We consider the system fuhkop12rta2. Alphabet: 0 : [] --> nat build : [nat] --> list collapse : [list] --> nat cons : [nat -> nat * list] --> list diff : [nat * nat] --> nat gcd : [nat * nat] --> nat min : [nat * nat] --> nat nil : [] --> list s : [nat] --> nat Rules: min(x, 0) => 0 min(0, x) => 0 min(s(x), s(y)) => s(min(x, y)) diff(x, 0) => x diff(0, x) => x diff(s(x), s(y)) => diff(x, y) gcd(s(x), 0) => s(x) gcd(0, s(x)) => s(x) gcd(s(x), s(y)) => gcd(diff(x, y), s(min(x, y))) collapse(nil) => 0 collapse(cons(f, x)) => f collapse(x) build(0) => nil build(s(x)) => cons(/\y.gcd(y, x), build(x)) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: min(X, 0) => 0 min(0, X) => 0 min(s(X), s(Y)) => s(min(X, Y)) diff(X, 0) => X diff(0, X) => X diff(s(X), s(Y)) => diff(X, Y) gcd(s(X), 0) => s(X) gcd(0, s(X)) => s(X) gcd(s(X), s(Y)) => gcd(diff(X, Y), s(min(X, Y))) Moreover, the system is finitely branching. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is Ce-terminating when seen as a many-sorted first-order TRS. According to mutermprover, this system is indeed Ce-terminating: || || Problem 1: || || (VAR %X %Y) || (RULES || diff(0,%X) -> %X || diff(s(%X),s(%Y)) -> diff(%X,%Y) || diff(%X,0) -> %X || gcd(0,s(%X)) -> s(%X) || gcd(s(%X),0) -> s(%X) || gcd(s(%X),s(%Y)) -> gcd(diff(%X,%Y),s(min(%X,%Y))) || min(0,%X) -> 0 || min(s(%X),s(%Y)) -> s(min(%X,%Y)) || min(%X,0) -> 0 || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || ) || || Problem 1: || || Dependency Pairs Processor: || -> Pairs: || DIFF(s(%X),s(%Y)) -> DIFF(%X,%Y) || GCD(s(%X),s(%Y)) -> DIFF(%X,%Y) || GCD(s(%X),s(%Y)) -> GCD(diff(%X,%Y),s(min(%X,%Y))) || GCD(s(%X),s(%Y)) -> MIN(%X,%Y) || MIN(s(%X),s(%Y)) -> MIN(%X,%Y) || -> Rules: || diff(0,%X) -> %X || diff(s(%X),s(%Y)) -> diff(%X,%Y) || diff(%X,0) -> %X || gcd(0,s(%X)) -> s(%X) || gcd(s(%X),0) -> s(%X) || gcd(s(%X),s(%Y)) -> gcd(diff(%X,%Y),s(min(%X,%Y))) || min(0,%X) -> 0 || min(s(%X),s(%Y)) -> s(min(%X,%Y)) || min(%X,0) -> 0 || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || || Problem 1: || || SCC Processor: || -> Pairs: || DIFF(s(%X),s(%Y)) -> DIFF(%X,%Y) || GCD(s(%X),s(%Y)) -> DIFF(%X,%Y) || GCD(s(%X),s(%Y)) -> GCD(diff(%X,%Y),s(min(%X,%Y))) || GCD(s(%X),s(%Y)) -> MIN(%X,%Y) || MIN(s(%X),s(%Y)) -> MIN(%X,%Y) || -> Rules: || diff(0,%X) -> %X || diff(s(%X),s(%Y)) -> diff(%X,%Y) || diff(%X,0) -> %X || gcd(0,s(%X)) -> s(%X) || gcd(s(%X),0) -> s(%X) || gcd(s(%X),s(%Y)) -> gcd(diff(%X,%Y),s(min(%X,%Y))) || min(0,%X) -> 0 || min(s(%X),s(%Y)) -> s(min(%X,%Y)) || min(%X,0) -> 0 || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || ->Strongly Connected Components: || ->->Cycle: || ->->-> Pairs: || MIN(s(%X),s(%Y)) -> MIN(%X,%Y) || ->->-> Rules: || diff(0,%X) -> %X || diff(s(%X),s(%Y)) -> diff(%X,%Y) || diff(%X,0) -> %X || gcd(0,s(%X)) -> s(%X) || gcd(s(%X),0) -> s(%X) || gcd(s(%X),s(%Y)) -> gcd(diff(%X,%Y),s(min(%X,%Y))) || min(0,%X) -> 0 || min(s(%X),s(%Y)) -> s(min(%X,%Y)) || min(%X,0) -> 0 || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || ->->Cycle: || ->->-> Pairs: || DIFF(s(%X),s(%Y)) -> DIFF(%X,%Y) || ->->-> Rules: || diff(0,%X) -> %X || diff(s(%X),s(%Y)) -> diff(%X,%Y) || diff(%X,0) -> %X || gcd(0,s(%X)) -> s(%X) || gcd(s(%X),0) -> s(%X) || gcd(s(%X),s(%Y)) -> gcd(diff(%X,%Y),s(min(%X,%Y))) || min(0,%X) -> 0 || min(s(%X),s(%Y)) -> s(min(%X,%Y)) || min(%X,0) -> 0 || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || ->->Cycle: || ->->-> Pairs: || GCD(s(%X),s(%Y)) -> GCD(diff(%X,%Y),s(min(%X,%Y))) || ->->-> Rules: || diff(0,%X) -> %X || diff(s(%X),s(%Y)) -> diff(%X,%Y) || diff(%X,0) -> %X || gcd(0,s(%X)) -> s(%X) || gcd(s(%X),0) -> s(%X) || gcd(s(%X),s(%Y)) -> gcd(diff(%X,%Y),s(min(%X,%Y))) || min(0,%X) -> 0 || min(s(%X),s(%Y)) -> s(min(%X,%Y)) || min(%X,0) -> 0 || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || || || The problem is decomposed in 3 subproblems. || || Problem 1.1: || || Subterm Processor: || -> Pairs: || MIN(s(%X),s(%Y)) -> MIN(%X,%Y) || -> Rules: || diff(0,%X) -> %X || diff(s(%X),s(%Y)) -> diff(%X,%Y) || diff(%X,0) -> %X || gcd(0,s(%X)) -> s(%X) || gcd(s(%X),0) -> s(%X) || gcd(s(%X),s(%Y)) -> gcd(diff(%X,%Y),s(min(%X,%Y))) || min(0,%X) -> 0 || min(s(%X),s(%Y)) -> s(min(%X,%Y)) || min(%X,0) -> 0 || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || ->Projection: || pi(MIN) = 1 || || Problem 1.1: || || SCC Processor: || -> Pairs: || Empty || -> Rules: || diff(0,%X) -> %X || diff(s(%X),s(%Y)) -> diff(%X,%Y) || diff(%X,0) -> %X || gcd(0,s(%X)) -> s(%X) || gcd(s(%X),0) -> s(%X) || gcd(s(%X),s(%Y)) -> gcd(diff(%X,%Y),s(min(%X,%Y))) || min(0,%X) -> 0 || min(s(%X),s(%Y)) -> s(min(%X,%Y)) || min(%X,0) -> 0 || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || ->Strongly Connected Components: || There is no strongly connected component || || The problem is finite. || || Problem 1.2: || || Subterm Processor: || -> Pairs: || DIFF(s(%X),s(%Y)) -> DIFF(%X,%Y) || -> Rules: || diff(0,%X) -> %X || diff(s(%X),s(%Y)) -> diff(%X,%Y) || diff(%X,0) -> %X || gcd(0,s(%X)) -> s(%X) || gcd(s(%X),0) -> s(%X) || gcd(s(%X),s(%Y)) -> gcd(diff(%X,%Y),s(min(%X,%Y))) || min(0,%X) -> 0 || min(s(%X),s(%Y)) -> s(min(%X,%Y)) || min(%X,0) -> 0 || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || ->Projection: || pi(DIFF) = 1 || || Problem 1.2: || || SCC Processor: || -> Pairs: || Empty || -> Rules: || diff(0,%X) -> %X || diff(s(%X),s(%Y)) -> diff(%X,%Y) || diff(%X,0) -> %X || gcd(0,s(%X)) -> s(%X) || gcd(s(%X),0) -> s(%X) || gcd(s(%X),s(%Y)) -> gcd(diff(%X,%Y),s(min(%X,%Y))) || min(0,%X) -> 0 || min(s(%X),s(%Y)) -> s(min(%X,%Y)) || min(%X,0) -> 0 || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || ->Strongly Connected Components: || There is no strongly connected component || || The problem is finite. || || Problem 1.3: || || Reduction Pair Processor: || -> Pairs: || GCD(s(%X),s(%Y)) -> GCD(diff(%X,%Y),s(min(%X,%Y))) || -> Rules: || diff(0,%X) -> %X || diff(s(%X),s(%Y)) -> diff(%X,%Y) || diff(%X,0) -> %X || gcd(0,s(%X)) -> s(%X) || gcd(s(%X),0) -> s(%X) || gcd(s(%X),s(%Y)) -> gcd(diff(%X,%Y),s(min(%X,%Y))) || min(0,%X) -> 0 || min(s(%X),s(%Y)) -> s(min(%X,%Y)) || min(%X,0) -> 0 || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || -> Usable rules: || diff(0,%X) -> %X || diff(s(%X),s(%Y)) -> diff(%X,%Y) || diff(%X,0) -> %X || min(0,%X) -> 0 || min(s(%X),s(%Y)) -> s(min(%X,%Y)) || min(%X,0) -> 0 || ->Interpretation type: || Linear || ->Coefficients: || Natural Numbers || ->Dimension: || 1 || ->Bound: || 2 || ->Interpretation: || || [diff](X1,X2) = X1 + X2 + 1 || [min](X1,X2) = X1 || [0] = 0 || [s](X) = 2.X + 2 || [GCD](X1,X2) = 2.X1 + X2 || || Problem 1.3: || || SCC Processor: || -> Pairs: || Empty || -> Rules: || diff(0,%X) -> %X || diff(s(%X),s(%Y)) -> diff(%X,%Y) || diff(%X,0) -> %X || gcd(0,s(%X)) -> s(%X) || gcd(s(%X),0) -> s(%X) || gcd(s(%X),s(%Y)) -> gcd(diff(%X,%Y),s(min(%X,%Y))) || min(0,%X) -> 0 || min(s(%X),s(%Y)) -> s(min(%X,%Y)) || min(%X,0) -> 0 || ~PAIR(%X,%Y) -> %X || ~PAIR(%X,%Y) -> %Y || ->Strongly Connected Components: || There is no strongly connected component || || The problem is finite. || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] collapse#(cons(F, X)) =#> collapse#(X) 1] build#(s(X)) =#> gcd#(Y, X) 2] build#(s(X)) =#> build#(X) Rules R_0: min(X, 0) => 0 min(0, X) => 0 min(s(X), s(Y)) => s(min(X, Y)) diff(X, 0) => X diff(0, X) => X diff(s(X), s(Y)) => diff(X, Y) gcd(s(X), 0) => s(X) gcd(0, s(X)) => s(X) gcd(s(X), s(Y)) => gcd(diff(X, Y), s(min(X, Y))) collapse(nil) => 0 collapse(cons(F, X)) => F collapse(X) build(0) => nil build(s(X)) => cons(/\x.gcd(x, X), build(X)) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0 * 1 : * 2 : 1, 2 This graph has the following strongly connected components: P_1: collapse#(cons(F, X)) =#> collapse#(X) P_2: build#(s(X)) =#> build#(X) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f) and (P_2, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, computable, formative) and (P_2, R_0, computable, formative) is finite. We consider the dependency pair problem (P_2, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(build#) = 1 Thus, we can orient the dependency pairs as follows: nu(build#(s(X))) = s(X) |> X = nu(build#(X)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_2, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if (P_1, R_0, computable, formative) is finite. We consider the dependency pair problem (P_1, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(collapse#) = 1 Thus, we can orient the dependency pairs as follows: nu(collapse#(cons(F, X))) = cons(F, X) |> X = nu(collapse#(X)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_1, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.