We consider the system Applicative_first_order_05__#3.36. Alphabet: 0 : [] --> a cons : [c * d] --> d f : [a] --> a false : [] --> b filter : [c -> b * d] --> d filter2 : [b * c -> b * c * d] --> d g : [a] --> a map : [c -> c * d] --> d minus : [a * a] --> a nil : [] --> d s : [a] --> a true : [] --> b Rules: minus(x, 0) => x minus(s(x), s(y)) => minus(x, y) f(0) => s(0) f(s(x)) => minus(s(x), g(f(x))) g(0) => 0 g(s(x)) => minus(s(x), f(g(x))) map(h, nil) => nil map(h, cons(x, y)) => cons(h x, map(h, y)) filter(h, nil) => nil filter(h, cons(x, y)) => filter2(h x, h, x, y) filter2(true, h, x, y) => cons(x, filter(h, y)) filter2(false, h, x, y) => filter(h, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: minus(X, 0) => X minus(s(X), s(Y)) => minus(X, Y) f(0) => s(0) f(s(X)) => minus(s(X), g(f(X))) g(0) => 0 g(s(X)) => minus(s(X), f(g(X))) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to nattprover, this system is indeed terminating: || Input TRS: || 1: minus(PeRCenTX,0()) -> PeRCenTX || 2: minus(s(PeRCenTX),s(PeRCenTY)) -> minus(PeRCenTX,PeRCenTY) || 3: f(0()) -> s(0()) || 4: f(s(PeRCenTX)) -> minus(s(PeRCenTX),g(f(PeRCenTX))) || 5: g(0()) -> 0() || 6: g(s(PeRCenTX)) -> minus(s(PeRCenTX),f(g(PeRCenTX))) || Number of strict rules: 6 || Direct POLO(bPol) ... failed. || Uncurrying ... failed. || Dependency Pairs: || #1: #minus(s(PeRCenTX),s(PeRCenTY)) -> #minus(PeRCenTX,PeRCenTY) || #2: #g(s(PeRCenTX)) -> #minus(s(PeRCenTX),f(g(PeRCenTX))) || #3: #g(s(PeRCenTX)) -> #f(g(PeRCenTX)) || #4: #g(s(PeRCenTX)) -> #g(PeRCenTX) || #5: #f(s(PeRCenTX)) -> #minus(s(PeRCenTX),g(f(PeRCenTX))) || #6: #f(s(PeRCenTX)) -> #g(f(PeRCenTX)) || #7: #f(s(PeRCenTX)) -> #f(PeRCenTX) || Number of SCCs: 2, DPs: 5 || SCC { #1 } || POLO(Sum)... succeeded. || s w: x1 + 1 || minus w: 0 || f w: 0 || 0 w: 0 || #f w: 0 || #g w: 0 || #minus w: x1 + x2 || g w: 0 || USABLE RULES: { } || Removed DPs: #1 || Number of SCCs: 1, DPs: 4 || SCC { #3 #4 #6 #7 } || POLO(Sum)... succeeded. || s w: x1 + 3 || minus w: x1 || f w: x1 + 3 || 0 w: 0 || #f w: x1 + 1 || #g w: x1 || #minus w: 0 || g w: x1 + 1 || USABLE RULES: { 1..6 } || Removed DPs: #3 #4 #6 #7 || Number of SCCs: 0, DPs: 0 || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] map#(F, cons(X, Y)) =#> map#(F, Y) 1] filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) 2] filter2#(true, F, X, Y) =#> filter#(F, Y) 3] filter2#(false, F, X, Y) =#> filter#(F, Y) Rules R_0: minus(X, 0) => X minus(s(X), s(Y)) => minus(X, Y) f(0) => s(0) f(s(X)) => minus(s(X), g(f(X))) g(0) => 0 g(s(X)) => minus(s(X), f(g(X))) map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, nil) => nil filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0 * 1 : 2, 3 * 2 : 1 * 3 : 1 This graph has the following strongly connected components: P_1: map#(F, cons(X, Y)) =#> map#(F, Y) P_2: filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f) and (P_2, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, computable, formative) and (P_2, R_0, computable, formative) is finite. We consider the dependency pair problem (P_2, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(filter2#) = 4 nu(filter#) = 2 Thus, we can orient the dependency pairs as follows: nu(filter#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(filter2#(F X, F, X, Y)) nu(filter2#(true, F, X, Y)) = Y = Y = nu(filter#(F, Y)) nu(filter2#(false, F, X, Y)) = Y = Y = nu(filter#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_2, R_0, computable, f) by (P_3, R_0, computable, f), where P_3 contains: filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if each of (P_1, R_0, computable, formative) and (P_3, R_0, computable, formative) is finite. We consider the dependency pair problem (P_3, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. Thus, the original system is terminating if (P_1, R_0, computable, formative) is finite. We consider the dependency pair problem (P_1, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(map#) = 2 Thus, we can orient the dependency pairs as follows: nu(map#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(map#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_1, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.