We consider the system Applicative_first_order_05__#3.25. Alphabet: cons : [c * d] --> d f : [a] --> a false : [] --> b filter : [c -> b * d] --> d filter2 : [b * c -> b * c * d] --> d g : [a] --> a h : [a] --> a map : [c -> c * d] --> d nil : [] --> d true : [] --> b Rules: f(g(x)) => g(f(f(x))) f(h(x)) => h(g(x)) map(i, nil) => nil map(i, cons(x, y)) => cons(i x, map(i, y)) filter(i, nil) => nil filter(i, cons(x, y)) => filter2(i x, i, x, y) filter2(true, i, x, y) => cons(x, filter(i, y)) filter2(false, i, x, y) => filter(i, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): f(g(X)) >? g(f(f(X))) f(h(X)) >? h(g(X)) map(F, nil) >? nil map(F, cons(X, Y)) >? cons(F X, map(F, Y)) filter(F, nil) >? nil filter(F, cons(X, Y)) >? filter2(F X, F, X, Y) filter2(true, F, X, Y) >? cons(X, filter(F, Y)) filter2(false, F, X, Y) >? filter(F, Y) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: cons = \y0y1.1 + y0 + y1 f = \y0.y0 false = 3 filter = \G0y1.2 + 2y1 + G0(0) + 2y1G0(y1) filter2 = \y0G1y2y3.1 + y0 + y2 + 2y3 + G1(0) + 2y3G1(y3) g = \y0.y0 h = \y0.y0 map = \G0y1.2 + 3y1 + 2y1G0(y1) + 2G0(y1) nil = 0 true = 3 Using this interpretation, the requirements translate to: [[f(g(_x0))]] = x0 >= x0 = [[g(f(f(_x0)))]] [[f(h(_x0))]] = x0 >= x0 = [[h(g(_x0))]] [[map(_F0, nil)]] = 2 + 2F0(0) > 0 = [[nil]] [[map(_F0, cons(_x1, _x2))]] = 5 + 3x1 + 3x2 + 2x1F0(1 + x1 + x2) + 2x2F0(1 + x1 + x2) + 4F0(1 + x1 + x2) > 3 + x1 + 3x2 + F0(x1) + 2x2F0(x2) + 2F0(x2) = [[cons(_F0 _x1, map(_F0, _x2))]] [[filter(_F0, nil)]] = 2 + F0(0) > 0 = [[nil]] [[filter(_F0, cons(_x1, _x2))]] = 4 + 2x1 + 2x2 + F0(0) + 2x1F0(1 + x1 + x2) + 2x2F0(1 + x1 + x2) + 2F0(1 + x1 + x2) > 1 + 2x1 + 2x2 + F0(0) + F0(x1) + 2x2F0(x2) = [[filter2(_F0 _x1, _F0, _x1, _x2)]] [[filter2(true, _F0, _x1, _x2)]] = 4 + x1 + 2x2 + F0(0) + 2x2F0(x2) > 3 + x1 + 2x2 + F0(0) + 2x2F0(x2) = [[cons(_x1, filter(_F0, _x2))]] [[filter2(false, _F0, _x1, _x2)]] = 4 + x1 + 2x2 + F0(0) + 2x2F0(x2) > 2 + 2x2 + F0(0) + 2x2F0(x2) = [[filter(_F0, _x2)]] We can thus remove the following rules: map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, nil) => nil filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) We observe that the rules contain a first-order subset: f(g(X)) => g(f(f(X))) f(h(X)) => h(g(X)) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to mutermprover, this system is indeed terminating: || || Problem 1: || || (VAR %X) || (RULES || f(g(%X)) -> g(f(f(%X))) || f(h(%X)) -> h(g(%X)) || ) || || Problem 1: || || Innermost Equivalent Processor: || -> Rules: || f(g(%X)) -> g(f(f(%X))) || f(h(%X)) -> h(g(%X)) || -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. || || || Problem 1: || || Dependency Pairs Processor: || -> Pairs: || F(g(%X)) -> F(f(%X)) || F(g(%X)) -> F(%X) || -> Rules: || f(g(%X)) -> g(f(f(%X))) || f(h(%X)) -> h(g(%X)) || || Problem 1: || || SCC Processor: || -> Pairs: || F(g(%X)) -> F(f(%X)) || F(g(%X)) -> F(%X) || -> Rules: || f(g(%X)) -> g(f(f(%X))) || f(h(%X)) -> h(g(%X)) || ->Strongly Connected Components: || ->->Cycle: || ->->-> Pairs: || F(g(%X)) -> F(f(%X)) || F(g(%X)) -> F(%X) || ->->-> Rules: || f(g(%X)) -> g(f(f(%X))) || f(h(%X)) -> h(g(%X)) || || Problem 1: || || Reduction Pairs Processor: || -> Pairs: || F(g(%X)) -> F(f(%X)) || F(g(%X)) -> F(%X) || -> Rules: || f(g(%X)) -> g(f(f(%X))) || f(h(%X)) -> h(g(%X)) || -> Usable rules: || f(g(%X)) -> g(f(f(%X))) || f(h(%X)) -> h(g(%X)) || ->Interpretation type: || Linear || ->Coefficients: || Natural Numbers || ->Dimension: || 1 || ->Bound: || 2 || ->Interpretation: || || [f](X) = X || [g](X) = 2.X + 2 || [h](X) = 2 || [F](X) = 2.X || || Problem 1: || || SCC Processor: || -> Pairs: || F(g(%X)) -> F(%X) || -> Rules: || f(g(%X)) -> g(f(f(%X))) || f(h(%X)) -> h(g(%X)) || ->Strongly Connected Components: || ->->Cycle: || ->->-> Pairs: || F(g(%X)) -> F(%X) || ->->-> Rules: || f(g(%X)) -> g(f(f(%X))) || f(h(%X)) -> h(g(%X)) || || Problem 1: || || Subterm Processor: || -> Pairs: || F(g(%X)) -> F(%X) || -> Rules: || f(g(%X)) -> g(f(f(%X))) || f(h(%X)) -> h(g(%X)) || ->Projection: || pi(F) = 1 || || Problem 1: || || SCC Processor: || -> Pairs: || Empty || -> Rules: || f(g(%X)) -> g(f(f(%X))) || f(h(%X)) -> h(g(%X)) || ->Strongly Connected Components: || There is no strongly connected component || || The problem is finite. || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: Rules R_0: f(g(X)) => g(f(f(X))) f(h(X)) => h(g(X)) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.