -> true || gtr(0,%X) -> false || gtr(s(%X),0) -> true || gtr(s(%X),s(%Y)) -> gtr(%X,%Y) || if(false,%X,%Y) -> %Y || if(true,%X,%Y) -> %X || len(cons(%X,%Y)) -> s(len(%Y)) || len(nil) -> 0 || sub(s(%X),s(%Y)) -> sub(%X,%Y) || sub(%X,0) -> %X || ->->Cycle: || ->->-> Pairs: || D(s(%X),s(%Y)) -> D(s(%X),sub(%Y,%X)) || ->->-> Rules: || d(s(%X),s(%Y)) -> if(gtr(%X,%Y),false,d(s(%X),sub(%Y,%X))) || d(%X,0) -> true || gtr(0,%X) -> false || gtr(s(%X),0) -> true || gtr(s(%X),s(%Y)) -> gtr(%X,%Y) || if(false,%X,%Y) -> %Y || if(true,%X,%Y) -> %X || len(cons(%X,%Y)) -> s(len(%Y)) || len(nil) -> 0 || sub(s(%X),s(%Y)) -> sub(%X,%Y) || sub(%X,0) -> %X || || || The problem is decomposed in 4 subproblems. || || Problem 1.1: || || Subterm Processor: || -> Pairs: || SUB(s(%X),s(%Y)) -> SUB(%X,%Y) || -> Rules: || d(s(%X),s(%Y)) -> if(gtr(%X,%Y),false,d(s(%X),sub(%Y,%X))) || d(%X,0) -> true || gtr(0,%X) -> false || gtr(s(%X),0) -> true || gtr(s(%X),s(%Y)) -> gtr(%X,%Y) || if(false,%X,%Y) -> %Y || if(true,%X,%Y) -> %X || len(cons(%X,%Y)) -> s(len(%Y)) || len(nil) -> 0 || sub(s(%X),s(%Y)) -> sub(%X,%Y) || sub(%X,0) -> %X || ->Projection: || pi(SUB) = 1 || || Problem 1.1: || || SCC Processor: || -> Pairs: || Empty || -> Rules: || d(s(%X),s(%Y)) -> if(gtr(%X,%Y),false,d(s(%X),sub(%Y,%X))) || d(%X,0) -> true || gtr(0,%X) -> false || gtr(s(%X),0) -> true || gtr(s(%X),s(%Y)) -> gtr(%X,%Y) || if(false,%X,%Y) -> %Y || if(true,%X,%Y) -> %X || len(cons(%X,%Y)) -> s(len(%Y)) || len(nil) -> 0 || sub(s(%X),s(%Y)) -> sub(%X,%Y) || sub(%X,0) -> %X || ->Strongly Connected Components: || There is no strongly connected component || || The problem is finite. || || Problem 1.2: || || Subterm Processor: || -> Pairs: || LEN(cons(%X,%Y)) -> LEN(%Y) || -> Rules: || d(s(%X),s(%Y)) -> if(gtr(%X,%Y),false,d(s(%X),sub(%Y,%X))) || d(%X,0) -> true || gtr(0,%X) -> false || gtr(s(%X),0) -> true || gtr(s(%X),s(%Y)) -> gtr(%X,%Y) || if(false,%X,%Y) -> %Y || if(true,%X,%Y) -> %X || len(cons(%X,%Y)) -> s(len(%Y)) || len(nil) -> 0 || sub(s(%X),s(%Y)) -> sub(%X,%Y) || sub(%X,0) -> %X || ->Projection: || pi(LEN) = 1 || || Problem 1.2: || || SCC Processor: || -> Pairs: || Empty || -> Rules: || d(s(%X),s(%Y)) -> if(gtr(%X,%Y),false,d(s(%X),sub(%Y,%X))) || d(%X,0) -> true || gtr(0,%X) -> false || gtr(s(%X),0) -> true || gtr(s(%X),s(%Y)) -> gtr(%X,%Y) || if(false,%X,%Y) -> %Y || if(true,%X,%Y) -> %X || len(cons(%X,%Y)) -> s(len(%Y)) || len(nil) -> 0 || sub(s(%X),s(%Y)) -> sub(%X,%Y) || sub(%X,0) -> %X || ->Strongly Connected Components: || There is no strongly connected component || || The problem is finite. || || Problem 1.3: || || Subterm Processor: || -> Pairs: || GTR(s(%X),s(%Y)) -> GTR(%X,%Y) || -> Rules: || d(s(%X),s(%Y)) -> if(gtr(%X,%Y),false,d(s(%X),sub(%Y,%X))) || d(%X,0) -> true || gtr(0,%X) -> false || gtr(s(%X),0) -> true || gtr(s(%X),s(%Y)) -> gtr(%X,%Y) || if(false,%X,%Y) -> %Y || if(true,%X,%Y) -> %X || len(cons(%X,%Y)) -> s(len(%Y)) || len(nil) -> 0 || sub(s(%X),s(%Y)) -> sub(%X,%Y) || sub(%X,0) -> %X || ->Projection: || pi(GTR) = 1 || || Problem 1.3: || || SCC Processor: || -> Pairs: || Empty || -> Rules: || d(s(%X),s(%Y)) -> if(gtr(%X,%Y),false,d(s(%X),sub(%Y,%X))) || d(%X,0) -> true || gtr(0,%X) -> false || gtr(s(%X),0) -> true || gtr(s(%X),s(%Y)) -> gtr(%X,%Y) || if(false,%X,%Y) -> %Y || if(true,%X,%Y) -> %X || len(cons(%X,%Y)) -> s(len(%Y)) || len(nil) -> 0 || sub(s(%X),s(%Y)) -> sub(%X,%Y) || sub(%X,0) -> %X || ->Strongly Connected Components: || There is no strongly connected component || || The problem is finite. || || Problem 1.4: || || Reduction Pairs Processor: || -> Pairs: || D(s(%X),s(%Y)) -> D(s(%X),sub(%Y,%X)) || -> Rules: || d(s(%X),s(%Y)) -> if(gtr(%X,%Y),false,d(s(%X),sub(%Y,%X))) || d(%X,0) -> true || gtr(0,%X) -> false || gtr(s(%X),0) -> true || gtr(s(%X),s(%Y)) -> gtr(%X,%Y) || if(false,%X,%Y) -> %Y || if(true,%X,%Y) -> %X || len(cons(%X,%Y)) -> s(len(%Y)) || len(nil) -> 0 || sub(s(%X),s(%Y)) -> sub(%X,%Y) || sub(%X,0) -> %X || -> Usable rules: || sub(s(%X),s(%Y)) -> sub(%X,%Y) || sub(%X,0) -> %X || ->Interpretation type: || Linear || ->Coefficients: || Natural Numbers || ->Dimension: || 1 || ->Bound: || 2 || ->Interpretation: || || [sub](X1,X2) = X1 || [0] = 0 || [s](X) = X + 2 || [D](X1,X2) = 2.X2 || || Problem 1.4: || || SCC Processor: || -> Pairs: || Empty || -> Rules: || d(s(%X),s(%Y)) -> if(gtr(%X,%Y),false,d(s(%X),sub(%Y,%X))) || d(%X,0) -> true || gtr(0,%X) -> false || gtr(s(%X),0) -> true || gtr(s(%X),s(%Y)) -> gtr(%X,%Y) || if(false,%X,%Y) -> %Y || if(true,%X,%Y) -> %X || len(cons(%X,%Y)) -> s(len(%Y)) || len(nil) -> 0 || sub(s(%X),s(%Y)) -> sub(%X,%Y) || sub(%X,0) -> %X || ->Strongly Connected Components: || There is no strongly connected component || || The problem is finite. || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] filter#(F, cons(X, Y)) =#> if#(F X, cons(X, filter(F, Y)), filter(F, Y)) 1] filter#(F, cons(X, Y)) =#> filter#(F, Y) 2] filter#(F, cons(X, Y)) =#> filter#(F, Y) Rules R_0: if(true, X, Y) => X if(false, X, Y) => Y sub(X, 0) => X sub(s(X), s(Y)) => sub(X, Y) gtr(0, X) => false gtr(s(X), 0) => true gtr(s(X), s(Y)) => gtr(X, Y) d(X, 0) => true d(s(X), s(Y)) => if(gtr(X, Y), false, d(s(X), sub(Y, X))) len(nil) => 0 len(cons(X, Y)) => s(len(Y)) filter(F, nil) => nil filter(F, cons(X, Y)) => if(F X, cons(X, filter(F, Y)), filter(F, Y)) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : 0, 1, 2 * 2 : 0, 1, 2 This graph has the following strongly connected components: P_1: filter#(F, cons(X, Y)) =#> filter#(F, Y) filter#(F, cons(X, Y)) =#> filter#(F, Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f). Thus, the original system is terminating if (P_1, R_0, computable, formative) is finite. We consider the dependency pair problem (P_1, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(filter#) = 2 Thus, we can orient the dependency pairs as follows: nu(filter#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(filter#(F, Y)) nu(filter#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(filter#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_1, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.