We consider the system Applicative_05__mapDivMinus. Alphabet: 0 : [] --> c cons : [a * b] --> b div : [c * c] --> c map : [a -> a * b] --> b minus : [c * c] --> c nil : [] --> b s : [c] --> c Rules: map(f, nil) => nil map(f, cons(x, y)) => cons(f x, map(f, y)) minus(x, 0) => x minus(s(x), s(y)) => minus(x, y) div(0, s(x)) => 0 div(s(x), s(y)) => s(div(minus(x, y), s(y))) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: minus(X, 0) => X minus(s(X), s(Y)) => minus(X, Y) div(0, s(X)) => 0 div(s(X), s(Y)) => s(div(minus(X, Y), s(Y))) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to mutermprover, this system is indeed terminating: || || Problem 1: || || (VAR %X %Y) || (RULES || div(0,s(%X)) -> 0 || div(s(%X),s(%Y)) -> s(div(minus(%X,%Y),s(%Y))) || minus(s(%X),s(%Y)) -> minus(%X,%Y) || minus(%X,0) -> %X || ) || || Problem 1: || || Innermost Equivalent Processor: || -> Rules: || div(0,s(%X)) -> 0 || div(s(%X),s(%Y)) -> s(div(minus(%X,%Y),s(%Y))) || minus(s(%X),s(%Y)) -> minus(%X,%Y) || minus(%X,0) -> %X || -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. || || || Problem 1: || || Dependency Pairs Processor: || -> Pairs: || DIV(s(%X),s(%Y)) -> DIV(minus(%X,%Y),s(%Y)) || DIV(s(%X),s(%Y)) -> MINUS(%X,%Y) || MINUS(s(%X),s(%Y)) -> MINUS(%X,%Y) || -> Rules: || div(0,s(%X)) -> 0 || div(s(%X),s(%Y)) -> s(div(minus(%X,%Y),s(%Y))) || minus(s(%X),s(%Y)) -> minus(%X,%Y) || minus(%X,0) -> %X || || Problem 1: || || SCC Processor: || -> Pairs: || DIV(s(%X),s(%Y)) -> DIV(minus(%X,%Y),s(%Y)) || DIV(s(%X),s(%Y)) -> MINUS(%X,%Y) || MINUS(s(%X),s(%Y)) -> MINUS(%X,%Y) || -> Rules: || div(0,s(%X)) -> 0 || div(s(%X),s(%Y)) -> s(div(minus(%X,%Y),s(%Y))) || minus(s(%X),s(%Y)) -> minus(%X,%Y) || minus(%X,0) -> %X || ->Strongly Connected Components: || ->->Cycle: || ->->-> Pairs: || MINUS(s(%X),s(%Y)) -> MINUS(%X,%Y) || ->->-> Rules: || div(0,s(%X)) -> 0 || div(s(%X),s(%Y)) -> s(div(minus(%X,%Y),s(%Y))) || minus(s(%X),s(%Y)) -> minus(%X,%Y) || minus(%X,0) -> %X || ->->Cycle: || ->->-> Pairs: || DIV(s(%X),s(%Y)) -> DIV(minus(%X,%Y),s(%Y)) || ->->-> Rules: || div(0,s(%X)) -> 0 || div(s(%X),s(%Y)) -> s(div(minus(%X,%Y),s(%Y))) || minus(s(%X),s(%Y)) -> minus(%X,%Y) || minus(%X,0) -> %X || || || The problem is decomposed in 2 subproblems. || || Problem 1.1: || || Subterm Processor: || -> Pairs: || MINUS(s(%X),s(%Y)) -> MINUS(%X,%Y) || -> Rules: || div(0,s(%X)) -> 0 || div(s(%X),s(%Y)) -> s(div(minus(%X,%Y),s(%Y))) || minus(s(%X),s(%Y)) -> minus(%X,%Y) || minus(%X,0) -> %X || ->Projection: || pi(MINUS) = 1 || || Problem 1.1: || || SCC Processor: || -> Pairs: || Empty || -> Rules: || div(0,s(%X)) -> 0 || div(s(%X),s(%Y)) -> s(div(minus(%X,%Y),s(%Y))) || minus(s(%X),s(%Y)) -> minus(%X,%Y) || minus(%X,0) -> %X || ->Strongly Connected Components: || There is no strongly connected component || || The problem is finite. || || Problem 1.2: || || Reduction Pairs Processor: || -> Pairs: || DIV(s(%X),s(%Y)) -> DIV(minus(%X,%Y),s(%Y)) || -> Rules: || div(0,s(%X)) -> 0 || div(s(%X),s(%Y)) -> s(div(minus(%X,%Y),s(%Y))) || minus(s(%X),s(%Y)) -> minus(%X,%Y) || minus(%X,0) -> %X || -> Usable rules: || minus(s(%X),s(%Y)) -> minus(%X,%Y) || minus(%X,0) -> %X || ->Interpretation type: || Linear || ->Coefficients: || Natural Numbers || ->Dimension: || 1 || ->Bound: || 2 || ->Interpretation: || || [minus](X1,X2) = 2.X1 + 1 || [0] = 0 || [s](X) = 2.X + 2 || [DIV](X1,X2) = 2.X1 || || Problem 1.2: || || SCC Processor: || -> Pairs: || Empty || -> Rules: || div(0,s(%X)) -> 0 || div(s(%X),s(%Y)) -> s(div(minus(%X,%Y),s(%Y))) || minus(s(%X),s(%Y)) -> minus(%X,%Y) || minus(%X,0) -> %X || ->Strongly Connected Components: || There is no strongly connected component || || The problem is finite. || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] map#(F, cons(X, Y)) =#> map#(F, Y) Rules R_0: map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) minus(X, 0) => X minus(s(X), s(Y)) => minus(X, Y) div(0, s(X)) => 0 div(s(X), s(Y)) => s(div(minus(X, Y), s(Y))) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(map#) = 2 Thus, we can orient the dependency pairs as follows: nu(map#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(map#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_0, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.