We consider the system Applicative_first_order_05__#3.13. Alphabet: 0 : [] --> a cons : [d * e] --> e edge : [a * a * b] --> b empty : [] --> b eq : [a * a] --> c false : [] --> c filter : [d -> c * e] --> e filter2 : [c * d -> c * d * e] --> e if!fac6220reach!fac62201 : [c * a * a * b * b] --> c if!fac6220reach!fac62202 : [c * a * a * b * b] --> c map : [d -> d * e] --> e nil : [] --> e or : [c * c] --> c reach : [a * a * b * b] --> c s : [a] --> a true : [] --> c union : [b * b] --> b Rules: eq(0, 0) => true eq(0, s(x)) => false eq(s(x), 0) => false eq(s(x), s(y)) => eq(x, y) or(true, x) => true or(false, x) => x union(empty, x) => x union(edge(x, y, z), u) => edge(x, y, union(z, u)) reach(x, y, empty, z) => false reach(x, y, edge(z, u, v), w) => if!fac6220reach!fac62201(eq(x, z), x, y, edge(z, u, v), w) if!fac6220reach!fac62201(true, x, y, edge(z, u, v), w) => if!fac6220reach!fac62202(eq(y, u), x, y, edge(z, u, v), w) if!fac6220reach!fac62201(false, x, y, edge(z, u, v), w) => reach(x, y, v, edge(z, u, w)) if!fac6220reach!fac62202(true, x, y, edge(z, u, v), w) => true if!fac6220reach!fac62202(false, x, y, edge(z, u, v), w) => or(reach(x, y, v, w), reach(u, y, union(v, w), empty)) map(f, nil) => nil map(f, cons(x, y)) => cons(f x, map(f, y)) filter(f, nil) => nil filter(f, cons(x, y)) => filter2(f x, f, x, y) filter2(true, f, x, y) => cons(x, filter(f, y)) filter2(false, f, x, y) => filter(f, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: eq(0, 0) => true eq(0, s(X)) => false eq(s(X), 0) => false eq(s(X), s(Y)) => eq(X, Y) or(true, X) => true or(false, X) => X union(empty, X) => X union(edge(X, Y, Z), U) => edge(X, Y, union(Z, U)) reach(X, Y, empty, Z) => false reach(X, Y, edge(Z, U, V), W) => if!fac6220reach!fac62201(eq(X, Z), X, Y, edge(Z, U, V), W) if!fac6220reach!fac62201(true, X, Y, edge(Z, U, V), W) => if!fac6220reach!fac62202(eq(Y, U), X, Y, edge(Z, U, V), W) if!fac6220reach!fac62201(false, X, Y, edge(Z, U, V), W) => reach(X, Y, V, edge(Z, U, W)) if!fac6220reach!fac62202(true, X, Y, edge(Z, U, V), W) => true if!fac6220reach!fac62202(false, X, Y, edge(Z, U, V), W) => or(reach(X, Y, V, W), reach(U, Y, union(V, W), empty)) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to mutermprover, this system is indeed terminating: || || Problem 1: || || (VAR %U %V %W %X %Y %Z) || (RULES || eq(0,0) -> true || eq(0,s(%X)) -> false || eq(s(%X),0) -> false || eq(s(%X),s(%Y)) -> eq(%X,%Y) || if!fac6220reach!fac62201(false,%X,%Y,edge(%Z,%U,%V),%W) -> reach(%X,%Y,%V,edge(%Z,%U,%W)) || if!fac6220reach!fac62201(true,%X,%Y,edge(%Z,%U,%V),%W) -> if!fac6220reach!fac62202(eq(%Y,%U),%X,%Y,edge(%Z,%U,%V),%W) || if!fac6220reach!fac62202(false,%X,%Y,edge(%Z,%U,%V),%W) -> or(reach(%X,%Y,%V,%W),reach(%U,%Y,union(%V,%W),empty)) || if!fac6220reach!fac62202(true,%X,%Y,edge(%Z,%U,%V),%W) -> true || or(false,%X) -> %X || or(true,%X) -> true || reach(%X,%Y,edge(%Z,%U,%V),%W) -> if!fac6220reach!fac62201(eq(%X,%Z),%X,%Y,edge(%Z,%U,%V),%W) || reach(%X,%Y,empty,%Z) -> false || union(edge(%X,%Y,%Z),%U) -> edge(%X,%Y,union(%Z,%U)) || union(empty,%X) -> %X || ) || || Problem 1: || || Innermost Equivalent Processor: || -> Rules: || eq(0,0) -> true || eq(0,s(%X)) -> false || eq(s(%X),0) -> false || eq(s(%X),s(%Y)) -> eq(%X,%Y) || if!fac6220reach!fac62201(false,%X,%Y,edge(%Z,%U,%V),%W) -> reach(%X,%Y,%V,edge(%Z,%U,%W)) || if!fac6220reach!fac62201(true,%X,%Y,edge(%Z,%U,%V),%W) -> if!fac6220reach!fac62202(eq(%Y,%U),%X,%Y,edge(%Z,%U,%V),%W) || if!fac6220reach!fac62202(false,%X,%Y,edge(%Z,%U,%V),%W) -> or(reach(%X,%Y,%V,%W),reach(%U,%Y,union(%V,%W),empty)) || if!fac6220reach!fac62202(true,%X,%Y,edge(%Z,%U,%V),%W) -> true || or(false,%X) -> %X || or(true,%X) -> true || reach(%X,%Y,edge(%Z,%U,%V),%W) -> if!fac6220reach!fac62201(eq(%X,%Z),%X,%Y,edge(%Z,%U,%V),%W) || reach(%X,%Y,empty,%Z) -> false || union(edge(%X,%Y,%Z),%U) -> edge(%X,%Y,union(%Z,%U)) || union(empty,%X) -> %X || -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. || || || Problem 1: || || Dependency Pairs Processor: || -> Pairs: || EQ(s(%X),s(%Y)) -> EQ(%X,%Y) || IF!FAC6220REACH!FAC62201(false,%X,%Y,edge(%Z,%U,%V),%W) -> REACH(%X,%Y,%V,edge(%Z,%U,%W)) || IF!FAC6220REACH!FAC62201(true,%X,%Y,edge(%Z,%U,%V),%W) -> EQ(%Y,%U) || IF!FAC6220REACH!FAC62201(true,%X,%Y,edge(%Z,%U,%V),%W) -> IF!FAC6220REACH!FAC62202(eq(%Y,%U),%X,%Y,edge(%Z,%U,%V),%W) || IF!FAC6220REACH!FAC62202(false,%X,%Y,edge(%Z,%U,%V),%W) -> OR(reach(%X,%Y,%V,%W),reach(%U,%Y,union(%V,%W),empty)) || IF!FAC6220REACH!FAC62202(false,%X,%Y,edge(%Z,%U,%V),%W) -> REACH(%U,%Y,union(%V,%W),empty) || IF!FAC6220REACH!FAC62202(false,%X,%Y,edge(%Z,%U,%V),%W) -> REACH(%X,%Y,%V,%W) || IF!FAC6220REACH!FAC62202(false,%X,%Y,edge(%Z,%U,%V),%W) -> UNION(%V,%W) || REACH(%X,%Y,edge(%Z,%U,%V),%W) -> EQ(%X,%Z) || REACH(%X,%Y,edge(%Z,%U,%V),%W) -> IF!FAC6220REACH!FAC62201(eq(%X,%Z),%X,%Y,edge(%Z,%U,%V),%W) || UNION(edge(%X,%Y,%Z),%U) -> UNION(%Z,%U) || -> Rules: || eq(0,0) -> true || eq(0,s(%X)) -> false || eq(s(%X),0) -> false || eq(s(%X),s(%Y)) -> eq(%X,%Y) || if!fac6220reach!fac62201(false,%X,%Y,edge(%Z,%U,%V),%W) -> reach(%X,%Y,%V,edge(%Z,%U,%W)) || if!fac6220reach!fac62201(true,%X,%Y,edge(%Z,%U,%V),%W) -> if!fac6220reach!fac62202(eq(%Y,%U),%X,%Y,edge(%Z,%U,%V),%W) || if!fac6220reach!fac62202(false,%X,%Y,edge(%Z,%U,%V),%W) -> or(reach(%X,%Y,%V,%W),reach(%U,%Y,union(%V,%W),empty)) || if!fac6220reach!fac62202(true,%X,%Y,edge(%Z,%U,%V),%W) -> true || or(false,%X) -> %X || or(true,%X) -> true || reach(%X,%Y,edge(%Z,%U,%V),%W) -> if!fac6220reach!fac62201(eq(%X,%Z),%X,%Y,edge(%Z,%U,%V),%W) || reach(%X,%Y,empty,%Z) -> false || union(edge(%X,%Y,%Z),%U) -> edge(%X,%Y,union(%Z,%U)) || union(empty,%X) -> %X || || Problem 1: || || SCC Processor: || -> Pairs: || EQ(s(%X),s(%Y)) -> EQ(%X,%Y) || IF!FAC6220REACH!FAC62201(false,%X,%Y,edge(%Z,%U,%V),%W) -> REACH(%X,%Y,%V,edge(%Z,%U,%W)) || IF!FAC6220REACH!FAC62201(true,%X,%Y,edge(%Z,%U,%V),%W) -> EQ(%Y,%U) || IF!FAC6220REACH!FAC62201(true,%X,%Y,edge(%Z,%U,%V),%W) -> IF!FAC6220REACH!FAC62202(eq(%Y,%U),%X,%Y,edge(%Z,%U,%V),%W) || IF!FAC6220REACH!FAC62202(false,%X,%Y,edge(%Z,%U,%V),%W) -> OR(reach(%X,%Y,%V,%W),reach(%U,%Y,union(%V,%W),empty)) || IF!FAC6220REACH!FAC62202(false,%X,%Y,edge(%Z,%U,%V),%W) -> REACH(%U,%Y,union(%V,%W),empty) || IF!FAC6220REACH!FAC62202(false,%X,%Y,edge(%Z,%U,%V),%W) -> REACH(%X,%Y,%V,%W) || IF!FAC6220REACH!FAC62202(false,%X,%Y,edge(%Z,%U,%V),%W) -> UNION(%V,%W) || REACH(%X,%Y,edge(%Z,%U,%V),%W) -> EQ(%X,%Z) || REACH(%X,%Y,edge(%Z,%U,%V),%W) -> IF!FAC6220REACH!FAC62201(eq(%X,%Z),%X,%Y,edge(%Z,%U,%V),%W) || UNION(edge(%X,%Y,%Z),%U) -> UNION(%Z,%U) || -> Rules: || eq(0,0) -> true || eq(0,s(%X)) -> false || eq(s(%X),0) -> false || eq(s(%X),s(%Y)) -> eq(%X,%Y) || if!fac6220reach!fac62201(false,%X,%Y,edge(%Z,%U,%V),%W) -> reach(%X,%Y,%V,edge(%Z,%U,%W)) || if!fac6220reach!fac62201(true,%X,%Y,edge(%Z,%U,%V),%W) -> if!fac6220reach!fac62202(eq(%Y,%U),%X,%Y,edge(%Z,%U,%V),%W) || if!fac6220reach!fac62202(false,%X,%Y,edge(%Z,%U,%V),%W) -> or(reach(%X,%Y,%V,%W),reach(%U,%Y,union(%V,%W),empty)) || if!fac6220reach!fac62202(true,%X,%Y,edge(%Z,%U,%V),%W) -> true || or(false,%X) -> %X || or(true,%X) -> true || reach(%X,%Y,edge(%Z,%U,%V),%W) -> if!fac6220reach!fac62201(eq(%X,%Z),%X,%Y,edge(%Z,%U,%V),%W) || reach(%X,%Y,empty,%Z) -> false || union(edge(%X,%Y,%Z),%U) -> edge(%X,%Y,union(%Z,%U)) || union(empty,%X) -> %X || ->Strongly Connected Components: || ->->Cycle: || ->->-> Pairs: || UNION(edge(%X,%Y,%Z),%U) -> UNION(%Z,%U) || ->->-> Rules: || eq(0,0) -> true || eq(0,s(%X)) -> false || eq(s(%X),0) -> false || eq(s(%X),s(%Y)) -> eq(%X,%Y) || if!fac6220reach!fac62201(false,%X,%Y,edge(%Z,%U,%V),%W) -> reach(%X,%Y,%V,edge(%Z,%U,%W)) || if!fac6220reach!fac62201(true,%X,%Y,edge(%Z,%U,%V),%W) -> if!fac6220reach!fac62202(eq(%Y,%U),%X,%Y,edge(%Z,%U,%V),%W) || if!fac6220reach!fac62202(false,%X,%Y,edge(%Z,%U,%V),%W) -> or(reach(%X,%Y,%V,%W),reach(%U,%Y,union(%V,%W),empty)) || if!fac6220reach!fac62202(true,%X,%Y,edge(%Z,%U,%V),%W) -> true || or(false,%X) -> %X || or(true,%X) -> true || reach(%X,%Y,edge(%Z,%U,%V),%W) -> if!fac6220reach!fac62201(eq(%X,%Z),%X,%Y,edge(%Z,%U,%V),%W) || reach(%X,%Y,empty,%Z) -> false || union(edge(%X,%Y,%Z),%U) -> edge(%X,%Y,union(%Z,%U)) || union(empty,%X) -> %X || ->->Cycle: || ->->-> Pairs: || EQ(s(%X),s(%Y)) -> EQ(%X,%Y) || ->->-> Rules: || eq(0,0) -> true || eq(0,s(%X)) -> false || eq(s(%X),0) -> false || eq(s(%X),s(%Y)) -> eq(%X,%Y) || if!fac6220reach!fac62201(false,%X,%Y,edge(%Z,%U,%V),%W) -> reach(%X,%Y,%V,edge(%Z,%U,%W)) || if!fac6220reach!fac62201(true,%X,%Y,edge(%Z,%U,%V),%W) -> if!fac6220reach!fac62202(eq(%Y,%U),%X,%Y,edge(%Z,%U,%V),%W) || if!fac6220reach!fac62202(false,%X,%Y,edge(%Z,%U,%V),%W) -> or(reach(%X,%Y,%V,%W),reach(%U,%Y,union(%V,%W),empty)) || if!fac6220reach!fac62202(true,%X,%Y,edge(%Z,%U,%V),%W) -> true || or(false,%X) -> %X || or(true,%X) -> true || reach(%X,%Y,edge(%Z,%U,%V),%W) -> if!fac6220reach!fac62201(eq(%X,%Z),%X,%Y,edge(%Z,%U,%V),%W) || reach(%X,%Y,empty,%Z) -> false || union(edge(%X,%Y,%Z),%U) -> edge(%X,%Y,union(%Z,%U)) || union(empty,%X) -> %X || ->->Cycle: || ->->-> Pairs: || IF!FAC6220REACH!FAC62201(false,%X,%Y,edge(%Z,%U,%V),%W) -> REACH(%X,%Y,%V,edge(%Z,%U,%W)) || IF!FAC6220REACH!FAC62201(true,%X,%Y,edge(%Z,%U,%V),%W) -> IF!FAC6220REACH!FAC62202(eq(%Y,%U),%X,%Y,edge(%Z,%U,%V),%W) || IF!FAC6220REACH!FAC62202(false,%X,%Y,edge(%Z,%U,%V),%W) -> REACH(%U,%Y,union(%V,%W),empty) || IF!FAC6220REACH!FAC62202(false,%X,%Y,edge(%Z,%U,%V),%W) -> REACH(%X,%Y,%V,%W) || REACH(%X,%Y,edge(%Z,%U,%V),%W) -> IF!FAC6220REACH!FAC62201(eq(%X,%Z),%X,%Y,edge(%Z,%U,%V),%W) || ->->-> Rules: || eq(0,0) -> true || eq(0,s(%X)) -> false || eq(s(%X),0) -> false || eq(s(%X),s(%Y)) -> eq(%X,%Y) || if!fac6220reach!fac62201(false,%X,%Y,edge(%Z,%U,%V),%W) -> reach(%X,%Y,%V,edge(%Z,%U,%W)) || if!fac6220reach!fac62201(true,%X,%Y,edge(%Z,%U,%V),%W) -> if!fac6220reach!fac62202(eq(%Y,%U),%X,%Y,edge(%Z,%U,%V),%W) || if!fac6220reach!fac62202(false,%X,%Y,edge(%Z,%U,%V),%W) -> or(reach(%X,%Y,%V,%W),reach(%U,%Y,union(%V,%W),empty)) || if!fac6220reach!fac62202(true,%X,%Y,edge(%Z,%U,%V),%W) -> true || or(false,%X) -> %X || or(true,%X) -> true || reach(%X,%Y,edge(%Z,%U,%V),%W) -> if!fac6220reach!fac62201(eq(%X,%Z),%X,%Y,edge(%Z,%U,%V),%W) || reach(%X,%Y,empty,%Z) -> false || union(edge(%X,%Y,%Z),%U) -> edge(%X,%Y,union(%Z,%U)) || union(empty,%X) -> %X || || || The problem is decomposed in 3 subproblems. || || Problem 1.1: || || Subterm Processor: || -> Pairs: || UNION(edge(%X,%Y,%Z),%U) -> UNION(%Z,%U) || -> Rules: || eq(0,0) -> true || eq(0,s(%X)) -> false || eq(s(%X),0) -> false || eq(s(%X),s(%Y)) -> eq(%X,%Y) || if!fac6220reach!fac62201(false,%X,%Y,edge(%Z,%U,%V),%W) -> reach(%X,%Y,%V,edge(%Z,%U,%W)) || if!fac6220reach!fac62201(true,%X,%Y,edge(%Z,%U,%V),%W) -> if!fac6220reach!fac62202(eq(%Y,%U),%X,%Y,edge(%Z,%U,%V),%W) || if!fac6220reach!fac62202(false,%X,%Y,edge(%Z,%U,%V),%W) -> or(reach(%X,%Y,%V,%W),reach(%U,%Y,union(%V,%W),empty)) || if!fac6220reach!fac62202(true,%X,%Y,edge(%Z,%U,%V),%W) -> true || or(false,%X) -> %X || or(true,%X) -> true || reach(%X,%Y,edge(%Z,%U,%V),%W) -> if!fac6220reach!fac62201(eq(%X,%Z),%X,%Y,edge(%Z,%U,%V),%W) || reach(%X,%Y,empty,%Z) -> false || union(edge(%X,%Y,%Z),%U) -> edge(%X,%Y,union(%Z,%U)) || union(empty,%X) -> %X || ->Projection: || pi(UNION) = 1 || || Problem 1.1: || || SCC Processor: || -> Pairs: || Empty || -> Rules: || eq(0,0) -> true || eq(0,s(%X)) -> false || eq(s(%X),0) -> false || eq(s(%X),s(%Y)) -> eq(%X,%Y) || if!fac6220reach!fac62201(false,%X,%Y,edge(%Z,%U,%V),%W) -> reach(%X,%Y,%V,edge(%Z,%U,%W)) || if!fac6220reach!fac62201(true,%X,%Y,edge(%Z,%U,%V),%W) -> if!fac6220reach!fac62202(eq(%Y,%U),%X,%Y,edge(%Z,%U,%V),%W) || if!fac6220reach!fac62202(false,%X,%Y,edge(%Z,%U,%V),%W) -> or(reach(%X,%Y,%V,%W),reach(%U,%Y,union(%V,%W),empty)) || if!fac6220reach!fac62202(true,%X,%Y,edge(%Z,%U,%V),%W) -> true || or(false,%X) -> %X || or(true,%X) -> true || reach(%X,%Y,edge(%Z,%U,%V),%W) -> if!fac6220reach!fac62201(eq(%X,%Z),%X,%Y,edge(%Z,%U,%V),%W) || reach(%X,%Y,empty,%Z) -> false || union(edge(%X,%Y,%Z),%U) -> edge(%X,%Y,union(%Z,%U)) || union(empty,%X) -> %X || ->Strongly Connected Components: || There is no strongly connected component || || The problem is finite. || || Problem 1.2: || || Subterm Processor: || -> Pairs: || EQ(s(%X),s(%Y)) -> EQ(%X,%Y) || -> Rules: || eq(0,0) -> true || eq(0,s(%X)) -> false || eq(s(%X),0) -> false || eq(s(%X),s(%Y)) -> eq(%X,%Y) || if!fac6220reach!fac62201(false,%X,%Y,edge(%Z,%U,%V),%W) -> reach(%X,%Y,%V,edge(%Z,%U,%W)) || if!fac6220reach!fac62201(true,%X,%Y,edge(%Z,%U,%V),%W) -> if!fac6220reach!fac62202(eq(%Y,%U),%X,%Y,edge(%Z,%U,%V),%W) || if!fac6220reach!fac62202(false,%X,%Y,edge(%Z,%U,%V),%W) -> or(reach(%X,%Y,%V,%W),reach(%U,%Y,union(%V,%W),empty)) || if!fac6220reach!fac62202(true,%X,%Y,edge(%Z,%U,%V),%W) -> true || or(false,%X) -> %X || or(true,%X) -> true || reach(%X,%Y,edge(%Z,%U,%V),%W) -> if!fac6220reach!fac62201(eq(%X,%Z),%X,%Y,edge(%Z,%U,%V),%W) || reach(%X,%Y,empty,%Z) -> false || union(edge(%X,%Y,%Z),%U) -> edge(%X,%Y,union(%Z,%U)) || union(empty,%X) -> %X || ->Projection: || pi(EQ) = 1 || || Problem 1.2: || || SCC Processor: || -> Pairs: || Empty || -> Rules: || eq(0,0) -> true || eq(0,s(%X)) -> false || eq(s(%X),0) -> false || eq(s(%X),s(%Y)) -> eq(%X,%Y) || if!fac6220reach!fac62201(false,%X,%Y,edge(%Z,%U,%V),%W) -> reach(%X,%Y,%V,edge(%Z,%U,%W)) || if!fac6220reach!fac62201(true,%X,%Y,edge(%Z,%U,%V),%W) -> if!fac6220reach!fac62202(eq(%Y,%U),%X,%Y,edge(%Z,%U,%V),%W) || if!fac6220reach!fac62202(false,%X,%Y,edge(%Z,%U,%V),%W) -> or(reach(%X,%Y,%V,%W),reach(%U,%Y,union(%V,%W),empty)) || if!fac6220reach!fac62202(true,%X,%Y,edge(%Z,%U,%V),%W) -> true || or(false,%X) -> %X || or(true,%X) -> true || reach(%X,%Y,edge(%Z,%U,%V),%W) -> if!fac6220reach!fac62201(eq(%X,%Z),%X,%Y,edge(%Z,%U,%V),%W) || reach(%X,%Y,empty,%Z) -> false || union(edge(%X,%Y,%Z),%U) -> edge(%X,%Y,union(%Z,%U)) || union(empty,%X) -> %X || ->Strongly Connected Components: || There is no strongly connected component || || The problem is finite. || || Problem 1.3: || || Reduction Pairs Processor: || -> Pairs: || IF!FAC6220REACH!FAC62201(false,%X,%Y,edge(%Z,%U,%V),%W) -> REACH(%X,%Y,%V,edge(%Z,%U,%W)) || IF!FAC6220REACH!FAC62201(true,%X,%Y,edge(%Z,%U,%V),%W) -> IF!FAC6220REACH!FAC62202(eq(%Y,%U),%X,%Y,edge(%Z,%U,%V),%W) || IF!FAC6220REACH!FAC62202(false,%X,%Y,edge(%Z,%U,%V),%W) -> REACH(%U,%Y,union(%V,%W),empty) || IF!FAC6220REACH!FAC62202(false,%X,%Y,edge(%Z,%U,%V),%W) -> REACH(%X,%Y,%V,%W) || REACH(%X,%Y,edge(%Z,%U,%V),%W) -> IF!FAC6220REACH!FAC62201(eq(%X,%Z),%X,%Y,edge(%Z,%U,%V),%W) || -> Rules: || eq(0,0) -> true || eq(0,s(%X)) -> false || eq(s(%X),0) -> false || eq(s(%X),s(%Y)) -> eq(%X,%Y) || if!fac6220reach!fac62201(false,%X,%Y,edge(%Z,%U,%V),%W) -> reach(%X,%Y,%V,edge(%Z,%U,%W)) || if!fac6220reach!fac62201(true,%X,%Y,edge(%Z,%U,%V),%W) -> if!fac6220reach!fac62202(eq(%Y,%U),%X,%Y,edge(%Z,%U,%V),%W) || if!fac6220reach!fac62202(false,%X,%Y,edge(%Z,%U,%V),%W) -> or(reach(%X,%Y,%V,%W),reach(%U,%Y,union(%V,%W),empty)) || if!fac6220reach!fac62202(true,%X,%Y,edge(%Z,%U,%V),%W) -> true || or(false,%X) -> %X || or(true,%X) -> true || reach(%X,%Y,edge(%Z,%U,%V),%W) -> if!fac6220reach!fac62201(eq(%X,%Z),%X,%Y,edge(%Z,%U,%V),%W) || reach(%X,%Y,empty,%Z) -> false || union(edge(%X,%Y,%Z),%U) -> edge(%X,%Y,union(%Z,%U)) || union(empty,%X) -> %X || -> Usable rules: || eq(0,0) -> true || eq(0,s(%X)) -> false || eq(s(%X),0) -> false || eq(s(%X),s(%Y)) -> eq(%X,%Y) || union(edge(%X,%Y,%Z),%U) -> edge(%X,%Y,union(%Z,%U)) || union(empty,%X) -> %X || ->Interpretation type: || Linear || ->Coefficients: || Natural Numbers || ->Dimension: || 1 || ->Bound: || 2 || ->Interpretation: || || [eq](X1,X2) = 2 || [union](X1,X2) = X1 + X2 + 1 || [0] = 0 || [edge](X1,X2,X3) = 2.X1 + 2.X2 + X3 + 2 || [empty] = 0 || [false] = 2 || [s](X) = 2.X || [true] = 2 || [IF!FAC6220REACH!FAC62201](X1,X2,X3,X4,X5) = X1 + 2.X2 + X3 + 2.X4 + 2.X5 || [IF!FAC6220REACH!FAC62202](X1,X2,X3,X4,X5) = 2.X2 + X3 + 2.X4 + 2.X5 || [REACH](X1,X2,X3,X4) = 2.X1 + X2 + 2.X3 + 2.X4 + 2 || || Problem 1.3: || || SCC Processor: || -> Pairs: || IF!FAC6220REACH!FAC62201(false,%X,%Y,edge(%Z,%U,%V),%W) -> REACH(%X,%Y,%V,edge(%Z,%U,%W)) || IF!FAC6220REACH!FAC62202(false,%X,%Y,edge(%Z,%U,%V),%W) -> REACH(%U,%Y,union(%V,%W),empty) || IF!FAC6220REACH!FAC62202(false,%X,%Y,edge(%Z,%U,%V),%W) -> REACH(%X,%Y,%V,%W) || REACH(%X,%Y,edge(%Z,%U,%V),%W) -> IF!FAC6220REACH!FAC62201(eq(%X,%Z),%X,%Y,edge(%Z,%U,%V),%W) || -> Rules: || eq(0,0) -> true || eq(0,s(%X)) -> false || eq(s(%X),0) -> false || eq(s(%X),s(%Y)) -> eq(%X,%Y) || if!fac6220reach!fac62201(false,%X,%Y,edge(%Z,%U,%V),%W) -> reach(%X,%Y,%V,edge(%Z,%U,%W)) || if!fac6220reach!fac62201(true,%X,%Y,edge(%Z,%U,%V),%W) -> if!fac6220reach!fac62202(eq(%Y,%U),%X,%Y,edge(%Z,%U,%V),%W) || if!fac6220reach!fac62202(false,%X,%Y,edge(%Z,%U,%V),%W) -> or(reach(%X,%Y,%V,%W),reach(%U,%Y,union(%V,%W),empty)) || if!fac6220reach!fac62202(true,%X,%Y,edge(%Z,%U,%V),%W) -> true || or(false,%X) -> %X || or(true,%X) -> true || reach(%X,%Y,edge(%Z,%U,%V),%W) -> if!fac6220reach!fac62201(eq(%X,%Z),%X,%Y,edge(%Z,%U,%V),%W) || reach(%X,%Y,empty,%Z) -> false || union(edge(%X,%Y,%Z),%U) -> edge(%X,%Y,union(%Z,%U)) || union(empty,%X) -> %X || ->Strongly Connected Components: || ->->Cycle: || ->->-> Pairs: || IF!FAC6220REACH!FAC62201(false,%X,%Y,edge(%Z,%U,%V),%W) -> REACH(%X,%Y,%V,edge(%Z,%U,%W)) || REACH(%X,%Y,edge(%Z,%U,%V),%W) -> IF!FAC6220REACH!FAC62201(eq(%X,%Z),%X,%Y,edge(%Z,%U,%V),%W) || ->->-> Rules: || eq(0,0) -> true || eq(0,s(%X)) -> false || eq(s(%X),0) -> false || eq(s(%X),s(%Y)) -> eq(%X,%Y) || if!fac6220reach!fac62201(false,%X,%Y,edge(%Z,%U,%V),%W) -> reach(%X,%Y,%V,edge(%Z,%U,%W)) || if!fac6220reach!fac62201(true,%X,%Y,edge(%Z,%U,%V),%W) -> if!fac6220reach!fac62202(eq(%Y,%U),%X,%Y,edge(%Z,%U,%V),%W) || if!fac6220reach!fac62202(false,%X,%Y,edge(%Z,%U,%V),%W) -> or(reach(%X,%Y,%V,%W),reach(%U,%Y,union(%V,%W),empty)) || if!fac6220reach!fac62202(true,%X,%Y,edge(%Z,%U,%V),%W) -> true || or(false,%X) -> %X || or(true,%X) -> true || reach(%X,%Y,edge(%Z,%U,%V),%W) -> if!fac6220reach!fac62201(eq(%X,%Z),%X,%Y,edge(%Z,%U,%V),%W) || reach(%X,%Y,empty,%Z) -> false || union(edge(%X,%Y,%Z),%U) -> edge(%X,%Y,union(%Z,%U)) || union(empty,%X) -> %X || || Problem 1.3: || || Subterm Processor: || -> Pairs: || IF!FAC6220REACH!FAC62201(false,%X,%Y,edge(%Z,%U,%V),%W) -> REACH(%X,%Y,%V,edge(%Z,%U,%W)) || REACH(%X,%Y,edge(%Z,%U,%V),%W) -> IF!FAC6220REACH!FAC62201(eq(%X,%Z),%X,%Y,edge(%Z,%U,%V),%W) || -> Rules: || eq(0,0) -> true || eq(0,s(%X)) -> false || eq(s(%X),0) -> false || eq(s(%X),s(%Y)) -> eq(%X,%Y) || if!fac6220reach!fac62201(false,%X,%Y,edge(%Z,%U,%V),%W) -> reach(%X,%Y,%V,edge(%Z,%U,%W)) || if!fac6220reach!fac62201(true,%X,%Y,edge(%Z,%U,%V),%W) -> if!fac6220reach!fac62202(eq(%Y,%U),%X,%Y,edge(%Z,%U,%V),%W) || if!fac6220reach!fac62202(false,%X,%Y,edge(%Z,%U,%V),%W) -> or(reach(%X,%Y,%V,%W),reach(%U,%Y,union(%V,%W),empty)) || if!fac6220reach!fac62202(true,%X,%Y,edge(%Z,%U,%V),%W) -> true || or(false,%X) -> %X || or(true,%X) -> true || reach(%X,%Y,edge(%Z,%U,%V),%W) -> if!fac6220reach!fac62201(eq(%X,%Z),%X,%Y,edge(%Z,%U,%V),%W) || reach(%X,%Y,empty,%Z) -> false || union(edge(%X,%Y,%Z),%U) -> edge(%X,%Y,union(%Z,%U)) || union(empty,%X) -> %X || ->Projection: || pi(IF!FAC6220REACH!FAC62201) = 4 || pi(REACH) = 3 || || Problem 1.3: || || SCC Processor: || -> Pairs: || REACH(%X,%Y,edge(%Z,%U,%V),%W) -> IF!FAC6220REACH!FAC62201(eq(%X,%Z),%X,%Y,edge(%Z,%U,%V),%W) || -> Rules: || eq(0,0) -> true || eq(0,s(%X)) -> false || eq(s(%X),0) -> false || eq(s(%X),s(%Y)) -> eq(%X,%Y) || if!fac6220reach!fac62201(false,%X,%Y,edge(%Z,%U,%V),%W) -> reach(%X,%Y,%V,edge(%Z,%U,%W)) || if!fac6220reach!fac62201(true,%X,%Y,edge(%Z,%U,%V),%W) -> if!fac6220reach!fac62202(eq(%Y,%U),%X,%Y,edge(%Z,%U,%V),%W) || if!fac6220reach!fac62202(false,%X,%Y,edge(%Z,%U,%V),%W) -> or(reach(%X,%Y,%V,%W),reach(%U,%Y,union(%V,%W),empty)) || if!fac6220reach!fac62202(true,%X,%Y,edge(%Z,%U,%V),%W) -> true || or(false,%X) -> %X || or(true,%X) -> true || reach(%X,%Y,edge(%Z,%U,%V),%W) -> if!fac6220reach!fac62201(eq(%X,%Z),%X,%Y,edge(%Z,%U,%V),%W) || reach(%X,%Y,empty,%Z) -> false || union(edge(%X,%Y,%Z),%U) -> edge(%X,%Y,union(%Z,%U)) || union(empty,%X) -> %X || ->Strongly Connected Components: || There is no strongly connected component || || The problem is finite. || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] map#(F, cons(X, Y)) =#> map#(F, Y) 1] filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) 2] filter2#(true, F, X, Y) =#> filter#(F, Y) 3] filter2#(false, F, X, Y) =#> filter#(F, Y) Rules R_0: eq(0, 0) => true eq(0, s(X)) => false eq(s(X), 0) => false eq(s(X), s(Y)) => eq(X, Y) or(true, X) => true or(false, X) => X union(empty, X) => X union(edge(X, Y, Z), U) => edge(X, Y, union(Z, U)) reach(X, Y, empty, Z) => false reach(X, Y, edge(Z, U, V), W) => if!fac6220reach!fac62201(eq(X, Z), X, Y, edge(Z, U, V), W) if!fac6220reach!fac62201(true, X, Y, edge(Z, U, V), W) => if!fac6220reach!fac62202(eq(Y, U), X, Y, edge(Z, U, V), W) if!fac6220reach!fac62201(false, X, Y, edge(Z, U, V), W) => reach(X, Y, V, edge(Z, U, W)) if!fac6220reach!fac62202(true, X, Y, edge(Z, U, V), W) => true if!fac6220reach!fac62202(false, X, Y, edge(Z, U, V), W) => or(reach(X, Y, V, W), reach(U, Y, union(V, W), empty)) map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, nil) => nil filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0 * 1 : 2, 3 * 2 : 1 * 3 : 1 This graph has the following strongly connected components: P_1: map#(F, cons(X, Y)) =#> map#(F, Y) P_2: filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f) and (P_2, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, computable, formative) and (P_2, R_0, computable, formative) is finite. We consider the dependency pair problem (P_2, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(filter2#) = 4 nu(filter#) = 2 Thus, we can orient the dependency pairs as follows: nu(filter#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(filter2#(F X, F, X, Y)) nu(filter2#(true, F, X, Y)) = Y = Y = nu(filter#(F, Y)) nu(filter2#(false, F, X, Y)) = Y = Y = nu(filter#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_2, R_0, computable, f) by (P_3, R_0, computable, f), where P_3 contains: filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if each of (P_1, R_0, computable, formative) and (P_3, R_0, computable, formative) is finite. We consider the dependency pair problem (P_3, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. Thus, the original system is terminating if (P_1, R_0, computable, formative) is finite. We consider the dependency pair problem (P_1, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(map#) = 2 Thus, we can orient the dependency pairs as follows: nu(map#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(map#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_1, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.