We consider the system Applicative_05__mapDivMinusHard. Alphabet: 0 : [] --> c cons : [a * b] --> b div : [c * c] --> c map : [a -> a * b] --> b minus : [c * c] --> c nil : [] --> b p : [c] --> c s : [c] --> c Rules: map(f, nil) => nil map(f, cons(x, y)) => cons(f x, map(f, y)) minus(x, 0) => x minus(s(x), s(y)) => minus(p(s(x)), p(s(y))) p(s(x)) => x div(0, s(x)) => 0 div(s(x), s(y)) => s(div(minus(x, y), s(y))) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: minus(X, 0) => X minus(s(X), s(Y)) => minus(p(s(X)), p(s(Y))) p(s(X)) => X div(0, s(X)) => 0 div(s(X), s(Y)) => s(div(minus(X, Y), s(Y))) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to nattprover, this system is indeed terminating: || Input TRS: || 1: minus(PeRCenTX,0()) -> PeRCenTX || 2: minus(s(PeRCenTX),s(PeRCenTY)) -> minus(p(s(PeRCenTX)),p(s(PeRCenTY))) || 3: p(s(PeRCenTX)) -> PeRCenTX || 4: div(0(),s(PeRCenTX)) -> 0() || 5: div(s(PeRCenTX),s(PeRCenTY)) -> s(div(minus(PeRCenTX,PeRCenTY),s(PeRCenTY))) || Number of strict rules: 5 || Direct POLO(bPol) ... failed. || Uncurrying p || 1: minus(PeRCenTX,0()) -> PeRCenTX || 2: minus(s(PeRCenTX),s(PeRCenTY)) -> minus(p^1_s(PeRCenTX),p^1_s(PeRCenTY)) || 3: p^1_s(PeRCenTX) -> PeRCenTX || 4: div(0(),s(PeRCenTX)) -> 0() || 5: div(s(PeRCenTX),s(PeRCenTY)) -> s(div(minus(PeRCenTX,PeRCenTY),s(PeRCenTY))) || 6: p(s(_1)) ->= p^1_s(_1) || Number of strict rules: 5 || Direct POLO(bPol) ... failed. || Dependency Pairs: || #1: #minus(s(PeRCenTX),s(PeRCenTY)) -> #minus(p^1_s(PeRCenTX),p^1_s(PeRCenTY)) || #2: #minus(s(PeRCenTX),s(PeRCenTY)) -> #p^1_s(PeRCenTX) || #3: #minus(s(PeRCenTX),s(PeRCenTY)) -> #p^1_s(PeRCenTY) || #4: #p(s(_1)) ->? #p^1_s(_1) || #5: #div(s(PeRCenTX),s(PeRCenTY)) -> #div(minus(PeRCenTX,PeRCenTY),s(PeRCenTY)) || #6: #div(s(PeRCenTX),s(PeRCenTY)) -> #minus(PeRCenTX,PeRCenTY) || Number of SCCs: 2, DPs: 2 || SCC { #1 } || POLO(Sum)... succeeded. || #div w: 0 || s w: x1 + 2 || #p^1_s w: 0 || minus w: 0 || div w: 0 || p^1_s w: x1 + 1 || #p w: 0 || p w: 0 || 0 w: 0 || #minus w: x1 + x2 || USABLE RULES: { 3 } || Removed DPs: #1 || Number of SCCs: 1, DPs: 1 || SCC { #5 } || POLO(Sum)... succeeded. || #div w: x1 || s w: x1 + 2 || #p^1_s w: 0 || minus w: x1 + 1 || div w: 0 || p^1_s w: x1 + 1 || #p w: 0 || p w: 0 || 0 w: 1 || #minus w: x1 + x2 || USABLE RULES: { 1..3 } || Removed DPs: #5 || Number of SCCs: 0, DPs: 0 || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] map#(F, cons(X, Y)) =#> map#(F, Y) Rules R_0: map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) minus(X, 0) => X minus(s(X), s(Y)) => minus(p(s(X)), p(s(Y))) p(s(X)) => X div(0, s(X)) => 0 div(s(X), s(Y)) => s(div(minus(X, Y), s(Y))) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(map#) = 2 Thus, we can orient the dependency pairs as follows: nu(map#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(map#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_0, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.