We consider the system Applicative_AG01_innermost__#4.34. Alphabet: 0 : [] --> b 1 : [] --> b c : [b] --> b cons : [c * d] --> d f : [b] --> a false : [] --> a filter : [c -> a * d] --> d filter2 : [a * c -> a * c * d] --> d g : [b * b] --> b if : [a * b * b] --> b map : [c -> c * d] --> d nil : [] --> d s : [b] --> b true : [] --> a Rules: f(0) => true f(1) => false f(s(x)) => f(x) if(true, x, y) => x if(false, x, y) => y g(s(x), s(y)) => if(f(x), s(x), s(y)) g(x, c(y)) => g(x, g(s(c(y)), y)) map(h, nil) => nil map(h, cons(x, y)) => cons(h x, map(h, y)) filter(h, nil) => nil filter(h, cons(x, y)) => filter2(h x, h, x, y) filter2(true, h, x, y) => cons(x, filter(h, y)) filter2(false, h, x, y) => filter(h, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: f(0) => true f(1) => false f(s(X)) => f(X) if(true, X, Y) => X if(false, X, Y) => Y g(s(X), s(Y)) => if(f(X), s(X), s(Y)) g(X, c(Y)) => g(X, g(s(c(Y)), Y)) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to mutermprover, this system is indeed terminating: || || Problem 1: || || (VAR %X %Y) || (RULES || f(0) -> true || f(1) -> false || f(s(%X)) -> f(%X) || g(s(%X),s(%Y)) -> if(f(%X),s(%X),s(%Y)) || g(%X,c(%Y)) -> g(%X,g(s(c(%Y)),%Y)) || if(false,%X,%Y) -> %Y || if(true,%X,%Y) -> %X || ) || || Problem 1: || || Innermost Equivalent Processor: || -> Rules: || f(0) -> true || f(1) -> false || f(s(%X)) -> f(%X) || g(s(%X),s(%Y)) -> if(f(%X),s(%X),s(%Y)) || g(%X,c(%Y)) -> g(%X,g(s(c(%Y)),%Y)) || if(false,%X,%Y) -> %Y || if(true,%X,%Y) -> %X || -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. || || || Problem 1: || || Dependency Pairs Processor: || -> Pairs: || F(s(%X)) -> F(%X) || G(s(%X),s(%Y)) -> F(%X) || G(s(%X),s(%Y)) -> IF(f(%X),s(%X),s(%Y)) || G(%X,c(%Y)) -> G(s(c(%Y)),%Y) || G(%X,c(%Y)) -> G(%X,g(s(c(%Y)),%Y)) || -> Rules: || f(0) -> true || f(1) -> false || f(s(%X)) -> f(%X) || g(s(%X),s(%Y)) -> if(f(%X),s(%X),s(%Y)) || g(%X,c(%Y)) -> g(%X,g(s(c(%Y)),%Y)) || if(false,%X,%Y) -> %Y || if(true,%X,%Y) -> %X || || Problem 1: || || SCC Processor: || -> Pairs: || F(s(%X)) -> F(%X) || G(s(%X),s(%Y)) -> F(%X) || G(s(%X),s(%Y)) -> IF(f(%X),s(%X),s(%Y)) || G(%X,c(%Y)) -> G(s(c(%Y)),%Y) || G(%X,c(%Y)) -> G(%X,g(s(c(%Y)),%Y)) || -> Rules: || f(0) -> true || f(1) -> false || f(s(%X)) -> f(%X) || g(s(%X),s(%Y)) -> if(f(%X),s(%X),s(%Y)) || g(%X,c(%Y)) -> g(%X,g(s(c(%Y)),%Y)) || if(false,%X,%Y) -> %Y || if(true,%X,%Y) -> %X || ->Strongly Connected Components: || ->->Cycle: || ->->-> Pairs: || F(s(%X)) -> F(%X) || ->->-> Rules: || f(0) -> true || f(1) -> false || f(s(%X)) -> f(%X) || g(s(%X),s(%Y)) -> if(f(%X),s(%X),s(%Y)) || g(%X,c(%Y)) -> g(%X,g(s(c(%Y)),%Y)) || if(false,%X,%Y) -> %Y || if(true,%X,%Y) -> %X || ->->Cycle: || ->->-> Pairs: || G(%X,c(%Y)) -> G(s(c(%Y)),%Y) || G(%X,c(%Y)) -> G(%X,g(s(c(%Y)),%Y)) || ->->-> Rules: || f(0) -> true || f(1) -> false || f(s(%X)) -> f(%X) || g(s(%X),s(%Y)) -> if(f(%X),s(%X),s(%Y)) || g(%X,c(%Y)) -> g(%X,g(s(c(%Y)),%Y)) || if(false,%X,%Y) -> %Y || if(true,%X,%Y) -> %X || || || The problem is decomposed in 2 subproblems. || || Problem 1.1: || || Subterm Processor: || -> Pairs: || F(s(%X)) -> F(%X) || -> Rules: || f(0) -> true || f(1) -> false || f(s(%X)) -> f(%X) || g(s(%X),s(%Y)) -> if(f(%X),s(%X),s(%Y)) || g(%X,c(%Y)) -> g(%X,g(s(c(%Y)),%Y)) || if(false,%X,%Y) -> %Y || if(true,%X,%Y) -> %X || ->Projection: || pi(F) = 1 || || Problem 1.1: || || SCC Processor: || -> Pairs: || Empty || -> Rules: || f(0) -> true || f(1) -> false || f(s(%X)) -> f(%X) || g(s(%X),s(%Y)) -> if(f(%X),s(%X),s(%Y)) || g(%X,c(%Y)) -> g(%X,g(s(c(%Y)),%Y)) || if(false,%X,%Y) -> %Y || if(true,%X,%Y) -> %X || ->Strongly Connected Components: || There is no strongly connected component || || The problem is finite. || || Problem 1.2: || || Reduction Pairs Processor: || -> Pairs: || G(%X,c(%Y)) -> G(s(c(%Y)),%Y) || G(%X,c(%Y)) -> G(%X,g(s(c(%Y)),%Y)) || -> Rules: || f(0) -> true || f(1) -> false || f(s(%X)) -> f(%X) || g(s(%X),s(%Y)) -> if(f(%X),s(%X),s(%Y)) || g(%X,c(%Y)) -> g(%X,g(s(c(%Y)),%Y)) || if(false,%X,%Y) -> %Y || if(true,%X,%Y) -> %X || -> Usable rules: || f(0) -> true || f(1) -> false || f(s(%X)) -> f(%X) || g(s(%X),s(%Y)) -> if(f(%X),s(%X),s(%Y)) || g(%X,c(%Y)) -> g(%X,g(s(c(%Y)),%Y)) || if(false,%X,%Y) -> %Y || if(true,%X,%Y) -> %X || ->Interpretation type: || Linear || ->Coefficients: || Natural Numbers || ->Dimension: || 1 || ->Bound: || 2 || ->Interpretation: || || [f](X) = 0 || [g](X1,X2) = 2.X2 + 2 || [if](X1,X2,X3) = 2.X1 + X2 + X3 + 2 || [0] = 2 || [1] = 0 || [c](X) = 2.X + 2 || [false] = 0 || [s](X) = 2 || [true] = 0 || [G](X1,X2) = X1 + 2.X2 || || Problem 1.2: || || SCC Processor: || -> Pairs: || G(%X,c(%Y)) -> G(%X,g(s(c(%Y)),%Y)) || -> Rules: || f(0) -> true || f(1) -> false || f(s(%X)) -> f(%X) || g(s(%X),s(%Y)) -> if(f(%X),s(%X),s(%Y)) || g(%X,c(%Y)) -> g(%X,g(s(c(%Y)),%Y)) || if(false,%X,%Y) -> %Y || if(true,%X,%Y) -> %X || ->Strongly Connected Components: || ->->Cycle: || ->->-> Pairs: || G(%X,c(%Y)) -> G(%X,g(s(c(%Y)),%Y)) || ->->-> Rules: || f(0) -> true || f(1) -> false || f(s(%X)) -> f(%X) || g(s(%X),s(%Y)) -> if(f(%X),s(%X),s(%Y)) || g(%X,c(%Y)) -> g(%X,g(s(c(%Y)),%Y)) || if(false,%X,%Y) -> %Y || if(true,%X,%Y) -> %X || || Problem 1.2: || || Reduction Pairs Processor: || -> Pairs: || G(%X,c(%Y)) -> G(%X,g(s(c(%Y)),%Y)) || -> Rules: || f(0) -> true || f(1) -> false || f(s(%X)) -> f(%X) || g(s(%X),s(%Y)) -> if(f(%X),s(%X),s(%Y)) || g(%X,c(%Y)) -> g(%X,g(s(c(%Y)),%Y)) || if(false,%X,%Y) -> %Y || if(true,%X,%Y) -> %X || -> Usable rules: || f(0) -> true || f(1) -> false || f(s(%X)) -> f(%X) || g(s(%X),s(%Y)) -> if(f(%X),s(%X),s(%Y)) || g(%X,c(%Y)) -> g(%X,g(s(c(%Y)),%Y)) || if(false,%X,%Y) -> %Y || if(true,%X,%Y) -> %X || ->Interpretation type: || Linear || ->Coefficients: || Natural Numbers || ->Dimension: || 1 || ->Bound: || 2 || ->Interpretation: || || [f](X) = 0 || [g](X1,X2) = X1 + 2.X2 || [if](X1,X2,X3) = 2.X1 + 2.X2 + X3 || [0] = 2 || [1] = 2 || [c](X) = 2.X + 2 || [false] = 0 || [s](X) = 1 || [true] = 0 || [G](X1,X2) = 2.X2 || || Problem 1.2: || || SCC Processor: || -> Pairs: || Empty || -> Rules: || f(0) -> true || f(1) -> false || f(s(%X)) -> f(%X) || g(s(%X),s(%Y)) -> if(f(%X),s(%X),s(%Y)) || g(%X,c(%Y)) -> g(%X,g(s(c(%Y)),%Y)) || if(false,%X,%Y) -> %Y || if(true,%X,%Y) -> %X || ->Strongly Connected Components: || There is no strongly connected component || || The problem is finite. || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] map#(F, cons(X, Y)) =#> map#(F, Y) 1] filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) 2] filter2#(true, F, X, Y) =#> filter#(F, Y) 3] filter2#(false, F, X, Y) =#> filter#(F, Y) Rules R_0: f(0) => true f(1) => false f(s(X)) => f(X) if(true, X, Y) => X if(false, X, Y) => Y g(s(X), s(Y)) => if(f(X), s(X), s(Y)) g(X, c(Y)) => g(X, g(s(c(Y)), Y)) map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, nil) => nil filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0 * 1 : 2, 3 * 2 : 1 * 3 : 1 This graph has the following strongly connected components: P_1: map#(F, cons(X, Y)) =#> map#(F, Y) P_2: filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f) and (P_2, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, computable, formative) and (P_2, R_0, computable, formative) is finite. We consider the dependency pair problem (P_2, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(filter2#) = 4 nu(filter#) = 2 Thus, we can orient the dependency pairs as follows: nu(filter#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(filter2#(F X, F, X, Y)) nu(filter2#(true, F, X, Y)) = Y = Y = nu(filter#(F, Y)) nu(filter2#(false, F, X, Y)) = Y = Y = nu(filter#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_2, R_0, computable, f) by (P_3, R_0, computable, f), where P_3 contains: filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if each of (P_1, R_0, computable, formative) and (P_3, R_0, computable, formative) is finite. We consider the dependency pair problem (P_3, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. Thus, the original system is terminating if (P_1, R_0, computable, formative) is finite. We consider the dependency pair problem (P_1, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(map#) = 2 Thus, we can orient the dependency pairs as follows: nu(map#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(map#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_1, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.