We consider the system Applicative_first_order_05__hydra. Alphabet: 0 : [] --> a cons : [c * c] --> c copy : [a * c * c] --> c f : [c] --> c false : [] --> b filter : [c -> b * c] --> c filter2 : [b * c -> b * c * c] --> c map : [c -> c * c] --> c n : [] --> a nil : [] --> c s : [a] --> a true : [] --> b Rules: f(cons(nil, x)) => x f(cons(f(cons(nil, x)), y)) => copy(n, x, y) copy(0, x, y) => f(y) copy(s(x), y, z) => copy(x, y, cons(f(y), z)) map(g, nil) => nil map(g, cons(x, y)) => cons(g x, map(g, y)) filter(g, nil) => nil filter(g, cons(x, y)) => filter2(g x, g, x, y) filter2(true, g, x, y) => cons(x, filter(g, y)) filter2(false, g, x, y) => filter(g, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: f(cons(nil, X)) => X f(cons(f(cons(nil, X)), Y)) => copy(n, X, Y) copy(0, X, Y) => f(Y) copy(s(X), Y, Z) => copy(X, Y, cons(f(Y), Z)) Moreover, the system is finitely branching. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is Ce-terminating when seen as a many-sorted first-order TRS. According to nattprover, this system is indeed Ce-terminating: || Input TRS: || 1: f(cons(nil(),PeRCenTX)) -> PeRCenTX || 2: f(cons(f(cons(nil(),PeRCenTX)),PeRCenTY)) -> copy(n(),PeRCenTX,PeRCenTY) || 3: copy(0(),PeRCenTX,PeRCenTY) -> f(PeRCenTY) || 4: copy(s(PeRCenTX),PeRCenTY,PeRCenTZ) -> copy(PeRCenTX,PeRCenTY,cons(f(PeRCenTY),PeRCenTZ)) || 5: TIlDePAIR(PeRCenTX,PeRCenTY) -> PeRCenTX || 6: TIlDePAIR(PeRCenTX,PeRCenTY) -> PeRCenTY || Number of strict rules: 6 || Direct POLO(bPol) ... failed. || Uncurrying copy || 1: f(cons(nil(),PeRCenTX)) -> PeRCenTX || 2: f(cons(f(cons(nil(),PeRCenTX)),PeRCenTY)) -> copy^1_n(PeRCenTX,PeRCenTY) || 3: copy^1_0(PeRCenTX,PeRCenTY) -> f(PeRCenTY) || 4: copy^1_s(PeRCenTX,PeRCenTY,PeRCenTZ) -> copy(PeRCenTX,PeRCenTY,cons(f(PeRCenTY),PeRCenTZ)) || 5: TIlDePAIR(PeRCenTX,PeRCenTY) -> PeRCenTX || 6: TIlDePAIR(PeRCenTX,PeRCenTY) -> PeRCenTY || 7: copy(0(),_2,_3) ->= copy^1_0(_2,_3) || 8: copy(s(_1),_3,_4) ->= copy^1_s(_1,_3,_4) || 9: copy(n(),_2,_3) ->= copy^1_n(_2,_3) || Number of strict rules: 6 || Direct POLO(bPol) ... failed. || Dependency Pairs: || #1: #copy(0(),_2,_3) ->? #copy^1_0(_2,_3) || #2: #copy^1_0(PeRCenTX,PeRCenTY) -> #f(PeRCenTY) || #3: #copy(s(_1),_3,_4) ->? #copy^1_s(_1,_3,_4) || #4: #copy^1_s(PeRCenTX,PeRCenTY,PeRCenTZ) -> #copy(PeRCenTX,PeRCenTY,cons(f(PeRCenTY),PeRCenTZ)) || #5: #copy^1_s(PeRCenTX,PeRCenTY,PeRCenTZ) -> #f(PeRCenTY) || Number of SCCs: 1, DPs: 2 || SCC { #3 #4 } || POLO(Sum)... succeeded. || TIlDePAIR w: 0 || copy^1_0 w: 0 || s w: x1 + 3 || n w: 0 || #copy w: x1 + x2 + x3 || f w: 1 || 0 w: 0 || nil w: 1 || copy^1_s w: 0 || #TIlDePAIR w: 0 || copy^1_n w: 0 || #f w: 0 || #copy^1_s w: x1 + x2 + 2 || cons w: 1 || copy w: 0 || #copy^1_0 w: 0 || USABLE RULES: { } || Removed DPs: #3 #4 || Number of SCCs: 0, DPs: 0 || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] map#(F, cons(X, Y)) =#> map#(F, Y) 1] filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) 2] filter2#(true, F, X, Y) =#> filter#(F, Y) 3] filter2#(false, F, X, Y) =#> filter#(F, Y) Rules R_0: f(cons(nil, X)) => X f(cons(f(cons(nil, X)), Y)) => copy(n, X, Y) copy(0, X, Y) => f(Y) copy(s(X), Y, Z) => copy(X, Y, cons(f(Y), Z)) map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, nil) => nil filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0 * 1 : 2, 3 * 2 : 1 * 3 : 1 This graph has the following strongly connected components: P_1: map#(F, cons(X, Y)) =#> map#(F, Y) P_2: filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f) and (P_2, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, computable, formative) and (P_2, R_0, computable, formative) is finite. We consider the dependency pair problem (P_2, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(filter2#) = 4 nu(filter#) = 2 Thus, we can orient the dependency pairs as follows: nu(filter#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(filter2#(F X, F, X, Y)) nu(filter2#(true, F, X, Y)) = Y = Y = nu(filter#(F, Y)) nu(filter2#(false, F, X, Y)) = Y = Y = nu(filter#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_2, R_0, computable, f) by (P_3, R_0, computable, f), where P_3 contains: filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if each of (P_1, R_0, computable, formative) and (P_3, R_0, computable, formative) is finite. We consider the dependency pair problem (P_3, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. Thus, the original system is terminating if (P_1, R_0, computable, formative) is finite. We consider the dependency pair problem (P_1, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(map#) = 2 Thus, we can orient the dependency pairs as follows: nu(map#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(map#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_1, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.