We consider the system prefixshuffle. Alphabet: 0 : [] --> nat app : [natlist * natlist] --> natlist apply2 : [pair -> nat -> pair * pair * nat] --> pair cons : [nat * natlist] --> natlist fst : [pair] --> natlist nil : [] --> natlist p : [natlist * natlist] --> pair pcons : [pair * plist] --> plist pnil : [] --> plist pps : [natlist] --> plist prefixshuffle : [pair * natlist] --> plist pshuffle : [natlist] --> pair reverse : [natlist] --> natlist s : [nat] --> nat shuffle : [natlist] --> natlist Rules: app(nil, x) => x app(cons(x, y), z) => cons(x, app(y, z)) reverse(nil) => nil reverse(cons(x, y)) => app(reverse(y), cons(x, nil)) shuffle(nil) => nil shuffle(cons(x, y)) => cons(x, shuffle(reverse(y))) fst(p(x, y)) => x pshuffle(x) => p(x, shuffle(x)) prefixshuffle(x, nil) => pcons(x, pnil) prefixshuffle(x, cons(y, z)) => pcons(x, prefixshuffle(apply2(/\u./\v.pshuffle(app(fst(u), cons(v, nil))), x, y), reverse(z))) apply2(f, x, 0) => x apply2(f, x, s(y)) => f x s(y) pps(x) => prefixshuffle(p(nil, nil), x) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: app(nil, X) => X app(cons(X, Y), Z) => cons(X, app(Y, Z)) reverse(nil) => nil reverse(cons(X, Y)) => app(reverse(Y), cons(X, nil)) shuffle(nil) => nil shuffle(cons(X, Y)) => cons(X, shuffle(reverse(Y))) fst(p(X, Y)) => X pshuffle(X) => p(X, shuffle(X)) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to mutermprover, this system is indeed terminating: || || Problem 1: || || (VAR %X %Y %Z) || (RULES || app(cons(%X,%Y),%Z) -> cons(%X,app(%Y,%Z)) || app(nil,%X) -> %X || fst(p(%X,%Y)) -> %X || pshuffle(%X) -> p(%X,shuffle(%X)) || reverse(cons(%X,%Y)) -> app(reverse(%Y),cons(%X,nil)) || reverse(nil) -> nil || shuffle(cons(%X,%Y)) -> cons(%X,shuffle(reverse(%Y))) || shuffle(nil) -> nil || ) || || Problem 1: || || Innermost Equivalent Processor: || -> Rules: || app(cons(%X,%Y),%Z) -> cons(%X,app(%Y,%Z)) || app(nil,%X) -> %X || fst(p(%X,%Y)) -> %X || pshuffle(%X) -> p(%X,shuffle(%X)) || reverse(cons(%X,%Y)) -> app(reverse(%Y),cons(%X,nil)) || reverse(nil) -> nil || shuffle(cons(%X,%Y)) -> cons(%X,shuffle(reverse(%Y))) || shuffle(nil) -> nil || -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. || || || Problem 1: || || Dependency Pairs Processor: || -> Pairs: || APP(cons(%X,%Y),%Z) -> APP(%Y,%Z) || PSHUFFLE(%X) -> SHUFFLE(%X) || REVERSE(cons(%X,%Y)) -> APP(reverse(%Y),cons(%X,nil)) || REVERSE(cons(%X,%Y)) -> REVERSE(%Y) || SHUFFLE(cons(%X,%Y)) -> REVERSE(%Y) || SHUFFLE(cons(%X,%Y)) -> SHUFFLE(reverse(%Y)) || -> Rules: || app(cons(%X,%Y),%Z) -> cons(%X,app(%Y,%Z)) || app(nil,%X) -> %X || fst(p(%X,%Y)) -> %X || pshuffle(%X) -> p(%X,shuffle(%X)) || reverse(cons(%X,%Y)) -> app(reverse(%Y),cons(%X,nil)) || reverse(nil) -> nil || shuffle(cons(%X,%Y)) -> cons(%X,shuffle(reverse(%Y))) || shuffle(nil) -> nil || || Problem 1: || || SCC Processor: || -> Pairs: || APP(cons(%X,%Y),%Z) -> APP(%Y,%Z) || PSHUFFLE(%X) -> SHUFFLE(%X) || REVERSE(cons(%X,%Y)) -> APP(reverse(%Y),cons(%X,nil)) || REVERSE(cons(%X,%Y)) -> REVERSE(%Y) || SHUFFLE(cons(%X,%Y)) -> REVERSE(%Y) || SHUFFLE(cons(%X,%Y)) -> SHUFFLE(reverse(%Y)) || -> Rules: || app(cons(%X,%Y),%Z) -> cons(%X,app(%Y,%Z)) || app(nil,%X) -> %X || fst(p(%X,%Y)) -> %X || pshuffle(%X) -> p(%X,shuffle(%X)) || reverse(cons(%X,%Y)) -> app(reverse(%Y),cons(%X,nil)) || reverse(nil) -> nil || shuffle(cons(%X,%Y)) -> cons(%X,shuffle(reverse(%Y))) || shuffle(nil) -> nil || ->Strongly Connected Components: || ->->Cycle: || ->->-> Pairs: || APP(cons(%X,%Y),%Z) -> APP(%Y,%Z) || ->->-> Rules: || app(cons(%X,%Y),%Z) -> cons(%X,app(%Y,%Z)) || app(nil,%X) -> %X || fst(p(%X,%Y)) -> %X || pshuffle(%X) -> p(%X,shuffle(%X)) || reverse(cons(%X,%Y)) -> app(reverse(%Y),cons(%X,nil)) || reverse(nil) -> nil || shuffle(cons(%X,%Y)) -> cons(%X,shuffle(reverse(%Y))) || shuffle(nil) -> nil || ->->Cycle: || ->->-> Pairs: || REVERSE(cons(%X,%Y)) -> REVERSE(%Y) || ->->-> Rules: || app(cons(%X,%Y),%Z) -> cons(%X,app(%Y,%Z)) || app(nil,%X) -> %X || fst(p(%X,%Y)) -> %X || pshuffle(%X) -> p(%X,shuffle(%X)) || reverse(cons(%X,%Y)) -> app(reverse(%Y),cons(%X,nil)) || reverse(nil) -> nil || shuffle(cons(%X,%Y)) -> cons(%X,shuffle(reverse(%Y))) || shuffle(nil) -> nil || ->->Cycle: || ->->-> Pairs: || SHUFFLE(cons(%X,%Y)) -> SHUFFLE(reverse(%Y)) || ->->-> Rules: || app(cons(%X,%Y),%Z) -> cons(%X,app(%Y,%Z)) || app(nil,%X) -> %X || fst(p(%X,%Y)) -> %X || pshuffle(%X) -> p(%X,shuffle(%X)) || reverse(cons(%X,%Y)) -> app(reverse(%Y),cons(%X,nil)) || reverse(nil) -> nil || shuffle(cons(%X,%Y)) -> cons(%X,shuffle(reverse(%Y))) || shuffle(nil) -> nil || || || The problem is decomposed in 3 subproblems. || || Problem 1.1: || || Subterm Processor: || -> Pairs: || APP(cons(%X,%Y),%Z) -> APP(%Y,%Z) || -> Rules: || app(cons(%X,%Y),%Z) -> cons(%X,app(%Y,%Z)) || app(nil,%X) -> %X || fst(p(%X,%Y)) -> %X || pshuffle(%X) -> p(%X,shuffle(%X)) || reverse(cons(%X,%Y)) -> app(reverse(%Y),cons(%X,nil)) || reverse(nil) -> nil || shuffle(cons(%X,%Y)) -> cons(%X,shuffle(reverse(%Y))) || shuffle(nil) -> nil || ->Projection: || pi(APP) = 1 || || Problem 1.1: || || SCC Processor: || -> Pairs: || Empty || -> Rules: || app(cons(%X,%Y),%Z) -> cons(%X,app(%Y,%Z)) || app(nil,%X) -> %X || fst(p(%X,%Y)) -> %X || pshuffle(%X) -> p(%X,shuffle(%X)) || reverse(cons(%X,%Y)) -> app(reverse(%Y),cons(%X,nil)) || reverse(nil) -> nil || shuffle(cons(%X,%Y)) -> cons(%X,shuffle(reverse(%Y))) || shuffle(nil) -> nil || ->Strongly Connected Components: || There is no strongly connected component || || The problem is finite. || || Problem 1.2: || || Subterm Processor: || -> Pairs: || REVERSE(cons(%X,%Y)) -> REVERSE(%Y) || -> Rules: || app(cons(%X,%Y),%Z) -> cons(%X,app(%Y,%Z)) || app(nil,%X) -> %X || fst(p(%X,%Y)) -> %X || pshuffle(%X) -> p(%X,shuffle(%X)) || reverse(cons(%X,%Y)) -> app(reverse(%Y),cons(%X,nil)) || reverse(nil) -> nil || shuffle(cons(%X,%Y)) -> cons(%X,shuffle(reverse(%Y))) || shuffle(nil) -> nil || ->Projection: || pi(REVERSE) = 1 || || Problem 1.2: || || SCC Processor: || -> Pairs: || Empty || -> Rules: || app(cons(%X,%Y),%Z) -> cons(%X,app(%Y,%Z)) || app(nil,%X) -> %X || fst(p(%X,%Y)) -> %X || pshuffle(%X) -> p(%X,shuffle(%X)) || reverse(cons(%X,%Y)) -> app(reverse(%Y),cons(%X,nil)) || reverse(nil) -> nil || shuffle(cons(%X,%Y)) -> cons(%X,shuffle(reverse(%Y))) || shuffle(nil) -> nil || ->Strongly Connected Components: || There is no strongly connected component || || The problem is finite. || || Problem 1.3: || || Reduction Pairs Processor: || -> Pairs: || SHUFFLE(cons(%X,%Y)) -> SHUFFLE(reverse(%Y)) || -> Rules: || app(cons(%X,%Y),%Z) -> cons(%X,app(%Y,%Z)) || app(nil,%X) -> %X || fst(p(%X,%Y)) -> %X || pshuffle(%X) -> p(%X,shuffle(%X)) || reverse(cons(%X,%Y)) -> app(reverse(%Y),cons(%X,nil)) || reverse(nil) -> nil || shuffle(cons(%X,%Y)) -> cons(%X,shuffle(reverse(%Y))) || shuffle(nil) -> nil || -> Usable rules: || app(cons(%X,%Y),%Z) -> cons(%X,app(%Y,%Z)) || app(nil,%X) -> %X || reverse(cons(%X,%Y)) -> app(reverse(%Y),cons(%X,nil)) || reverse(nil) -> nil || ->Interpretation type: || Linear || ->Coefficients: || Natural Numbers || ->Dimension: || 1 || ->Bound: || 2 || ->Interpretation: || || [app](X1,X2) = X1 + X2 || [reverse](X) = X + 1 || [cons](X1,X2) = X2 + 2 || [nil] = 0 || [SHUFFLE](X) = 2.X || || Problem 1.3: || || SCC Processor: || -> Pairs: || Empty || -> Rules: || app(cons(%X,%Y),%Z) -> cons(%X,app(%Y,%Z)) || app(nil,%X) -> %X || fst(p(%X,%Y)) -> %X || pshuffle(%X) -> p(%X,shuffle(%X)) || reverse(cons(%X,%Y)) -> app(reverse(%Y),cons(%X,nil)) || reverse(nil) -> nil || shuffle(cons(%X,%Y)) -> cons(%X,shuffle(reverse(%Y))) || shuffle(nil) -> nil || ->Strongly Connected Components: || There is no strongly connected component || || The problem is finite. || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] prefixshuffle#(X, cons(Y, Z)) =#> prefixshuffle#(apply2(/\x./\y.pshuffle(app(fst(x), cons(y, nil))), X, Y), reverse(Z)) 1] prefixshuffle#(X, cons(Y, Z)) =#> apply2#(/\x./\y.pshuffle(app(fst(x), cons(y, nil))), X, Y) 2] prefixshuffle#(X, cons(Y, Z)) =#> pshuffle#(app(fst(U), cons(V, nil))) 3] prefixshuffle#(X, cons(Y, Z)) =#> app#(fst(U), cons(V, nil)) 4] prefixshuffle#(X, cons(Y, Z)) =#> fst#(U) 5] prefixshuffle#(X, cons(Y, Z)) =#> reverse#(Z) 6] pps#(X) =#> prefixshuffle#(p(nil, nil), X) Rules R_0: app(nil, X) => X app(cons(X, Y), Z) => cons(X, app(Y, Z)) reverse(nil) => nil reverse(cons(X, Y)) => app(reverse(Y), cons(X, nil)) shuffle(nil) => nil shuffle(cons(X, Y)) => cons(X, shuffle(reverse(Y))) fst(p(X, Y)) => X pshuffle(X) => p(X, shuffle(X)) prefixshuffle(X, nil) => pcons(X, pnil) prefixshuffle(X, cons(Y, Z)) => pcons(X, prefixshuffle(apply2(/\x./\y.pshuffle(app(fst(x), cons(y, nil))), X, Y), reverse(Z))) apply2(F, X, 0) => X apply2(F, X, s(Y)) => F X s(Y) pps(X) => prefixshuffle(p(nil, nil), X) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0, 1, 2, 3, 4, 5 * 1 : * 2 : * 3 : * 4 : * 5 : * 6 : 0, 1, 2, 3, 4, 5 This graph has the following strongly connected components: P_1: prefixshuffle#(X, cons(Y, Z)) =#> prefixshuffle#(apply2(/\x./\y.pshuffle(app(fst(x), cons(y, nil))), X, Y), reverse(Z)) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f). Thus, the original system is terminating if (P_1, R_0, computable, formative) is finite. We consider the dependency pair problem (P_1, R_0, computable, formative). The formative rules of (P_1, R_0) are R_1 ::= app(nil, X) => X app(cons(X, Y), Z) => cons(X, app(Y, Z)) reverse(nil) => nil reverse(cons(X, Y)) => app(reverse(Y), cons(X, nil)) shuffle(nil) => nil shuffle(cons(X, Y)) => cons(X, shuffle(reverse(Y))) fst(p(X, Y)) => X pshuffle(X) => p(X, shuffle(X)) apply2(F, X, 0) => X apply2(F, X, s(Y)) => F X s(Y) By [Kop12, Thm. 7.17], we may replace the dependency pair problem (P_1, R_0, computable, formative) by (P_1, R_1, computable, formative). Thus, the original system is terminating if (P_1, R_1, computable, formative) is finite. We consider the dependency pair problem (P_1, R_1, computable, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: prefixshuffle#(X, cons(Y, Z)) >? prefixshuffle#(apply2(/\x./\y.pshuffle(app(fst(x), cons(y, nil))), X, Y), reverse(Z)) app(nil, X) >= X app(cons(X, Y), Z) >= cons(X, app(Y, Z)) reverse(nil) >= nil reverse(cons(X, Y)) >= app(reverse(Y), cons(X, nil)) shuffle(nil) >= nil shuffle(cons(X, Y)) >= cons(X, shuffle(reverse(Y))) fst(p(X, Y)) >= X pshuffle(X) >= p(X, shuffle(X)) apply2(F, X, 0) >= X apply2(F, X, s(Y)) >= F X s(Y) We apply [Kop12, Thm. 6.75] and use the following argument functions: pi( pshuffle(X) ) = #argfun-pshuffle#(p(X, shuffle(X))) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: #argfun-pshuffle# = \y0.y0 0 = 0 app = \y0y1.y0 + y1 apply2 = \G0y1y2.y1 + G0(y1,y1) cons = \y0y1.1 + y1 fst = \y0.y0 nil = 0 p = \y0y1.y0 prefixshuffle# = \y0y1.2y1 pshuffle = \y0.0 reverse = \y0.y0 s = \y0.0 shuffle = \y0.2y0 Using this interpretation, the requirements translate to: [[prefixshuffle#(_x0, cons(_x1, _x2))]] = 2 + 2x2 > 2x2 = [[prefixshuffle#(apply2(/\x./\y.#argfun-pshuffle#(p(app(fst(x), cons(y, nil)), shuffle(app(fst(x), cons(y, nil))))), _x0, _x1), reverse(_x2))]] [[app(nil, _x0)]] = x0 >= x0 = [[_x0]] [[app(cons(_x0, _x1), _x2)]] = 1 + x1 + x2 >= 1 + x1 + x2 = [[cons(_x0, app(_x1, _x2))]] [[reverse(nil)]] = 0 >= 0 = [[nil]] [[reverse(cons(_x0, _x1))]] = 1 + x1 >= 1 + x1 = [[app(reverse(_x1), cons(_x0, nil))]] [[shuffle(nil)]] = 0 >= 0 = [[nil]] [[shuffle(cons(_x0, _x1))]] = 2 + 2x1 >= 1 + 2x1 = [[cons(_x0, shuffle(reverse(_x1)))]] [[fst(p(_x0, _x1))]] = x0 >= x0 = [[_x0]] [[#argfun-pshuffle#(p(_x0, shuffle(_x0)))]] = x0 >= x0 = [[p(_x0, shuffle(_x0))]] [[apply2(_F0, _x1, 0)]] = x1 + F0(x1,x1) >= x1 = [[_x1]] [[apply2(_F0, _x1, s(_x2))]] = x1 + F0(x1,x1) >= F0(x1,0) = [[_F0 _x1 s(_x2)]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace a dependency pair problem (P_1, R_1) by ({}, R_1). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.