We consider the system Applicative_first_order_05__motivation. Alphabet: cons : [c * d] --> d f : [a * a] --> a false : [] --> b filter : [c -> b * d] --> d filter2 : [b * c -> b * c * d] --> d g : [a] --> a h : [a] --> a map : [c -> c * d] --> d nil : [] --> d true : [] --> b Rules: g(h(g(x))) => g(x) g(g(x)) => g(h(g(x))) h(h(x)) => h(f(h(x), x)) map(i, nil) => nil map(i, cons(x, y)) => cons(i x, map(i, y)) filter(i, nil) => nil filter(i, cons(x, y)) => filter2(i x, i, x, y) filter2(true, i, x, y) => cons(x, filter(i, y)) filter2(false, i, x, y) => filter(i, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: g(h(g(X))) => g(X) g(g(X)) => g(h(g(X))) h(h(X)) => h(f(h(X), X)) Moreover, the system is finitely branching. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is Ce-terminating when seen as a many-sorted first-order TRS. According to mutermprover, this system is indeed Ce-terminating: || || Problem 1: || || (VAR %X %Y) || (RULES || g(g(%X)) -> g(h(g(%X))) || g(h(g(%X))) -> g(%X) || h(h(%X)) -> h(f(h(%X),%X)) || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || ) || || Problem 1: || || Dependency Pairs Processor: || -> Pairs: || G(g(%X)) -> G(h(g(%X))) || G(g(%X)) -> H(g(%X)) || H(h(%X)) -> H(f(h(%X),%X)) || -> Rules: || g(g(%X)) -> g(h(g(%X))) || g(h(g(%X))) -> g(%X) || h(h(%X)) -> h(f(h(%X),%X)) || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || || Problem 1: || || SCC Processor: || -> Pairs: || G(g(%X)) -> G(h(g(%X))) || G(g(%X)) -> H(g(%X)) || H(h(%X)) -> H(f(h(%X),%X)) || -> Rules: || g(g(%X)) -> g(h(g(%X))) || g(h(g(%X))) -> g(%X) || h(h(%X)) -> h(f(h(%X),%X)) || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || ->Strongly Connected Components: || ->->Cycle: || ->->-> Pairs: || G(g(%X)) -> G(h(g(%X))) || ->->-> Rules: || g(g(%X)) -> g(h(g(%X))) || g(h(g(%X))) -> g(%X) || h(h(%X)) -> h(f(h(%X),%X)) || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || || Problem 1: || || Reduction Pair Processor: || -> Pairs: || G(g(%X)) -> G(h(g(%X))) || -> Rules: || g(g(%X)) -> g(h(g(%X))) || g(h(g(%X))) -> g(%X) || h(h(%X)) -> h(f(h(%X),%X)) || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || -> Usable rules: || g(g(%X)) -> g(h(g(%X))) || g(h(g(%X))) -> g(%X) || h(h(%X)) -> h(f(h(%X),%X)) || ->Interpretation type: || Linear || ->Coefficients: || Natural Numbers || ->Dimension: || 1 || ->Bound: || 2 || ->Interpretation: || || [g](X) = 1 || [h](X) = 0 || [f](X1,X2) = 2.X1 + 2.X2 || [G](X) = 2.X || || Problem 1: || || SCC Processor: || -> Pairs: || Empty || -> Rules: || g(g(%X)) -> g(h(g(%X))) || g(h(g(%X))) -> g(%X) || h(h(%X)) -> h(f(h(%X),%X)) || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || ->Strongly Connected Components: || There is no strongly connected component || || The problem is finite. || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] map#(F, cons(X, Y)) =#> map#(F, Y) 1] filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) 2] filter2#(true, F, X, Y) =#> filter#(F, Y) 3] filter2#(false, F, X, Y) =#> filter#(F, Y) Rules R_0: g(h(g(X))) => g(X) g(g(X)) => g(h(g(X))) h(h(X)) => h(f(h(X), X)) map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, nil) => nil filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0 * 1 : 2, 3 * 2 : 1 * 3 : 1 This graph has the following strongly connected components: P_1: map#(F, cons(X, Y)) =#> map#(F, Y) P_2: filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f) and (P_2, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, computable, formative) and (P_2, R_0, computable, formative) is finite. We consider the dependency pair problem (P_2, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(filter2#) = 4 nu(filter#) = 2 Thus, we can orient the dependency pairs as follows: nu(filter#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(filter2#(F X, F, X, Y)) nu(filter2#(true, F, X, Y)) = Y = Y = nu(filter#(F, Y)) nu(filter2#(false, F, X, Y)) = Y = Y = nu(filter#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_2, R_0, computable, f) by (P_3, R_0, computable, f), where P_3 contains: filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if each of (P_1, R_0, computable, formative) and (P_3, R_0, computable, formative) is finite. We consider the dependency pair problem (P_3, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. Thus, the original system is terminating if (P_1, R_0, computable, formative) is finite. We consider the dependency pair problem (P_1, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(map#) = 2 Thus, we can orient the dependency pairs as follows: nu(map#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(map#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_1, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.