We consider the system Applicative_first_order_05__#3.22. Alphabet: 0 : [] --> a cons : [c * d] --> d false : [] --> b filter : [c -> b * d] --> d filter2 : [b * c -> b * c * d] --> d map : [c -> c * d] --> d nil : [] --> d plus : [a * a] --> a s : [a] --> a times : [a * a] --> a true : [] --> b Rules: times(x, plus(y, s(z))) => plus(times(x, plus(y, times(s(z), 0))), times(x, s(z))) times(x, 0) => 0 times(x, s(y)) => plus(times(x, y), x) plus(x, 0) => x plus(x, s(y)) => s(plus(x, y)) map(f, nil) => nil map(f, cons(x, y)) => cons(f x, map(f, y)) filter(f, nil) => nil filter(f, cons(x, y)) => filter2(f x, f, x, y) filter2(true, f, x, y) => cons(x, filter(f, y)) filter2(false, f, x, y) => filter(f, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: times(X, plus(Y, s(Z))) => plus(times(X, plus(Y, times(s(Z), 0))), times(X, s(Z))) times(X, 0) => 0 times(X, s(Y)) => plus(times(X, Y), X) plus(X, 0) => X plus(X, s(Y)) => s(plus(X, Y)) Moreover, the system is finitely branching. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is Ce-terminating when seen as a many-sorted first-order TRS. According to mutermprover, this system is indeed Ce-terminating: || || Problem 1: || || (VAR %X %Y %Z) || (RULES || plus(%X,0) -> %X || plus(%X,s(%Y)) -> s(plus(%X,%Y)) || times(%X,plus(%Y,s(%Z))) -> plus(times(%X,plus(%Y,times(s(%Z),0))),times(%X,s(%Z))) || times(%X,0) -> 0 || times(%X,s(%Y)) -> plus(times(%X,%Y),%X) || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || ) || || Problem 1: || || Dependency Pairs Processor: || -> Pairs: || PLUS(%X,s(%Y)) -> PLUS(%X,%Y) || TIMES(%X,plus(%Y,s(%Z))) -> PLUS(times(%X,plus(%Y,times(s(%Z),0))),times(%X,s(%Z))) || TIMES(%X,plus(%Y,s(%Z))) -> PLUS(%Y,times(s(%Z),0)) || TIMES(%X,plus(%Y,s(%Z))) -> TIMES(s(%Z),0) || TIMES(%X,plus(%Y,s(%Z))) -> TIMES(%X,plus(%Y,times(s(%Z),0))) || TIMES(%X,plus(%Y,s(%Z))) -> TIMES(%X,s(%Z)) || TIMES(%X,s(%Y)) -> PLUS(times(%X,%Y),%X) || TIMES(%X,s(%Y)) -> TIMES(%X,%Y) || -> Rules: || plus(%X,0) -> %X || plus(%X,s(%Y)) -> s(plus(%X,%Y)) || times(%X,plus(%Y,s(%Z))) -> plus(times(%X,plus(%Y,times(s(%Z),0))),times(%X,s(%Z))) || times(%X,0) -> 0 || times(%X,s(%Y)) -> plus(times(%X,%Y),%X) || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || || Problem 1: || || SCC Processor: || -> Pairs: || PLUS(%X,s(%Y)) -> PLUS(%X,%Y) || TIMES(%X,plus(%Y,s(%Z))) -> PLUS(times(%X,plus(%Y,times(s(%Z),0))),times(%X,s(%Z))) || TIMES(%X,plus(%Y,s(%Z))) -> PLUS(%Y,times(s(%Z),0)) || TIMES(%X,plus(%Y,s(%Z))) -> TIMES(s(%Z),0) || TIMES(%X,plus(%Y,s(%Z))) -> TIMES(%X,plus(%Y,times(s(%Z),0))) || TIMES(%X,plus(%Y,s(%Z))) -> TIMES(%X,s(%Z)) || TIMES(%X,s(%Y)) -> PLUS(times(%X,%Y),%X) || TIMES(%X,s(%Y)) -> TIMES(%X,%Y) || -> Rules: || plus(%X,0) -> %X || plus(%X,s(%Y)) -> s(plus(%X,%Y)) || times(%X,plus(%Y,s(%Z))) -> plus(times(%X,plus(%Y,times(s(%Z),0))),times(%X,s(%Z))) || times(%X,0) -> 0 || times(%X,s(%Y)) -> plus(times(%X,%Y),%X) || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || ->Strongly Connected Components: || ->->Cycle: || ->->-> Pairs: || PLUS(%X,s(%Y)) -> PLUS(%X,%Y) || ->->-> Rules: || plus(%X,0) -> %X || plus(%X,s(%Y)) -> s(plus(%X,%Y)) || times(%X,plus(%Y,s(%Z))) -> plus(times(%X,plus(%Y,times(s(%Z),0))),times(%X,s(%Z))) || times(%X,0) -> 0 || times(%X,s(%Y)) -> plus(times(%X,%Y),%X) || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || ->->Cycle: || ->->-> Pairs: || TIMES(%X,plus(%Y,s(%Z))) -> TIMES(%X,plus(%Y,times(s(%Z),0))) || TIMES(%X,plus(%Y,s(%Z))) -> TIMES(%X,s(%Z)) || TIMES(%X,s(%Y)) -> TIMES(%X,%Y) || ->->-> Rules: || plus(%X,0) -> %X || plus(%X,s(%Y)) -> s(plus(%X,%Y)) || times(%X,plus(%Y,s(%Z))) -> plus(times(%X,plus(%Y,times(s(%Z),0))),times(%X,s(%Z))) || times(%X,0) -> 0 || times(%X,s(%Y)) -> plus(times(%X,%Y),%X) || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || || || The problem is decomposed in 2 subproblems. || || Problem 1.1: || || Subterm Processor: || -> Pairs: || PLUS(%X,s(%Y)) -> PLUS(%X,%Y) || -> Rules: || plus(%X,0) -> %X || plus(%X,s(%Y)) -> s(plus(%X,%Y)) || times(%X,plus(%Y,s(%Z))) -> plus(times(%X,plus(%Y,times(s(%Z),0))),times(%X,s(%Z))) || times(%X,0) -> 0 || times(%X,s(%Y)) -> plus(times(%X,%Y),%X) || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || ->Projection: || pi(PLUS) = 2 || || Problem 1.1: || || SCC Processor: || -> Pairs: || Empty || -> Rules: || plus(%X,0) -> %X || plus(%X,s(%Y)) -> s(plus(%X,%Y)) || times(%X,plus(%Y,s(%Z))) -> plus(times(%X,plus(%Y,times(s(%Z),0))),times(%X,s(%Z))) || times(%X,0) -> 0 || times(%X,s(%Y)) -> plus(times(%X,%Y),%X) || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || ->Strongly Connected Components: || There is no strongly connected component || || The problem is finite. || || Problem 1.2: || || Reduction Pair Processor: || -> Pairs: || TIMES(%X,plus(%Y,s(%Z))) -> TIMES(%X,plus(%Y,times(s(%Z),0))) || TIMES(%X,plus(%Y,s(%Z))) -> TIMES(%X,s(%Z)) || TIMES(%X,s(%Y)) -> TIMES(%X,%Y) || -> Rules: || plus(%X,0) -> %X || plus(%X,s(%Y)) -> s(plus(%X,%Y)) || times(%X,plus(%Y,s(%Z))) -> plus(times(%X,plus(%Y,times(s(%Z),0))),times(%X,s(%Z))) || times(%X,0) -> 0 || times(%X,s(%Y)) -> plus(times(%X,%Y),%X) || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || -> Usable rules: || plus(%X,0) -> %X || plus(%X,s(%Y)) -> s(plus(%X,%Y)) || times(%X,plus(%Y,s(%Z))) -> plus(times(%X,plus(%Y,times(s(%Z),0))),times(%X,s(%Z))) || times(%X,0) -> 0 || times(%X,s(%Y)) -> plus(times(%X,%Y),%X) || ->Interpretation type: || Simple mixed || ->Coefficients: || Natural Numbers || ->Dimension: || 1 || ->Bound: || 2 || ->Interpretation: || || [plus](X1,X2) = X1 + X2 || [times](X1,X2) = 2.X1.X2 || [0] = 0 || [s](X) = X + 2 || [TIMES](X1,X2) = 2.X2 || || Problem 1.2: || || SCC Processor: || -> Pairs: || TIMES(%X,plus(%Y,s(%Z))) -> TIMES(%X,s(%Z)) || TIMES(%X,s(%Y)) -> TIMES(%X,%Y) || -> Rules: || plus(%X,0) -> %X || plus(%X,s(%Y)) -> s(plus(%X,%Y)) || times(%X,plus(%Y,s(%Z))) -> plus(times(%X,plus(%Y,times(s(%Z),0))),times(%X,s(%Z))) || times(%X,0) -> 0 || times(%X,s(%Y)) -> plus(times(%X,%Y),%X) || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || ->Strongly Connected Components: || ->->Cycle: || ->->-> Pairs: || TIMES(%X,plus(%Y,s(%Z))) -> TIMES(%X,s(%Z)) || TIMES(%X,s(%Y)) -> TIMES(%X,%Y) || ->->-> Rules: || plus(%X,0) -> %X || plus(%X,s(%Y)) -> s(plus(%X,%Y)) || times(%X,plus(%Y,s(%Z))) -> plus(times(%X,plus(%Y,times(s(%Z),0))),times(%X,s(%Z))) || times(%X,0) -> 0 || times(%X,s(%Y)) -> plus(times(%X,%Y),%X) || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || || Problem 1.2: || || Subterm Processor: || -> Pairs: || TIMES(%X,plus(%Y,s(%Z))) -> TIMES(%X,s(%Z)) || TIMES(%X,s(%Y)) -> TIMES(%X,%Y) || -> Rules: || plus(%X,0) -> %X || plus(%X,s(%Y)) -> s(plus(%X,%Y)) || times(%X,plus(%Y,s(%Z))) -> plus(times(%X,plus(%Y,times(s(%Z),0))),times(%X,s(%Z))) || times(%X,0) -> 0 || times(%X,s(%Y)) -> plus(times(%X,%Y),%X) || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || ->Projection: || pi(TIMES) = 2 || || Problem 1.2: || || SCC Processor: || -> Pairs: || Empty || -> Rules: || plus(%X,0) -> %X || plus(%X,s(%Y)) -> s(plus(%X,%Y)) || times(%X,plus(%Y,s(%Z))) -> plus(times(%X,plus(%Y,times(s(%Z),0))),times(%X,s(%Z))) || times(%X,0) -> 0 || times(%X,s(%Y)) -> plus(times(%X,%Y),%X) || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || ->Strongly Connected Components: || There is no strongly connected component || || The problem is finite. || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] map#(F, cons(X, Y)) =#> map#(F, Y) 1] filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) 2] filter2#(true, F, X, Y) =#> filter#(F, Y) 3] filter2#(false, F, X, Y) =#> filter#(F, Y) Rules R_0: times(X, plus(Y, s(Z))) => plus(times(X, plus(Y, times(s(Z), 0))), times(X, s(Z))) times(X, 0) => 0 times(X, s(Y)) => plus(times(X, Y), X) plus(X, 0) => X plus(X, s(Y)) => s(plus(X, Y)) map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, nil) => nil filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0 * 1 : 2, 3 * 2 : 1 * 3 : 1 This graph has the following strongly connected components: P_1: map#(F, cons(X, Y)) =#> map#(F, Y) P_2: filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f) and (P_2, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, computable, formative) and (P_2, R_0, computable, formative) is finite. We consider the dependency pair problem (P_2, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(filter2#) = 4 nu(filter#) = 2 Thus, we can orient the dependency pairs as follows: nu(filter#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(filter2#(F X, F, X, Y)) nu(filter2#(true, F, X, Y)) = Y = Y = nu(filter#(F, Y)) nu(filter2#(false, F, X, Y)) = Y = Y = nu(filter#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_2, R_0, computable, f) by (P_3, R_0, computable, f), where P_3 contains: filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if each of (P_1, R_0, computable, formative) and (P_3, R_0, computable, formative) is finite. We consider the dependency pair problem (P_3, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. Thus, the original system is terminating if (P_1, R_0, computable, formative) is finite. We consider the dependency pair problem (P_1, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(map#) = 2 Thus, we can orient the dependency pairs as follows: nu(map#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(map#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_1, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.