We consider the system average. Alphabet: 0 : [] --> nat apply : [nat * nat] --> nat avg : [nat * nat] --> nat check : [nat] --> nat fun : [nat -> nat] --> nat s : [nat] --> nat Rules: avg(s(x), y) => avg(x, s(y)) avg(x, s(s(s(y)))) => s(avg(s(x), y)) avg(0, 0) => 0 avg(0, s(0)) => 0 avg(0, s(s(0))) => s(0) apply(fun(f), x) => f check(x) check(s(x)) => s(check(x)) check(0) => 0 This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: avg(s(X), Y) => avg(X, s(Y)) avg(X, s(s(s(Y)))) => s(avg(s(X), Y)) avg(0, 0) => 0 avg(0, s(0)) => 0 avg(0, s(s(0))) => s(0) check(s(X)) => s(check(X)) check(0) => 0 Moreover, the system is finitely branching. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is Ce-terminating when seen as a many-sorted first-order TRS. According to mutermprover, this system is indeed Ce-terminating: || || Problem 1: || || (VAR %X %Y) || (RULES || avg(0,0) -> 0 || avg(0,s(0)) -> 0 || avg(0,s(s(0))) -> s(0) || avg(s(%X),%Y) -> avg(%X,s(%Y)) || avg(%X,s(s(s(%Y)))) -> s(avg(s(%X),%Y)) || check(0) -> 0 || check(s(%X)) -> s(check(%X)) || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || ) || || Problem 1: || || Dependency Pairs Processor: || -> Pairs: || AVG(s(%X),%Y) -> AVG(%X,s(%Y)) || AVG(%X,s(s(s(%Y)))) -> AVG(s(%X),%Y) || CHECK(s(%X)) -> CHECK(%X) || -> Rules: || avg(0,0) -> 0 || avg(0,s(0)) -> 0 || avg(0,s(s(0))) -> s(0) || avg(s(%X),%Y) -> avg(%X,s(%Y)) || avg(%X,s(s(s(%Y)))) -> s(avg(s(%X),%Y)) || check(0) -> 0 || check(s(%X)) -> s(check(%X)) || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || || Problem 1: || || SCC Processor: || -> Pairs: || AVG(s(%X),%Y) -> AVG(%X,s(%Y)) || AVG(%X,s(s(s(%Y)))) -> AVG(s(%X),%Y) || CHECK(s(%X)) -> CHECK(%X) || -> Rules: || avg(0,0) -> 0 || avg(0,s(0)) -> 0 || avg(0,s(s(0))) -> s(0) || avg(s(%X),%Y) -> avg(%X,s(%Y)) || avg(%X,s(s(s(%Y)))) -> s(avg(s(%X),%Y)) || check(0) -> 0 || check(s(%X)) -> s(check(%X)) || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || ->Strongly Connected Components: || ->->Cycle: || ->->-> Pairs: || CHECK(s(%X)) -> CHECK(%X) || ->->-> Rules: || avg(0,0) -> 0 || avg(0,s(0)) -> 0 || avg(0,s(s(0))) -> s(0) || avg(s(%X),%Y) -> avg(%X,s(%Y)) || avg(%X,s(s(s(%Y)))) -> s(avg(s(%X),%Y)) || check(0) -> 0 || check(s(%X)) -> s(check(%X)) || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || ->->Cycle: || ->->-> Pairs: || AVG(s(%X),%Y) -> AVG(%X,s(%Y)) || AVG(%X,s(s(s(%Y)))) -> AVG(s(%X),%Y) || ->->-> Rules: || avg(0,0) -> 0 || avg(0,s(0)) -> 0 || avg(0,s(s(0))) -> s(0) || avg(s(%X),%Y) -> avg(%X,s(%Y)) || avg(%X,s(s(s(%Y)))) -> s(avg(s(%X),%Y)) || check(0) -> 0 || check(s(%X)) -> s(check(%X)) || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || || || The problem is decomposed in 2 subproblems. || || Problem 1.1: || || Subterm Processor: || -> Pairs: || CHECK(s(%X)) -> CHECK(%X) || -> Rules: || avg(0,0) -> 0 || avg(0,s(0)) -> 0 || avg(0,s(s(0))) -> s(0) || avg(s(%X),%Y) -> avg(%X,s(%Y)) || avg(%X,s(s(s(%Y)))) -> s(avg(s(%X),%Y)) || check(0) -> 0 || check(s(%X)) -> s(check(%X)) || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || ->Projection: || pi(CHECK) = 1 || || Problem 1.1: || || SCC Processor: || -> Pairs: || Empty || -> Rules: || avg(0,0) -> 0 || avg(0,s(0)) -> 0 || avg(0,s(s(0))) -> s(0) || avg(s(%X),%Y) -> avg(%X,s(%Y)) || avg(%X,s(s(s(%Y)))) -> s(avg(s(%X),%Y)) || check(0) -> 0 || check(s(%X)) -> s(check(%X)) || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || ->Strongly Connected Components: || There is no strongly connected component || || The problem is finite. || || Problem 1.2: || || Reduction Pair Processor: || -> Pairs: || AVG(s(%X),%Y) -> AVG(%X,s(%Y)) || AVG(%X,s(s(s(%Y)))) -> AVG(s(%X),%Y) || -> Rules: || avg(0,0) -> 0 || avg(0,s(0)) -> 0 || avg(0,s(s(0))) -> s(0) || avg(s(%X),%Y) -> avg(%X,s(%Y)) || avg(%X,s(s(s(%Y)))) -> s(avg(s(%X),%Y)) || check(0) -> 0 || check(s(%X)) -> s(check(%X)) || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || -> Usable rules: || Empty || ->Interpretation type: || Linear || ->Coefficients: || Natural Numbers || ->Dimension: || 1 || ->Bound: || 2 || ->Interpretation: || || [s](X) = X + 2 || [AVG](X1,X2) = 2.X1 + X2 || || Problem 1.2: || || SCC Processor: || -> Pairs: || AVG(%X,s(s(s(%Y)))) -> AVG(s(%X),%Y) || -> Rules: || avg(0,0) -> 0 || avg(0,s(0)) -> 0 || avg(0,s(s(0))) -> s(0) || avg(s(%X),%Y) -> avg(%X,s(%Y)) || avg(%X,s(s(s(%Y)))) -> s(avg(s(%X),%Y)) || check(0) -> 0 || check(s(%X)) -> s(check(%X)) || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || ->Strongly Connected Components: || ->->Cycle: || ->->-> Pairs: || AVG(%X,s(s(s(%Y)))) -> AVG(s(%X),%Y) || ->->-> Rules: || avg(0,0) -> 0 || avg(0,s(0)) -> 0 || avg(0,s(s(0))) -> s(0) || avg(s(%X),%Y) -> avg(%X,s(%Y)) || avg(%X,s(s(s(%Y)))) -> s(avg(s(%X),%Y)) || check(0) -> 0 || check(s(%X)) -> s(check(%X)) || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || || Problem 1.2: || || Subterm Processor: || -> Pairs: || AVG(%X,s(s(s(%Y)))) -> AVG(s(%X),%Y) || -> Rules: || avg(0,0) -> 0 || avg(0,s(0)) -> 0 || avg(0,s(s(0))) -> s(0) || avg(s(%X),%Y) -> avg(%X,s(%Y)) || avg(%X,s(s(s(%Y)))) -> s(avg(s(%X),%Y)) || check(0) -> 0 || check(s(%X)) -> s(check(%X)) || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || ->Projection: || pi(AVG) = 2 || || Problem 1.2: || || SCC Processor: || -> Pairs: || Empty || -> Rules: || avg(0,0) -> 0 || avg(0,s(0)) -> 0 || avg(0,s(s(0))) -> s(0) || avg(s(%X),%Y) -> avg(%X,s(%Y)) || avg(%X,s(s(s(%Y)))) -> s(avg(s(%X),%Y)) || check(0) -> 0 || check(s(%X)) -> s(check(%X)) || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || ->Strongly Connected Components: || There is no strongly connected component || || The problem is finite. || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with dynamic dependency pairs. After applying [Kop12, Thm. 7.22] to denote collapsing dependency pairs in an extended form, we thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] apply#(fun(F), X) =#> F(check(X)) 1] apply#(fun(F), X) =#> check#(X) Rules R_0: avg(s(X), Y) => avg(X, s(Y)) avg(X, s(s(s(Y)))) => s(avg(s(X), Y)) avg(0, 0) => 0 avg(0, s(0)) => 0 avg(0, s(s(0))) => s(0) apply(fun(F), X) => F check(X) check(s(X)) => s(check(X)) check(0) => 0 Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0, 1 * 1 : This graph has the following strongly connected components: P_1: apply#(fun(F), X) =#> F(check(X)) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f). Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). The formative rules of (P_1, R_0) are R_1 ::= apply(fun(F), X) => F check(X) By [Kop12, Thm. 7.17], we may replace the dependency pair problem (P_1, R_0, minimal, formative) by (P_1, R_1, minimal, formative). Thus, the original system is terminating if (P_1, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_1, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. As the system is abstraction-simple and the formative flag is set, it suffices to find a tagged reduction pair [Kop12, Def. 6.70]. Thus, we must orient: apply#(fun(F), X) >? F(check(X)) apply(fun(F), X) >= F check(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: apply = \y0y1.3 + 3y0 apply# = \y0y1.3 + y0 check = \y0.0 fun = \G0.3 + G0(0) Using this interpretation, the requirements translate to: [[apply#(fun(_F0), _x1)]] = 6 + F0(0) > F0(0) = [[_F0(check(_x1))]] [[apply(fun(_F0), _x1)]] = 12 + 3F0(0) >= F0(0) = [[_F0 check(_x1)]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace a dependency pair problem (P_1, R_1) by ({}, R_1). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.