We consider the system Applicative_05__Ex7_9. Alphabet: 0 : [] --> a cons : [b * c] --> c d : [a * a] --> c false : [] --> c filter : [b -> c * c] --> c gtr : [a * a] --> c if : [c * c * c] --> c len : [c] --> a nil : [] --> c s : [a] --> a sub : [a * a] --> a true : [] --> c Rules: if(true, x, y) => x if(false, x, y) => y sub(x, 0) => x sub(s(x), s(y)) => sub(x, y) gtr(0, x) => false gtr(s(x), 0) => true gtr(s(x), s(y)) => gtr(x, y) d(x, 0) => true d(s(x), s(y)) => if(gtr(x, y), false, d(s(x), sub(y, x))) len(nil) => 0 len(cons(x, y)) => s(len(y)) filter(f, nil) => nil filter(f, cons(x, y)) => if(f x, cons(x, filter(f, y)), filter(f, y)) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: if(true, X, Y) => X if(false, X, Y) => Y sub(X, 0) => X sub(s(X), s(Y)) => sub(X, Y) gtr(0, X) => false gtr(s(X), 0) => true gtr(s(X), s(Y)) => gtr(X, Y) d(X, 0) => true d(s(X), s(Y)) => if(gtr(X, Y), false, d(s(X), sub(Y, X))) len(nil) => 0 len(cons(X, Y)) => s(len(Y)) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to nattprover, this system is indeed terminating: || Input TRS: || 1: if(true(),PeRCenTX,PeRCenTY) -> PeRCenTX || 2: if(false(),PeRCenTX,PeRCenTY) -> PeRCenTY || 3: sub(PeRCenTX,0()) -> PeRCenTX || 4: sub(s(PeRCenTX),s(PeRCenTY)) -> sub(PeRCenTX,PeRCenTY) || 5: gtr(0(),PeRCenTX) -> false() || 6: gtr(s(PeRCenTX),0()) -> true() || 7: gtr(s(PeRCenTX),s(PeRCenTY)) -> gtr(PeRCenTX,PeRCenTY) || 8: d(PeRCenTX,0()) -> true() || 9: d(s(PeRCenTX),s(PeRCenTY)) -> if(gtr(PeRCenTX,PeRCenTY),false(),d(s(PeRCenTX),sub(PeRCenTY,PeRCenTX))) || 10: len(nil()) -> 0() || 11: len(cons(PeRCenTX,PeRCenTY)) -> s(len(PeRCenTY)) || Number of strict rules: 11 || Direct POLO(bPol) ... failed. || Uncurrying ... failed. || Dependency Pairs: || #1: #d(s(PeRCenTX),s(PeRCenTY)) -> #if(gtr(PeRCenTX,PeRCenTY),false(),d(s(PeRCenTX),sub(PeRCenTY,PeRCenTX))) || #2: #d(s(PeRCenTX),s(PeRCenTY)) -> #gtr(PeRCenTX,PeRCenTY) || #3: #d(s(PeRCenTX),s(PeRCenTY)) -> #d(s(PeRCenTX),sub(PeRCenTY,PeRCenTX)) || #4: #d(s(PeRCenTX),s(PeRCenTY)) -> #sub(PeRCenTY,PeRCenTX) || #5: #len(cons(PeRCenTX,PeRCenTY)) -> #len(PeRCenTY) || #6: #gtr(s(PeRCenTX),s(PeRCenTY)) -> #gtr(PeRCenTX,PeRCenTY) || #7: #sub(s(PeRCenTX),s(PeRCenTY)) -> #sub(PeRCenTX,PeRCenTY) || Number of SCCs: 4, DPs: 4 || SCC { #5 } || POLO(Sum)... succeeded. || d w: 0 || #len w: x1 || s w: 0 || #gtr w: 0 || false w: 0 || gtr w: 0 || sub w: 0 || true w: 0 || #sub w: 0 || if w: 0 || 0 w: 0 || nil w: 0 || #d w: 0 || cons w: x2 + 1 || #if w: 0 || len w: 0 || USABLE RULES: { } || Removed DPs: #5 || Number of SCCs: 3, DPs: 3 || SCC { #7 } || POLO(Sum)... succeeded. || d w: 0 || #len w: 0 || s w: x1 + 1 || #gtr w: 0 || false w: 0 || gtr w: 0 || sub w: 0 || true w: 0 || #sub w: x1 || if w: 0 || 0 w: 0 || nil w: 0 || #d w: 0 || cons w: 1 || #if w: 0 || len w: 0 || USABLE RULES: { } || Removed DPs: #7 || Number of SCCs: 2, DPs: 2 || SCC { #6 } || POLO(Sum)... succeeded. || d w: 0 || #len w: 0 || s w: x1 + 1 || #gtr w: x1 || false w: 0 || gtr w: 0 || sub w: 0 || true w: 0 || #sub w: 0 || if w: 0 || 0 w: 0 || nil w: 0 || #d w: 0 || cons w: 1 || #if w: 0 || len w: 0 || USABLE RULES: { } || Removed DPs: #6 || Number of SCCs: 1, DPs: 1 || SCC { #3 } || POLO(Sum)... succeeded. || d w: 0 || #len w: 0 || s w: x1 + 2 || #gtr w: 0 || false w: 0 || gtr w: 0 || sub w: x1 + 1 || true w: 0 || #sub w: 0 || if w: 0 || 0 w: 1 || nil w: 0 || #d w: x2 || cons w: 1 || #if w: 0 || len w: 0 || USABLE RULES: { 3 4 } || Removed DPs: #3 || Number of SCCs: 0, DPs: 0 || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] filter#(F, cons(X, Y)) =#> if#(F X, cons(X, filter(F, Y)), filter(F, Y)) 1] filter#(F, cons(X, Y)) =#> filter#(F, Y) 2] filter#(F, cons(X, Y)) =#> filter#(F, Y) Rules R_0: if(true, X, Y) => X if(false, X, Y) => Y sub(X, 0) => X sub(s(X), s(Y)) => sub(X, Y) gtr(0, X) => false gtr(s(X), 0) => true gtr(s(X), s(Y)) => gtr(X, Y) d(X, 0) => true d(s(X), s(Y)) => if(gtr(X, Y), false, d(s(X), sub(Y, X))) len(nil) => 0 len(cons(X, Y)) => s(len(Y)) filter(F, nil) => nil filter(F, cons(X, Y)) => if(F X, cons(X, filter(F, Y)), filter(F, Y)) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : 0, 1, 2 * 2 : 0, 1, 2 This graph has the following strongly connected components: P_1: filter#(F, cons(X, Y)) =#> filter#(F, Y) filter#(F, cons(X, Y)) =#> filter#(F, Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f). Thus, the original system is terminating if (P_1, R_0, computable, formative) is finite. We consider the dependency pair problem (P_1, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(filter#) = 2 Thus, we can orient the dependency pairs as follows: nu(filter#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(filter#(F, Y)) nu(filter#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(filter#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_1, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.