We consider the system Applicative_first_order_05__perfect. Alphabet: 0 : [] --> b cons : [d * e] --> e f : [b * b * b * b] --> c false : [] --> c filter : [d -> c * e] --> e filter2 : [c * d -> c * d * e] --> e if : [a * c * c] --> c le : [b * b] --> a map : [d -> d * e] --> e minus : [b * b] --> b nil : [] --> e perfectp : [b] --> c s : [b] --> b true : [] --> c Rules: perfectp(0) => false perfectp(s(x)) => f(x, s(0), s(x), s(x)) f(0, x, 0, y) => true f(0, x, s(y), z) => false f(s(x), 0, y, z) => f(x, z, minus(y, s(x)), z) f(s(x), s(y), z, u) => if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u)) map(g, nil) => nil map(g, cons(x, y)) => cons(g x, map(g, y)) filter(g, nil) => nil filter(g, cons(x, y)) => filter2(g x, g, x, y) filter2(true, g, x, y) => cons(x, filter(g, y)) filter2(false, g, x, y) => filter(g, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: perfectp(0) => false perfectp(s(X)) => f(X, s(0), s(X), s(X)) f(0, X, 0, Y) => true f(0, X, s(Y), Z) => false f(s(X), 0, Y, Z) => f(X, Z, minus(Y, s(X)), Z) f(s(X), s(Y), Z, U) => if(le(X, Y), f(s(X), minus(Y, X), Z, U), f(X, U, Z, U)) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to nattprover, this system is indeed terminating: || Input TRS: || 1: perfectp(0()) -> false() || 2: perfectp(s(PeRCenTX)) -> f(PeRCenTX,s(0()),s(PeRCenTX),s(PeRCenTX)) || 3: f(0(),PeRCenTX,0(),PeRCenTY) -> true() || 4: f(0(),PeRCenTX,s(PeRCenTY),PeRCenTZ) -> false() || 5: f(s(PeRCenTX),0(),PeRCenTY,PeRCenTZ) -> f(PeRCenTX,PeRCenTZ,minus(PeRCenTY,s(PeRCenTX)),PeRCenTZ) || 6: f(s(PeRCenTX),s(PeRCenTY),PeRCenTZ,PeRCenTU) -> if(le(PeRCenTX,PeRCenTY),f(s(PeRCenTX),minus(PeRCenTY,PeRCenTX),PeRCenTZ,PeRCenTU),f(PeRCenTX,PeRCenTU,PeRCenTZ,PeRCenTU)) || Number of strict rules: 6 || Direct POLO(bPol) ... failed. || Uncurrying f || 1: perfectp(0()) -> false() || 2: perfectp(s(PeRCenTX)) -> f(PeRCenTX,s(0()),s(PeRCenTX),s(PeRCenTX)) || 3: f^1_0(PeRCenTX,0(),PeRCenTY) -> true() || 4: f^1_0(PeRCenTX,s(PeRCenTY),PeRCenTZ) -> false() || 5: f^1_s(PeRCenTX,0(),PeRCenTY,PeRCenTZ) -> f(PeRCenTX,PeRCenTZ,minus(PeRCenTY,s(PeRCenTX)),PeRCenTZ) || 6: f^1_s(PeRCenTX,s(PeRCenTY),PeRCenTZ,PeRCenTU) -> if(le(PeRCenTX,PeRCenTY),f^1_s(PeRCenTX,minus(PeRCenTY,PeRCenTX),PeRCenTZ,PeRCenTU),f(PeRCenTX,PeRCenTU,PeRCenTZ,PeRCenTU)) || 7: f(0(),_3,_4,_5) ->= f^1_0(_3,_4,_5) || 8: f(s(_1),_4,_5,_6) ->= f^1_s(_1,_4,_5,_6) || Number of strict rules: 6 || Direct POLO(bPol) ... failed. || Dependency Pairs: || #1: #perfectp(s(PeRCenTX)) -> #f(PeRCenTX,s(0()),s(PeRCenTX),s(PeRCenTX)) || #2: #f^1_s(PeRCenTX,s(PeRCenTY),PeRCenTZ,PeRCenTU) -> #f^1_s(PeRCenTX,minus(PeRCenTY,PeRCenTX),PeRCenTZ,PeRCenTU) || #3: #f^1_s(PeRCenTX,s(PeRCenTY),PeRCenTZ,PeRCenTU) -> #f(PeRCenTX,PeRCenTU,PeRCenTZ,PeRCenTU) || #4: #f(0(),_3,_4,_5) ->? #f^1_0(_3,_4,_5) || #5: #f^1_s(PeRCenTX,0(),PeRCenTY,PeRCenTZ) -> #f(PeRCenTX,PeRCenTZ,minus(PeRCenTY,s(PeRCenTX)),PeRCenTZ) || #6: #f(s(_1),_4,_5,_6) ->? #f^1_s(_1,_4,_5,_6) || Number of SCCs: 1, DPs: 3 || SCC { #3 #5 #6 } || POLO(Sum)... succeeded. || le w: 0 || s w: x1 + 3 || minus w: 1 || #f^1_s w: x1 + x3 + 2 || #perfectp w: 0 || false w: 0 || true w: 0 || f w: 0 || 0 w: 2 || if w: 0 || #f w: x1 + x3 || #f^1_0 w: 0 || perfectp w: 0 || f^1_0 w: 0 || f^1_s w: 0 || USABLE RULES: { } || Removed DPs: #3 #5 #6 || Number of SCCs: 0, DPs: 0 || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [FuhKop19]). We thus obtain the following dependency pair problem (P_0, R_0, computable, formative): Dependency Pairs P_0: 0] map#(F, cons(X, Y)) =#> map#(F, Y) 1] filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) 2] filter2#(true, F, X, Y) =#> filter#(F, Y) 3] filter2#(false, F, X, Y) =#> filter#(F, Y) Rules R_0: perfectp(0) => false perfectp(s(X)) => f(X, s(0), s(X), s(X)) f(0, X, 0, Y) => true f(0, X, s(Y), Z) => false f(s(X), 0, Y, Z) => f(X, Z, minus(Y, s(X)), Z) f(s(X), s(Y), Z, U) => if(le(X, Y), f(s(X), minus(Y, X), Z, U), f(X, U, Z, U)) map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, nil) => nil filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) Thus, the original system is terminating if (P_0, R_0, computable, formative) is finite. We consider the dependency pair problem (P_0, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0 * 1 : 2, 3 * 2 : 1 * 3 : 1 This graph has the following strongly connected components: P_1: map#(F, cons(X, Y)) =#> map#(F, Y) P_2: filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f) and (P_2, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, computable, formative) and (P_2, R_0, computable, formative) is finite. We consider the dependency pair problem (P_2, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(filter2#) = 4 nu(filter#) = 2 Thus, we can orient the dependency pairs as follows: nu(filter#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(filter2#(F X, F, X, Y)) nu(filter2#(true, F, X, Y)) = Y = Y = nu(filter#(F, Y)) nu(filter2#(false, F, X, Y)) = Y = Y = nu(filter#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_2, R_0, computable, f) by (P_3, R_0, computable, f), where P_3 contains: filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if each of (P_1, R_0, computable, formative) and (P_3, R_0, computable, formative) is finite. We consider the dependency pair problem (P_3, R_0, computable, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. Thus, the original system is terminating if (P_1, R_0, computable, formative) is finite. We consider the dependency pair problem (P_1, R_0, computable, formative). We apply the subterm criterion with the following projection function: nu(map#) = 2 Thus, we can orient the dependency pairs as follows: nu(map#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(map#(F, Y)) By [FuhKop19, Thm. 61], we may replace a dependency pair problem (P_1, R_0, computable, f) by ({}, R_0, computable, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhKop19] C. Fuhs, and C. Kop. A static higher-order dependency pair framework. In Proceedings of ESOP 2019, 2019. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.