We consider the system Applicative_first_order_05__#3.38. Alphabet: 0 : [] --> c cons : [c * d] --> d false : [] --> b filter : [c -> b * d] --> d filter2 : [b * c -> b * c * d] --> d map : [c -> c * d] --> d nil : [] --> d rev : [d] --> d rev1 : [c * d] --> c rev2 : [c * d] --> d s : [a] --> c true : [] --> b Rules: rev(nil) => nil rev(cons(x, y)) => cons(rev1(x, y), rev2(x, y)) rev1(0, nil) => 0 rev1(s(x), nil) => s(x) rev1(x, cons(y, z)) => rev1(y, z) rev2(x, nil) => nil rev2(x, cons(y, z)) => rev(cons(x, rev2(y, z))) map(f, nil) => nil map(f, cons(x, y)) => cons(f x, map(f, y)) filter(f, nil) => nil filter(f, cons(x, y)) => filter2(f x, f, x, y) filter2(true, f, x, y) => cons(x, filter(f, y)) filter2(false, f, x, y) => filter(f, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: rev(nil) => nil rev(cons(X, Y)) => cons(rev1(X, Y), rev2(X, Y)) rev1(0, nil) => 0 rev1(s(X), nil) => s(X) rev1(X, cons(Y, Z)) => rev1(Y, Z) rev2(X, nil) => nil rev2(X, cons(Y, Z)) => rev(cons(X, rev2(Y, Z))) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to mutermprover, this system is indeed terminating: || || Problem 1: || || (VAR %X %Y %Z) || (RULES || rev(cons(%X,%Y)) -> cons(rev1(%X,%Y),rev2(%X,%Y)) || rev(nil) -> nil || rev1(0,nil) -> 0 || rev1(s(%X),nil) -> s(%X) || rev1(%X,cons(%Y,%Z)) -> rev1(%Y,%Z) || rev2(%X,cons(%Y,%Z)) -> rev(cons(%X,rev2(%Y,%Z))) || rev2(%X,nil) -> nil || ) || || Problem 1: || || Innermost Equivalent Processor: || -> Rules: || rev(cons(%X,%Y)) -> cons(rev1(%X,%Y),rev2(%X,%Y)) || rev(nil) -> nil || rev1(0,nil) -> 0 || rev1(s(%X),nil) -> s(%X) || rev1(%X,cons(%Y,%Z)) -> rev1(%Y,%Z) || rev2(%X,cons(%Y,%Z)) -> rev(cons(%X,rev2(%Y,%Z))) || rev2(%X,nil) -> nil || -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. || || || Problem 1: || || Dependency Pairs Processor: || -> Pairs: || REV(cons(%X,%Y)) -> REV1(%X,%Y) || REV(cons(%X,%Y)) -> REV2(%X,%Y) || REV1(%X,cons(%Y,%Z)) -> REV1(%Y,%Z) || REV2(%X,cons(%Y,%Z)) -> REV(cons(%X,rev2(%Y,%Z))) || REV2(%X,cons(%Y,%Z)) -> REV2(%Y,%Z) || -> Rules: || rev(cons(%X,%Y)) -> cons(rev1(%X,%Y),rev2(%X,%Y)) || rev(nil) -> nil || rev1(0,nil) -> 0 || rev1(s(%X),nil) -> s(%X) || rev1(%X,cons(%Y,%Z)) -> rev1(%Y,%Z) || rev2(%X,cons(%Y,%Z)) -> rev(cons(%X,rev2(%Y,%Z))) || rev2(%X,nil) -> nil || || Problem 1: || || SCC Processor: || -> Pairs: || REV(cons(%X,%Y)) -> REV1(%X,%Y) || REV(cons(%X,%Y)) -> REV2(%X,%Y) || REV1(%X,cons(%Y,%Z)) -> REV1(%Y,%Z) || REV2(%X,cons(%Y,%Z)) -> REV(cons(%X,rev2(%Y,%Z))) || REV2(%X,cons(%Y,%Z)) -> REV2(%Y,%Z) || -> Rules: || rev(cons(%X,%Y)) -> cons(rev1(%X,%Y),rev2(%X,%Y)) || rev(nil) -> nil || rev1(0,nil) -> 0 || rev1(s(%X),nil) -> s(%X) || rev1(%X,cons(%Y,%Z)) -> rev1(%Y,%Z) || rev2(%X,cons(%Y,%Z)) -> rev(cons(%X,rev2(%Y,%Z))) || rev2(%X,nil) -> nil || ->Strongly Connected Components: || ->->Cycle: || ->->-> Pairs: || REV1(%X,cons(%Y,%Z)) -> REV1(%Y,%Z) || ->->-> Rules: || rev(cons(%X,%Y)) -> cons(rev1(%X,%Y),rev2(%X,%Y)) || rev(nil) -> nil || rev1(0,nil) -> 0 || rev1(s(%X),nil) -> s(%X) || rev1(%X,cons(%Y,%Z)) -> rev1(%Y,%Z) || rev2(%X,cons(%Y,%Z)) -> rev(cons(%X,rev2(%Y,%Z))) || rev2(%X,nil) -> nil || ->->Cycle: || ->->-> Pairs: || REV(cons(%X,%Y)) -> REV2(%X,%Y) || REV2(%X,cons(%Y,%Z)) -> REV(cons(%X,rev2(%Y,%Z))) || REV2(%X,cons(%Y,%Z)) -> REV2(%Y,%Z) || ->->-> Rules: || rev(cons(%X,%Y)) -> cons(rev1(%X,%Y),rev2(%X,%Y)) || rev(nil) -> nil || rev1(0,nil) -> 0 || rev1(s(%X),nil) -> s(%X) || rev1(%X,cons(%Y,%Z)) -> rev1(%Y,%Z) || rev2(%X,cons(%Y,%Z)) -> rev(cons(%X,rev2(%Y,%Z))) || rev2(%X,nil) -> nil || || || The problem is decomposed in 2 subproblems. || || Problem 1.1: || || Subterm Processor: || -> Pairs: || REV1(%X,cons(%Y,%Z)) -> REV1(%Y,%Z) || -> Rules: || rev(cons(%X,%Y)) -> cons(rev1(%X,%Y),rev2(%X,%Y)) || rev(nil) -> nil || rev1(0,nil) -> 0 || rev1(s(%X),nil) -> s(%X) || rev1(%X,cons(%Y,%Z)) -> rev1(%Y,%Z) || rev2(%X,cons(%Y,%Z)) -> rev(cons(%X,rev2(%Y,%Z))) || rev2(%X,nil) -> nil || ->Projection: || pi(REV1) = 2 || || Problem 1.1: || || SCC Processor: || -> Pairs: || Empty || -> Rules: || rev(cons(%X,%Y)) -> cons(rev1(%X,%Y),rev2(%X,%Y)) || rev(nil) -> nil || rev1(0,nil) -> 0 || rev1(s(%X),nil) -> s(%X) || rev1(%X,cons(%Y,%Z)) -> rev1(%Y,%Z) || rev2(%X,cons(%Y,%Z)) -> rev(cons(%X,rev2(%Y,%Z))) || rev2(%X,nil) -> nil || ->Strongly Connected Components: || There is no strongly connected component || || The problem is finite. || || Problem 1.2: || || Reduction Pairs Processor: || -> Pairs: || REV(cons(%X,%Y)) -> REV2(%X,%Y) || REV2(%X,cons(%Y,%Z)) -> REV(cons(%X,rev2(%Y,%Z))) || REV2(%X,cons(%Y,%Z)) -> REV2(%Y,%Z) || -> Rules: || rev(cons(%X,%Y)) -> cons(rev1(%X,%Y),rev2(%X,%Y)) || rev(nil) -> nil || rev1(0,nil) -> 0 || rev1(s(%X),nil) -> s(%X) || rev1(%X,cons(%Y,%Z)) -> rev1(%Y,%Z) || rev2(%X,cons(%Y,%Z)) -> rev(cons(%X,rev2(%Y,%Z))) || rev2(%X,nil) -> nil || -> Usable rules: || rev(cons(%X,%Y)) -> cons(rev1(%X,%Y),rev2(%X,%Y)) || rev(nil) -> nil || rev1(0,nil) -> 0 || rev1(s(%X),nil) -> s(%X) || rev1(%X,cons(%Y,%Z)) -> rev1(%Y,%Z) || rev2(%X,cons(%Y,%Z)) -> rev(cons(%X,rev2(%Y,%Z))) || rev2(%X,nil) -> nil || ->Interpretation type: || Linear || ->Coefficients: || Natural Numbers || ->Dimension: || 1 || ->Bound: || 2 || ->Interpretation: || || [rev](X) = X || [rev1](X1,X2) = X2 + 2 || [rev2](X1,X2) = X2 || [0] = 0 || [cons](X1,X2) = 2.X2 + 2 || [nil] = 1 || [s](X) = 2 || [REV](X) = 2.X + 1 || [REV2](X1,X2) = 2.X2 + 2 || || Problem 1.2: || || SCC Processor: || -> Pairs: || REV2(%X,cons(%Y,%Z)) -> REV(cons(%X,rev2(%Y,%Z))) || REV2(%X,cons(%Y,%Z)) -> REV2(%Y,%Z) || -> Rules: || rev(cons(%X,%Y)) -> cons(rev1(%X,%Y),rev2(%X,%Y)) || rev(nil) -> nil || rev1(0,nil) -> 0 || rev1(s(%X),nil) -> s(%X) || rev1(%X,cons(%Y,%Z)) -> rev1(%Y,%Z) || rev2(%X,cons(%Y,%Z)) -> rev(cons(%X,rev2(%Y,%Z))) || rev2(%X,nil) -> nil || ->Strongly Connected Components: || ->->Cycle: || ->->-> Pairs: || REV2(%X,cons(%Y,%Z)) -> REV2(%Y,%Z) || ->->-> Rules: || rev(cons(%X,%Y)) -> cons(rev1(%X,%Y),rev2(%X,%Y)) || rev(nil) -> nil || rev1(0,nil) -> 0 || rev1(s(%X),nil) -> s(%X) || rev1(%X,cons(%Y,%Z)) -> rev1(%Y,%Z) || rev2(%X,cons(%Y,%Z)) -> rev(cons(%X,rev2(%Y,%Z))) || rev2(%X,nil) -> nil || || Problem 1.2: || || Subterm Processor: || -> Pairs: || REV2(%X,cons(%Y,%Z)) -> REV2(%Y,%Z) || -> Rules: || rev(cons(%X,%Y)) -> cons(rev1(%X,%Y),rev2(%X,%Y)) || rev(nil) -> nil || rev1(0,nil) -> 0 || rev1(s(%X),nil) -> s(%X) || rev1(%X,cons(%Y,%Z)) -> rev1(%Y,%Z) || rev2(%X,cons(%Y,%Z)) -> rev(cons(%X,rev2(%Y,%Z))) || rev2(%X,nil) -> nil || ->Projection: || pi(REV2) = 2 || || Problem 1.2: || || SCC Processor: || -> Pairs: || Empty || -> Rules: || rev(cons(%X,%Y)) -> cons(rev1(%X,%Y),rev2(%X,%Y)) || rev(nil) -> nil || rev1(0,nil) -> 0 || rev1(s(%X),nil) -> s(%X) || rev1(%X,cons(%Y,%Z)) -> rev1(%Y,%Z) || rev2(%X,cons(%Y,%Z)) -> rev(cons(%X,rev2(%Y,%Z))) || rev2(%X,nil) -> nil || ->Strongly Connected Components: || There is no strongly connected component || || The problem is finite. || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] map#(F, cons(X, Y)) =#> map#(F, Y) 1] filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) 2] filter2#(true, F, X, Y) =#> filter#(F, Y) 3] filter2#(false, F, X, Y) =#> filter#(F, Y) Rules R_0: rev(nil) => nil rev(cons(X, Y)) => cons(rev1(X, Y), rev2(X, Y)) rev1(0, nil) => 0 rev1(s(X), nil) => s(X) rev1(X, cons(Y, Z)) => rev1(Y, Z) rev2(X, nil) => nil rev2(X, cons(Y, Z)) => rev(cons(X, rev2(Y, Z))) map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, nil) => nil filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0 * 1 : 2, 3 * 2 : 1 * 3 : 1 This graph has the following strongly connected components: P_1: map#(F, cons(X, Y)) =#> map#(F, Y) P_2: filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f) and (P_2, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, computable, formative) and (P_2, R_0, computable, formative) is finite. We consider the dependency pair problem (P_2, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(filter2#) = 4 nu(filter#) = 2 Thus, we can orient the dependency pairs as follows: nu(filter#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(filter2#(F X, F, X, Y)) nu(filter2#(true, F, X, Y)) = Y = Y = nu(filter#(F, Y)) nu(filter2#(false, F, X, Y)) = Y = Y = nu(filter#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_2, R_0, computable, f) by (P_3, R_0, computable, f), where P_3 contains: filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if each of (P_1, R_0, computable, formative) and (P_3, R_0, computable, formative) is finite. We consider the dependency pair problem (P_3, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. Thus, the original system is terminating if (P_1, R_0, computable, formative) is finite. We consider the dependency pair problem (P_1, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(map#) = 2 Thus, we can orient the dependency pairs as follows: nu(map#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(map#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_1, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.